核医学教学课件:医用核物理基础
合集下载
核医学PPT课件-核医学绪论及物理基础
*
高度选择性
放射免疫靶向治疗 受体介导的靶向治疗 放射性核素基因治疗 高度适形性 放射性核素粒子植入治疗等
放射免疫分析 免疫放射分析 受体分析
*
通过放射性核素示踪技术,可以在生理状态下,从分子水平动态地研究机体各种物质的代谢变化,细致地揭示体内及细胞内代谢的内幕,这是其他技术难以实现的。 放射性核素显像反映了脏器和组织的生理和病理生理变化,属于功能影像;其中受体显像、放射免疫显像等技术也属于分子功能影像。
History look back
*
临床核医学之父
1926年美国Boston内科医师Blumgart首先应用放射性氡研究循环时间,第一次应用了示踪技术。 将氡从一侧手臂静脉注射后,在暗室中通过云母窗观察其在另一手臂出现的时间,以了解动-静脉血管床之间的循环时间。 后来他又进行了多领域的生理、病理和药理学研究。被誉为“临床核医学之父”。
*
影像学可被广义的分为解剖影像及分子影像。 CT和 超声属于解剖影像。 而PET及某些形式的MRI被认为是分子影像。
*
分子影像学
定义:运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对其生物学行为在影像方面进行定性和定量研究的科学。 是连接分子生物学等学科和临床医学的桥梁。
*
反应堆 裂变产物、分离纯化 133Xe、131I等 (生产丰中子放射性核素,多伴有β衰变,不利于制备诊断用放射性核素)
*
加速器 15O、18F等 (生产短寿命的乏中子放射性核素)
*
发生器(“母牛”) “从长半衰期核素的衰变产物中得到短半衰期核素的装置” 99mMo-99mTc(钼-锝) 113Sn-113In(锡-铟)
*
核医学发展史
高度选择性
放射免疫靶向治疗 受体介导的靶向治疗 放射性核素基因治疗 高度适形性 放射性核素粒子植入治疗等
放射免疫分析 免疫放射分析 受体分析
*
通过放射性核素示踪技术,可以在生理状态下,从分子水平动态地研究机体各种物质的代谢变化,细致地揭示体内及细胞内代谢的内幕,这是其他技术难以实现的。 放射性核素显像反映了脏器和组织的生理和病理生理变化,属于功能影像;其中受体显像、放射免疫显像等技术也属于分子功能影像。
History look back
*
临床核医学之父
1926年美国Boston内科医师Blumgart首先应用放射性氡研究循环时间,第一次应用了示踪技术。 将氡从一侧手臂静脉注射后,在暗室中通过云母窗观察其在另一手臂出现的时间,以了解动-静脉血管床之间的循环时间。 后来他又进行了多领域的生理、病理和药理学研究。被誉为“临床核医学之父”。
*
影像学可被广义的分为解剖影像及分子影像。 CT和 超声属于解剖影像。 而PET及某些形式的MRI被认为是分子影像。
*
分子影像学
定义:运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对其生物学行为在影像方面进行定性和定量研究的科学。 是连接分子生物学等学科和临床医学的桥梁。
*
反应堆 裂变产物、分离纯化 133Xe、131I等 (生产丰中子放射性核素,多伴有β衰变,不利于制备诊断用放射性核素)
*
加速器 15O、18F等 (生产短寿命的乏中子放射性核素)
*
发生器(“母牛”) “从长半衰期核素的衰变产物中得到短半衰期核素的装置” 99mMo-99mTc(钼-锝) 113Sn-113In(锡-铟)
*
核医学发展史
核医学课件:第一章 核物理
稳定性核素
稳定性核素 中子与质子比例适当
放射性核素 自发地发出某种射线而转 变为另一种核素
核衰变
放射性核素自发地释放出一种或一 种以上的射线并转变成另外一种核 素的过程。其类型与方式取决于原 子核内的固有特征,与外界无关
α衰变
核子总数过多 (原子序数>82)
位移规律 AZX
A-4Z-2Y+42He+Q
A = Ao e –λt 当:t=0时
A = Ao e –0.693 预先算出:t/T1/2 查表得到e –λt 值*Ao
贝可与居里的关系 比放射性活度 比放射性浓度
射线与物质的相互作用
带电粒子与物质的相互作用
1. 电离 2. 激发 3. 轫致辐射 4. 散射 5. 湮没辐射 6. 吸收作用
光子与物质的相互作用
1. 光电效应 2. 康普顿-吴有训效应 3. 电子对生成
表示某种放射性核素的一个核在 单位时间内自发衰变的比率,反映 核衰变的速度,与半衰期成反比
T=0.693/λ
放射性活度
放射性活度(A):一定量的放射性核 素在单位时间内发生的核衰变次数,反 映核衰变率
A=dN/dt 单位:贝可 (Bq) 居里(Ci) 比放射性活度(简称比活度):单位质量 (容积)放射性制剂中的放射性活度 单位: Bq/mg Bq/mL
22688Ra
22286Rn
eV (能量单位) α射线特点:
KeV MeV
β- 衰 变
富中子核素,中子数过多, 转换为质子
位移规律: AZX 3215P
β射线特点:
AZ+1Y+ β-+Q+υ 3216S
β+ 衰 变
贫中子核素内质子转换为中子
核医学核物理基础ppt课件
AZm XA ZY
99m 43T c9493T c
2021/4/21
二、核衰变规律
核衰变的基本定律
放射性原子数或放射性活度随时间呈指数规律减少。 Nt= N0e-t 或 At= A0e-t
