第三章一元一次方程检测题及答案解析
人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案
人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。
12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
人教版七年级数学上册第三章 一元一次方程单元测试卷附解析
人教