衰变常数
放射性核素在单位时间内衰变的概率。是反映放射性核素 衰变速度的物理量,是放射性核素的一个重要特征参数。 衰变常数越大,放射性核素衰变速度越大。
2021/4/21
吸收作用
定义:带电粒子通过物质时,与物质相互作用, 能量不断 损失,当射线能量耗尽后,带电粒子就停留在物质中,射 线则不再存在,称为吸收(absorption)。
99m43Tc 9493Tcm
9493Tc
同质异能素
2021/4/21
第二节 核衰变
定义:放射性核素由于核内结构或能级调整,自发地释 放出一种或一种以上的射线并转化为另一种核素的过程, 称为核衰变(nuclear decay)。
2021/4/21
氚发生β-衰变,衰变为氦
一、核衰变的类型
衰变
定义:衰变时放射出粒子的衰变称衰变( decay) 。 衰变发生于原子序数 > 82的核素。
第一章 核医学的核物理基础
2021/4/21
第一节 原子的基本结构
原子核
中子
++
+
质子
电子
2021/4/21
2021/4/21
同位素
定义:具有相同原子序数,但质量数不同的核素互为同 位素。即质子数相同而中子数不同的核素。
2021/4/21
图2-2 氕、氘、氚互为同位素
同质异能素
定义:具有相同质量数和原子序数,处于不同核能态的 一类核素称同质异能素。 基态的原子和激发态的原子互为同质异能素(isomer)。
99m 43T c9493T c
2021/4/21
二、核衰变规律
核衰变的基本定律
放射性原子数或放射性活度随时间呈指数规律减少。 Nt= N0e-t 或 At= A0e-t
衰变常数
放射性核素在单位时间内衰变的概率。是反映放射性核素 衰变速度的物理量,是放射性核素的一个重要特征参数。 衰变常数越大,放射性核素衰变速度越大。
2021/4/21
吸收作用
定义:带电粒子通过物质时,与物质相互作用, 能量不断 损失,当射线能量耗尽后,带电粒子就停留在物质中,射 线则不再存在,称为吸收(absorption)。
99m43Tc 9493Tcm
9493Tc
同质异能素
2021/4/21
第二节 核衰变
定义:放射性核素由于核内结构或能级调整,自发地释 放出一种或一种以上的射线并转化为另一种核素的过程, 称为核衰变(nuclear decay)。
2021/4/21
氚发生β-衰变,衰变为氦
一、核衰变的类型
衰变
定义:衰变时放射出粒子的衰变称衰变( decay) 。 衰变发生于原子序数 > 82的核素。
第一章 核医学的核物理基础
2021/4/21
第一节 原子的基本结构
原子核
中子
++
+
质子
电子
2021/4/21
2021/4/21
同位素
定义:具有相同原子序数,但质量数不同的核素互为同 位素。即质子数相同而中子数不同的核素。
2021/4/21
图2-2 氕、氘、氚互为同位素
同质异能素
定义:具有相同质量数和原子序数,处于不同核能态的 一类核素称同质异能素。 基态的原子和激发态的原子互为同质异能素(isomer)。
核医学核医学物理基础PPT课件
• 常见于: 中子数过多的核素,即富中子核素
• β-粒子实质:负电子(核内产生,向外发射)
• 通式:
• 实例:
A Z
X
A Z 1
Y
Q
32 16
P
1362
S
1.71MeV
第28页/共73页
β-衰变 (β- decay)
• β-粒子特性:射程及穿透力较α粒子强,2Mev的β-粒子在软组织中的射程约为 2c m , 仍 不 能 用 于 核 医 学 显 像 , 但 某 些 β-衰 变 核 素 可 用 于 核 素 治 疗 , 如 : 131I 用 于治疗甲亢和甲状腺癌,32P可用于血液病和皮肤病的治疗等。
Eavg=0.4 Emax
一般所说的β-射线能量 指的是最大值,也等于 衰变能。
β-射线的平均能量Eavg约 为Emax的0.4左右。
第31页/共73页
β+衰变 (β+ decay)
• 定义:放射性核素的核内自发地放射出β+粒子的衰变方式称为β+衰变。
• 常见于: 中子数相对较少的核素,即贫中子核素。正电子衰变核素,都是人工 放射性核素。
核素 原子核的质子数、中子数和原子核所处的能量状态均相同的原子属于同一种核素。现在已知有2000多种
核素。 同一种核素化学性质和核性质均相同,是某一原子固有的特性征。
第9页/共73页
同位素 凡原子核具有相同的质子数而中子数不同的元素互为同位素。 如125I、131I、132I均有53个质子,但中子数不同,在元素周期表中处于同一位置, 是同一元素-碘元素。 一种元素往往有几种甚至几十种同位素。一个元素所有同位素,其物理性质可能 有所不同,但都具有完全相同的核外电子结构,大部分同位素化学和生物性质基 本相同。
核医学课件:第一章 核物理知识
1Bq=2.7×1011 Ci
放射性浓度定义为单位体积溶液中所含的放射
性活度,单位是Bq/ml、mCi/ml等。
第三节、射线与物质相互作用
Section 3 mutual interaction of rad and substance
射线的运动空间充满介质,射线就会与 物质发生相互作用,射线的能量不断被物质 吸收。这种相互作用亦称射线的物理效应, 是了解辐射生物效应、屏蔽防护以及放射性 检测、核素显像和治疗的基础。
Mutual interaction of γrad and Substance
光电效应:光子把能量完全转移给一个轨道电子,使之发射 出来,而光子本身消失。
康普顿效应:发生在γ射线能量较大时,光 子只将部分能量转给轨道电子,使之脱离原子 核发射出来成为康普顿电子,而光子本身改变 运动方向继续运行。
1960
照相机
扫描机
1950
21世纪
PET/CT
PET
1970 SPECT 1990 1990
电子对生成:光子穿过物质时,当光子能 量大于1.022MeV,在光子与介质原子核电场 的相互作用下,产生一对正、负电子。这种作 用被称之为电子对生成。
γ射线与物质相互作用产生光电子、康普顿 电子、生成电子对等次级电子,这些次级电子 也如带电粒子一样引起物质分子的电离和激发。
甲亢的碘-131治疗
治疗前
放射性核素32P敷贴器
治疗后
治疗前
治疗后
3、正电子衰变
正电子衰变:衰变时放出正电子的衰变。也叫β +衰变。
公式:ZAX
Z-1AY + e++ Q+ υ
粒子是带正电荷的电子,正电子射程仅1~2mm即发生湮 没辐射,即失去电子质量,转变为两个质量为511Kev,方 向相反的γ光子。可用PET探测方向相反的γ光子,进行显像。 如18F衰变。
医学核医学全套课件
辐射防护与安全
辐射防护基本原则与方法
要点一
辐射防护基本原则
包括合理布局、最小化辐射源、最优化辐射防护、个人 剂量限值等,确保辐射工作人员和公众的健康与安全。
要点二
辐射防护基本方法
包括时间防护、距离防护、屏蔽防护等,以减少或避免 辐射的危害。
辐射事故应急与救援处理
辐射事故应急处理
建立应急预案、快速响应机制,确保事故的及时处理和 有效控制。
核磁共振(MRI)技术
利用磁场和射频脉冲,实现对人体内部组织的非侵入性成像,提供高分辨率、高对比度的图像。
放射性核素治疗与药物研发
放射性核素治疗
利用放射性核素产生的射线对肿瘤进行照射,达到杀灭肿瘤细胞的目的。
药物研发
利用放射性核素标记药物,研究药物在体内的分布、代谢和药效等,为新药研发提供依据。
06
现状
目前,医学核医学已经成为现代医学的重要支柱之一,国内外众多医疗机构都设 有核医学科。新型的分子核医学技术如PET/CT、SPECT/CT等得到了广泛应用, 为临床提供了更精确的诊断和治疗方案。
医学核医学的应用领域
临床诊断
疾病治疗
医学核医学利用放射性核素 及其标记化合物对疾病进行 早期诊断和精确分期。例如 ,PET/CT可用于肿瘤、心脏 病和神经系统疾病的早期检 测。
02
核物理基础
核辐射与相互作用
核辐射种类
包括α、β、γ、X射线等,各自具有不同的穿透能力、电离能力 和化学性质。
核辐射与物质的相互作用
主要通过光电效应、康普顿散射、电子对产生等过程与物质相互 作用。
剂量学基础
介绍了用于测量和描述辐射对生物体作用的物理量——剂量,以 及剂量单位和测量方法。
辐射防护基本原则与方法
要点一
辐射防护基本原则
包括合理布局、最小化辐射源、最优化辐射防护、个人 剂量限值等,确保辐射工作人员和公众的健康与安全。
要点二
辐射防护基本方法
包括时间防护、距离防护、屏蔽防护等,以减少或避免 辐射的危害。
辐射事故应急与救援处理
辐射事故应急处理
建立应急预案、快速响应机制,确保事故的及时处理和 有效控制。
核磁共振(MRI)技术
利用磁场和射频脉冲,实现对人体内部组织的非侵入性成像,提供高分辨率、高对比度的图像。
放射性核素治疗与药物研发
放射性核素治疗
利用放射性核素产生的射线对肿瘤进行照射,达到杀灭肿瘤细胞的目的。
药物研发
利用放射性核素标记药物,研究药物在体内的分布、代谢和药效等,为新药研发提供依据。
06
现状
目前,医学核医学已经成为现代医学的重要支柱之一,国内外众多医疗机构都设 有核医学科。新型的分子核医学技术如PET/CT、SPECT/CT等得到了广泛应用, 为临床提供了更精确的诊断和治疗方案。
医学核医学的应用领域
临床诊断
疾病治疗
医学核医学利用放射性核素 及其标记化合物对疾病进行 早期诊断和精确分期。例如 ,PET/CT可用于肿瘤、心脏 病和神经系统疾病的早期检 测。
02
核物理基础
核辐射与相互作用
核辐射种类
包括α、β、γ、X射线等,各自具有不同的穿透能力、电离能力 和化学性质。
核辐射与物质的相互作用
主要通过光电效应、康普顿散射、电子对产生等过程与物质相互 作用。
剂量学基础
介绍了用于测量和描述辐射对生物体作用的物理量——剂量,以 及剂量单位和测量方法。
核医学-第一篇 基础篇 第一章 核医学物理基础
(三)电子对生成
康普顿效应示意图
本章小结
1. 放射性核素是核医学的基本工具。 2. 核素、同位素、同质异能素等描述放射性核素的不同种类。 3. 核衰变、半衰期等描述放射性核素的物理变化方式、规律和生成核射线的种类。 4. 放射性活度是放射性核素放射性强度的度量单位。 5. 电离和激发、光电效应等射线与物质的相互作用方式是核射线探测、核医学显
两种同位素的比较
核医学(第9版)
三、稳定核素和放射性核素
1. 稳定核素:原子核稳定,不产生射线。 2. 放射性核素:原子核不稳定,自发产生射线。
第二节
核衰变
核医学(第9版)
一、核衰变方式
(一)α衰变
1.
α衰变反应式:
A Z
X→A-4 Z-2
Y + 42
He + Q
ቤተ መጻሕፍቲ ባይዱ
2. α射线,即α粒子流(氦原子核)
核医学(第9版)
一、核衰变方式
(四)γ衰变
1.
γ衰变反应式:
Am Z
X→AZ
Y + γ
2. γ射线,即γ光子流
3. γ射线特点:
(1)不带电荷。 (2)运动速度快。 (3)穿透能力强。 (4)电离能力很小。
γ衰变及内转换模式图
核医学(第9版)
二、核衰变规律
(一)衰变常数
1. 衰变常数:单位时间内发生衰变的原子核数目占总数的比率,
核医学(第9版)
二、核衰变规律
(三)放射性活度
1. 定义:放射性核素在单位时间内的衰变数,表示放射性核素的放射性强度。
2. 单位:
(1)贝克(Bq):1秒钟内发生一次核衰变 (2)居里(Ci):每秒3.7×1010次核衰变,1Ci=3.7×1010Bq
康普顿效应示意图
本章小结
1. 放射性核素是核医学的基本工具。 2. 核素、同位素、同质异能素等描述放射性核素的不同种类。 3. 核衰变、半衰期等描述放射性核素的物理变化方式、规律和生成核射线的种类。 4. 放射性活度是放射性核素放射性强度的度量单位。 5. 电离和激发、光电效应等射线与物质的相互作用方式是核射线探测、核医学显
两种同位素的比较
核医学(第9版)
三、稳定核素和放射性核素
1. 稳定核素:原子核稳定,不产生射线。 2. 放射性核素:原子核不稳定,自发产生射线。
第二节
核衰变
核医学(第9版)
一、核衰变方式
(一)α衰变
1.
α衰变反应式:
A Z
X→A-4 Z-2
Y + 42
He + Q
ቤተ መጻሕፍቲ ባይዱ
2. α射线,即α粒子流(氦原子核)
核医学(第9版)
一、核衰变方式
(四)γ衰变
1.
γ衰变反应式:
Am Z
X→AZ
Y + γ
2. γ射线,即γ光子流
3. γ射线特点:
(1)不带电荷。 (2)运动速度快。 (3)穿透能力强。 (4)电离能力很小。
γ衰变及内转换模式图
核医学(第9版)
二、核衰变规律
(一)衰变常数
1. 衰变常数:单位时间内发生衰变的原子核数目占总数的比率,
核医学(第9版)
二、核衰变规律
(三)放射性活度
1. 定义:放射性核素在单位时间内的衰变数,表示放射性核素的放射性强度。
2. 单位:
(1)贝克(Bq):1秒钟内发生一次核衰变 (2)居里(Ci):每秒3.7×1010次核衰变,1Ci=3.7×1010Bq
临床医学核医学课件
• λ e=λ+ λb λ=0.693/T1/2 Te-1= T1/2 –1+ Tb-1
第四节、射线与物质的相互作用
• 一、带电粒子与物质的相互作用:
(一)电离(ionization)作用:
带电粒子( charged particles,α ,β )使物质中的原子失 去轨道电子而形成自由电子和正离子的过程。 1、入射粒子电荷量越大,电离作用越强。 α》β 。 2、自由电子能量足够大,又可使其他原子电离---间接电离或 次级电离。 3、单位路径中形成的离子对数为电离密度,反应电离本领。 4、电子飞出,某壳层有空位产生,外层轨道电子填充,发射 特征X射线。
能量差转换为特征X线(characteristic X ray)或传给一个轨道 电子,使之脱离原子----饿歇电子(auger electrons)。
该衰变后,有的原子核仍处激发态—γ射线--基态,或原子 核
把能量传给一个核外电子,使之发射出去—内转换电子。 特征X线、 γ射线可用于显像(111In、123I、67Ga、201Tl),俄
• 核医学是现代医学的重要内容,也是医学现代化的重 要标志之一。
• 核医学的发展促进了医学进步,医学的进步也促进了 核医学的发展。如免疫学。
• 核医学示踪技术阐明了许多医学中的重大问题:
RNA-DNA逆转录,遗产密码,胆固醇合成与代谢, 细胞周期与细胞膜受体,人体各种激素与微量物质 的定量分析等。
带电粒子在物质中通过可能经过多次 散射。
(四)韧致辐射(bremsstrahlung) :
快速电子通过物质时,在原子核电场力作用下,急 剧减速,电子的一部分或全部动能转化为连续能量的 X线发射出来----韧致辐射。
1、韧致辐射强度和β 射线反向散射的几率与屏蔽 材料的密度正相关。还随β 射线能量增加而增加。
第四节、射线与物质的相互作用
• 一、带电粒子与物质的相互作用:
(一)电离(ionization)作用:
带电粒子( charged particles,α ,β )使物质中的原子失 去轨道电子而形成自由电子和正离子的过程。 1、入射粒子电荷量越大,电离作用越强。 α》β 。 2、自由电子能量足够大,又可使其他原子电离---间接电离或 次级电离。 3、单位路径中形成的离子对数为电离密度,反应电离本领。 4、电子飞出,某壳层有空位产生,外层轨道电子填充,发射 特征X射线。
能量差转换为特征X线(characteristic X ray)或传给一个轨道 电子,使之脱离原子----饿歇电子(auger electrons)。
该衰变后,有的原子核仍处激发态—γ射线--基态,或原子 核
把能量传给一个核外电子,使之发射出去—内转换电子。 特征X线、 γ射线可用于显像(111In、123I、67Ga、201Tl),俄
• 核医学是现代医学的重要内容,也是医学现代化的重 要标志之一。
• 核医学的发展促进了医学进步,医学的进步也促进了 核医学的发展。如免疫学。
• 核医学示踪技术阐明了许多医学中的重大问题:
RNA-DNA逆转录,遗产密码,胆固醇合成与代谢, 细胞周期与细胞膜受体,人体各种激素与微量物质 的定量分析等。
带电粒子在物质中通过可能经过多次 散射。
(四)韧致辐射(bremsstrahlung) :
快速电子通过物质时,在原子核电场力作用下,急 剧减速,电子的一部分或全部动能转化为连续能量的 X线发射出来----韧致辐射。
1、韧致辐射强度和β 射线反向散射的几率与屏蔽 材料的密度正相关。还随β 射线能量增加而增加。
核医学基础知识PPT课件
射线还可以与物质原子核发生 碰撞,使原子核获得能量并发 生跃迁。
射线的能量在物质中传播时会 逐渐减少,最终以热能的形式 散失。
放射性测量
放射性测量是利用专门设计的仪 器和设备来测量放射性核素的活 度、能量和分布等参数的过程。
常用的放射性测量仪器包括盖革 计数器、闪烁计数器和半导体探
测器等。Βιβλιοθήκη 测量放射性时需要遵循一定的安 全规范,以保护测量人员的安全
随着放射性药物的需求不断增 加,如何保证放射性药物的生 产质量和安全性成为了一个重 要问题。未来将会有更严格的 生产标准和质量控制措施出台 。
放射性药物的运输与储存
放射性药物的运输和储存需要 特别注意安全问题。未来将会 有更完善的运输和储存方案出 台,确保放射性药物的安全使 用。
核医学与其他医学影像技术的结合
核医学基础知识PPT课件
目录
• 核医学概述 • 核物理基础 • 核成像技术 • 核医学在临床的应用 • 核医学的未来发展
01
核医学概述
核医学的定义
核医学是利用放射性核素或其标记化合物进行疾病诊断、治疗和研究的医学分支。 它涉及了放射性核素、标记化合物、仪器设备和标记技术等多个领域。
核医学在临床医学中占有重要地位,为疾病的早期诊断和治疗提供了有效手段。
单光子发射断层成像是一种核医学影像技术,用于观察人体器官和组织的血流 灌注和代谢情况。
详细描述
SPECT成像通过检测放射性示踪剂发射的单光子,能够生成三维图像,用于诊 断心脏病、脑部疾病和肿瘤等疾病。
γ相机成像
总结词
γ相机成像是一种简便、快速的核医学影像技术,用于观察人体器官和组织的形 态和功能。
实时成像技术
实时核成像技术能够提供动态的、实时的图像,有助于医 生观察病变的发展和变化,为制定治疗方案提供有力支持 。
【医学课件】核医学物理基础(Basic Physics of Nuclear)
n p+β- +Q源自1 35 2 P 1362 Sβ1.7M 1 eV
12/21/2020
10
β+ decay
Emission of β+ particle Neutron poor nuclei A proton to neutron transformation Artificial radionuclide
PROTON NUMBER
0
50
100
150
NEUTRON NUMBER
Neutron-proton ratio with line nuclear stability
12/21/2020
6
Nuclear decay
Alpha(α)decay
Alpha particles is a helium nuclei consisting of 2 protons and 2 neutrons.
2565 F ee 255 M 5 n
γ
12/21/2020
P+e- n
Characteristic X-ray
Auger electron
12
Gamma decay and internal conversion
Gamma decay may be a part of another decay process,such as ,EC or -
189F—188O + β+ + + 0.66MeV
p n+e+
12/21/2020
β+ γ
11
Electron capture,EC
An orbital electron is captured to form a neutron.
核医学PPT教学课件
2021/01/21
5
核物理基本知识
• 1.核素 • 2.同位素 • 3.放射性同位素 • 4.同质异能素
2021/01/21
6
射线的种类
• (1).α衰变(Alpha decay ) • (2).β衰变(Beta decay):两种:-β
衰变和+β衰变。 • (3).γ衰变(Gammar decay) • (4).内转换(Internal conversion) • (5).电子俘获(Electron Capture)
2021/01/21
18
2021/01/21
19
心血管系统
• 心肌灌注断层显像
2021/01/21
20
稳定性心绞痛
• 首选运动负荷心肌显像,不能或不宜做运动试验 者,做潘生丁试验或腺苷试验
• 1. 运动ECG与临床不符 • 2. 运动ECG结果不确定 • 3. 患者有房颤、左束支传导阻滞、左室肥厚、E
2021/01/21
7
放射性衰变的规律
• 放射性衰变与周围环境如温度、压力、湿度等 的变化毫无关系
• 有一定的规律:即指数衰减规律 • 每一种放射性核素都有自己的衰变常数 • 放射性核素的衰变规律通常用半衰期表示T1/2
2021/01/21
8
放射性核素
– 1.反应堆生产: – (1).反应堆辐照法 (2).从辐照过的核燃料中提
取 – 2.加速器生产 –3.核素发生器制备
2021/01/21
9
显像剂在脏器或病变中选择性 聚集的机理
• 1). 细胞选择性摄取:(1)特殊需要物质: 131I;(2)代谢产物或异物,如马尿酸;(3) 特殊价态物质:201Tl
《核医学》教学课件:核物理基础
五、内转换
内转换电子过程
(1)处于激发态的原子核 把能量转给一个核外内层 电子, (2)这个电子被逐出原子 成为内转换电子, (3)外层电子填补空穴, 原子核回复到基态, (4)能量由特征X射线 (5)或俄歇电子携走
放射性核衰变规律
放射性核素的衰变是一种自发的过程,不同放射性核 素每个原子核在单位时间内发生衰变的几率不同,即 有不同的衰变常数,以λ表示。 对整个放射源,λ表示发生衰变的原子核数占当时总 核数的百分数。 对单个原子核,λ表示原子核发生衰变的几率,即可 能性。
质量数较小的核素,Z/N=1 时原子核是稳定的。 当质子数较多时(一般为Z>20),质子数多了,斥力增大, 必须有更多的中子使核力增强,才足以克服斥力,保持核稳 定。 原子核中质子数过多或过少,或者中子数过少或过多,原子 核便不稳定。
放射性核衰变
放射性核素:原子核不稳定,能自发地放出
各种射线变成另一种原子核的核素。
由于核内中子缺乏致使放射出正电子的衰变,称为 正电子衰变,也叫β+衰变。 衰变时发射一个正电子和一个中微子(),原子核 中一个质子转变为中子。 β+衰变时母核和子核的质量数无变化,但子核的核 电荷数减少一个单位,β+衰变可用下式表示:
A Z
X
ZA 1 Y
Q
三、正电子衰变
正电子衰变核素,都是人工放射性核素。 正电子射程仅1~2mm,在失去动能的同时与其邻近 的电子(β-)碰撞而发生湮灭辐射,在二者湮灭 的同时,失去电子质量,转变成两个方向相反、能 量皆为511 keV的γ光子。 正电子发射断层仪(PET)能探测方向相反的511 keV光子,进行机体内的定量、定性和代谢显像。
同质异能素
核内中能素。
核医学物理基础ppt课件
对于软组织而言,光子能量为50-90keV 时,光电效应与康普顿效应同等重要
康普顿效应的发生率还与材料的Z/A比 值和被照射面积成正比,与距离的平方 成反比
3.电子对形成
光子在穿过物质时,在与介质原子核电 场的相互作用过程中突然消失而产生一 对正、负电子,这种作用被称为电子对 生成。
电子对形成
放射性浓度为单位体积溶液中所含的放 射性活度
(三)放射系列和放射平衡
放射系列:放出射线而形成衰变的系列 连续衰变: 放射性核素→子核放射性
核素→稳定性核素 连续衰变、放射系列、天然系列衰变
是环境中天然本底辐射来源之一
系列衰变举例
临床核医学使用的99Mo-99mTc发生器 99Mo(T1/2=67h)→99mTc(T1/2=6.02h )
核的原子序数和质量均不改,仅 能级改变,又称为同质异能跃进
γ射线的特点
γ射线的本质是中性的光子流 电离能力很小,穿透能力强
γ衰变与γ射线应用举例●
9942Mo→ β-射线→ 99m43Tc→ γ射 线→基态9943Tc
99mTc 发生γ衰变时,发射能量为 141keV的纯γ射线,已广泛用来显 像诊断疾病
2.康普顿效应
随着光子能量的增加,γ光子与原子中 的电子作用时,只将部分能量传递给核 外电子,使之脱离原子核束缚成为自由 电子发射出来,该电子称为Compton电子, 而γ光子本身能量减少,改变方向继续 运行
康普顿效应
当光子能量在0.5-1.0MeV之间时,对任 何物质来说康普顿效应的发生几率都占 主导地位
半衰期
生物半衰期:进入生物体内的放射性 核素或其化合物,由于生物代谢从体 内排出到原来的一半所需的时间
有效半衰期:物理衰变与生物代谢共 同作用。使体内放射性核素减少一半 所需要的时间
康普顿效应的发生率还与材料的Z/A比 值和被照射面积成正比,与距离的平方 成反比
3.电子对形成
光子在穿过物质时,在与介质原子核电 场的相互作用过程中突然消失而产生一 对正、负电子,这种作用被称为电子对 生成。
电子对形成
放射性浓度为单位体积溶液中所含的放 射性活度
(三)放射系列和放射平衡
放射系列:放出射线而形成衰变的系列 连续衰变: 放射性核素→子核放射性
核素→稳定性核素 连续衰变、放射系列、天然系列衰变
是环境中天然本底辐射来源之一
系列衰变举例
临床核医学使用的99Mo-99mTc发生器 99Mo(T1/2=67h)→99mTc(T1/2=6.02h )
核的原子序数和质量均不改,仅 能级改变,又称为同质异能跃进
γ射线的特点
γ射线的本质是中性的光子流 电离能力很小,穿透能力强
γ衰变与γ射线应用举例●
9942Mo→ β-射线→ 99m43Tc→ γ射 线→基态9943Tc
99mTc 发生γ衰变时,发射能量为 141keV的纯γ射线,已广泛用来显 像诊断疾病
2.康普顿效应
随着光子能量的增加,γ光子与原子中 的电子作用时,只将部分能量传递给核 外电子,使之脱离原子核束缚成为自由 电子发射出来,该电子称为Compton电子, 而γ光子本身能量减少,改变方向继续 运行
康普顿效应
当光子能量在0.5-1.0MeV之间时,对任 何物质来说康普顿效应的发生几率都占 主导地位
半衰期
生物半衰期:进入生物体内的放射性 核素或其化合物,由于生物代谢从体 内排出到原来的一半所需的时间
有效半衰期:物理衰变与生物代谢共 同作用。使体内放射性核素减少一半 所需要的时间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
子序数相同,但原子核中的中子数可以不同, 例如碘元素中有几种不同的核。
2、同位素
同一元素中,有些原子质子数相同而中子数不同,
则称为该元素的同位素,
如上例各种碘互为碘的同位素。
3、同质异能素
如果原子的质子数相同,中子数也相同, 但是核的能级状态不同,那么它们互为同质异能素。
• 例如: • 99Tc和99mTc
• 核衰变时原子 核 从内层轨道(K)俘获一 个电子,使核内一个质子转化为一个中 子。 它是核内中子数相对不足所致。
γ
P+e- n
特征X线 Auger 电子
γ衰变
• γ衰变是伴随其它衰变而产生; 上 述 四 种衰变形成的子核可能处于激发态
• 核素由激发态向基态或高能态向低能态 跃迁时放出γ射线的过程也称为γ跃迁 (γtransition);γ衰变后子核质量数 和原子序数均不变,只是能量改变。
γ
4He
α粒子特性
• α粒子实质上是He原子核, • α衰变发生在原子序数大于82的重元素核素 • α粒子的速度约为光速的1/10,即2万km/s,
2s绕地球1周。 • 在空气中的射程约为3-8cm,在水中或机体
内为0.06-0.16mm。 • 因其质量大,射程短,穿透力弱,一张纸即可
阻挡 • 但α粒子的电离能力很强。
β-衰变
• 衰变时放射出β-粒子。核内中子过多 造成的不平衡。中子转化为质子的过程 。
β-
np+e-
γ
β-粒子的特性
• β-粒子实质是负电子; • 衰变后质量数不变,原子序数加1。 • 能量分布具有连续能谱,穿透力比a粒子大 • 电离能量比a粒子弱,能被铝和机体吸收, • β-粒子在软组织中的射程为厘米水平。
核衰变方式
• 核处于不稳定状态的原因不同,其衰变 有不同的方式。
• 以下介绍5种衰变方式及4种射线 • 5种衰变方式: α、β─、β╋、 k、γ • 4种射线 : α、β─、β╋、γ
核衰变类型(nuclear decay)
• α衰变 • 核衰变时放射出α粒子的衰变。
AZX--A-4Z-2Y+42He+Q
2、β衰变
• 原子核发射出电子的衰变为β衰变。 • β衰变发射的射线分为β━射线或β+射线
β衰变
β━衰变 β+衰变
β衰变
• 核衰变时放射出β粒子或俘获轨道电子 的衰变。
• β衰变后核素的原子序数可增加或减少 但质量数不变。
• 分β-衰变、β+衰变和电子俘获三种 类型。
• β粒子的速度为20万km/s。
• 放射性原子核并不是同时衰变的,对于 某一个原子核而言,何时衰变是各自独 立没有规律的,但对于某一种原子核的 群体而言,它的衰变是有规律的,即原 子核数目随时间增长按指数规律减少。
N=N0e-λt
放射性核素的数量N及放射性活度A的变化——服从指数衰 变规律
N=N0e-λt
A=A0e-λt N为t时的放射性核素数量 A为t时的放射性核素活度 N0为t=0时的放射性核素数量 A0为t=0时的放射性核素活度 λ为衰变常数
β+衰变(正电子衰变)
• 衰变时放射出β+粒子。核内中子过少致 不平衡。质子转化为中子过程
β+
γ
p n+e+
β+粒子的特性
• β+粒子实质是正电子; • 衰变后子核质量数不变,但质子数减1. • β+也为连续能谱; • 天然核素不发生β+衰变,只有人工核素
才发生。
电子俘获(electron capture,EC)
4、核素
把质子数相核素。 下面是六种不同的核素 123I, 125I, 127I, 131I, 99mTc, 99Tc
三、稳定性核素和放射性核素
• 稳定性核素 • 不稳定核素 (放射性核素)
四、放射性衰变
• 放射性核素发生核内结构或能级的变化,同时 自发地放出而变为出一种或一种以上的射线而 转变成另一种核素的过程为“核衰变”。
衰变常数 Decay constant(λ)
• 衰变常数λ : 单位时间内核衰变的数目(活度)占当时放射性核数 目的比率:λ=A / N – 核素物理特征常数,与外界环境无关 – 不同核素衰变常数不同 – λ越大,衰变越快
• 例如 – λ=0.02/s=2%/s, 表示1秒钟内有2%的核衰变 – N=10000,则A=0.02/s×10000=200/s, 表明放射性核数目每秒 减少200个,即每秒有200个核发生衰变。
γ
内转换电子
γ射线特性
• γ射线为光子流,不带电,穿透力强, 电离能力弱;
• γ射线在真空中速度为30万km/s。
三种衰变的比较
• α衰变质量、质子数都变; • β衰变质子数变,质量数不变; • γ衰变质子、质量数都不变,而能量改
变。
五、核衰变规律
• 放射性核素是不稳定的,它要自发地发 生衰变而变成新元素的核。
• 派生单位有毫居里,mCi , 即1/1000 Ci
•
微居里,μci, 即1/1000 mCi
半衰期
• 因为衰变的原因,样品的放射性活度总是随时间而减 少,半衰期是描述放射性核素衰变速率的指标。
• 放射性活度因核衰变而减少到原有的一半所需要的时 间称作“物理半衰期”
医用核物理基础
一、原子结构
原子核由 质子(Proton;P) 中子(Neutron;N) 组成,
质子和中子统称为 核子(Nucleon)。
Z&A
• 质子带一个单位的正 电荷,中子不带电荷。
• 核内的质子数称为原 子序数,用符号Z表 示;
• 核内质子和中子数之 和即原子质量数,用 A表示。
原子核的表示符号
• 目前通常用AX表示 各种核素,如131I。
2、原子核的能级
• 原子核具有一定 的能量。
• 最低能量状态, 即“基态”;
• 较高的能量状态, 为激发态,这时 用 符 号 m, 即 AmX 表示。
• 例如99mTC
二、元素、同位素、同质异能素、核素
1、元素 • 质子数相同的原子称为一种元素,它们的原
放射性活度
• 单位时间内原子核衰变的数量称为
"放射性活度"即入N
• 放射性活度的单位
• 国际单位专门名称是“贝可”( Becqurel, Bq )
• 定义是每秒一次衰变。 1Bq=1S-1
• 派生单位:千贝可,KBq;百万贝可,MBq
• 以前的专用单位是“居里”(Ci)
• 1居里是每秒3.7×1010次衰变,即3.7×1010 Bq
2、同位素
同一元素中,有些原子质子数相同而中子数不同,
则称为该元素的同位素,
如上例各种碘互为碘的同位素。
3、同质异能素
如果原子的质子数相同,中子数也相同, 但是核的能级状态不同,那么它们互为同质异能素。
• 例如: • 99Tc和99mTc
• 核衰变时原子 核 从内层轨道(K)俘获一 个电子,使核内一个质子转化为一个中 子。 它是核内中子数相对不足所致。
γ
P+e- n
特征X线 Auger 电子
γ衰变
• γ衰变是伴随其它衰变而产生; 上 述 四 种衰变形成的子核可能处于激发态
• 核素由激发态向基态或高能态向低能态 跃迁时放出γ射线的过程也称为γ跃迁 (γtransition);γ衰变后子核质量数 和原子序数均不变,只是能量改变。
γ
4He
α粒子特性
• α粒子实质上是He原子核, • α衰变发生在原子序数大于82的重元素核素 • α粒子的速度约为光速的1/10,即2万km/s,
2s绕地球1周。 • 在空气中的射程约为3-8cm,在水中或机体
内为0.06-0.16mm。 • 因其质量大,射程短,穿透力弱,一张纸即可
阻挡 • 但α粒子的电离能力很强。
β-衰变
• 衰变时放射出β-粒子。核内中子过多 造成的不平衡。中子转化为质子的过程 。
β-
np+e-
γ
β-粒子的特性
• β-粒子实质是负电子; • 衰变后质量数不变,原子序数加1。 • 能量分布具有连续能谱,穿透力比a粒子大 • 电离能量比a粒子弱,能被铝和机体吸收, • β-粒子在软组织中的射程为厘米水平。
核衰变方式
• 核处于不稳定状态的原因不同,其衰变 有不同的方式。
• 以下介绍5种衰变方式及4种射线 • 5种衰变方式: α、β─、β╋、 k、γ • 4种射线 : α、β─、β╋、γ
核衰变类型(nuclear decay)
• α衰变 • 核衰变时放射出α粒子的衰变。
AZX--A-4Z-2Y+42He+Q
2、β衰变
• 原子核发射出电子的衰变为β衰变。 • β衰变发射的射线分为β━射线或β+射线
β衰变
β━衰变 β+衰变
β衰变
• 核衰变时放射出β粒子或俘获轨道电子 的衰变。
• β衰变后核素的原子序数可增加或减少 但质量数不变。
• 分β-衰变、β+衰变和电子俘获三种 类型。
• β粒子的速度为20万km/s。
• 放射性原子核并不是同时衰变的,对于 某一个原子核而言,何时衰变是各自独 立没有规律的,但对于某一种原子核的 群体而言,它的衰变是有规律的,即原 子核数目随时间增长按指数规律减少。
N=N0e-λt
放射性核素的数量N及放射性活度A的变化——服从指数衰 变规律
N=N0e-λt
A=A0e-λt N为t时的放射性核素数量 A为t时的放射性核素活度 N0为t=0时的放射性核素数量 A0为t=0时的放射性核素活度 λ为衰变常数
β+衰变(正电子衰变)
• 衰变时放射出β+粒子。核内中子过少致 不平衡。质子转化为中子过程
β+
γ
p n+e+
β+粒子的特性
• β+粒子实质是正电子; • 衰变后子核质量数不变,但质子数减1. • β+也为连续能谱; • 天然核素不发生β+衰变,只有人工核素
才发生。
电子俘获(electron capture,EC)
4、核素
把质子数相核素。 下面是六种不同的核素 123I, 125I, 127I, 131I, 99mTc, 99Tc
三、稳定性核素和放射性核素
• 稳定性核素 • 不稳定核素 (放射性核素)
四、放射性衰变
• 放射性核素发生核内结构或能级的变化,同时 自发地放出而变为出一种或一种以上的射线而 转变成另一种核素的过程为“核衰变”。
衰变常数 Decay constant(λ)
• 衰变常数λ : 单位时间内核衰变的数目(活度)占当时放射性核数 目的比率:λ=A / N – 核素物理特征常数,与外界环境无关 – 不同核素衰变常数不同 – λ越大,衰变越快
• 例如 – λ=0.02/s=2%/s, 表示1秒钟内有2%的核衰变 – N=10000,则A=0.02/s×10000=200/s, 表明放射性核数目每秒 减少200个,即每秒有200个核发生衰变。
γ
内转换电子
γ射线特性
• γ射线为光子流,不带电,穿透力强, 电离能力弱;
• γ射线在真空中速度为30万km/s。
三种衰变的比较
• α衰变质量、质子数都变; • β衰变质子数变,质量数不变; • γ衰变质子、质量数都不变,而能量改
变。
五、核衰变规律
• 放射性核素是不稳定的,它要自发地发 生衰变而变成新元素的核。
• 派生单位有毫居里,mCi , 即1/1000 Ci
•
微居里,μci, 即1/1000 mCi
半衰期
• 因为衰变的原因,样品的放射性活度总是随时间而减 少,半衰期是描述放射性核素衰变速率的指标。
• 放射性活度因核衰变而减少到原有的一半所需要的时 间称作“物理半衰期”
医用核物理基础
一、原子结构
原子核由 质子(Proton;P) 中子(Neutron;N) 组成,
质子和中子统称为 核子(Nucleon)。
Z&A
• 质子带一个单位的正 电荷,中子不带电荷。
• 核内的质子数称为原 子序数,用符号Z表 示;
• 核内质子和中子数之 和即原子质量数,用 A表示。
原子核的表示符号
• 目前通常用AX表示 各种核素,如131I。
2、原子核的能级
• 原子核具有一定 的能量。
• 最低能量状态, 即“基态”;
• 较高的能量状态, 为激发态,这时 用 符 号 m, 即 AmX 表示。
• 例如99mTC
二、元素、同位素、同质异能素、核素
1、元素 • 质子数相同的原子称为一种元素,它们的原
放射性活度
• 单位时间内原子核衰变的数量称为
"放射性活度"即入N
• 放射性活度的单位
• 国际单位专门名称是“贝可”( Becqurel, Bq )
• 定义是每秒一次衰变。 1Bq=1S-1
• 派生单位:千贝可,KBq;百万贝可,MBq
• 以前的专用单位是“居里”(Ci)
• 1居里是每秒3.7×1010次衰变,即3.7×1010 Bq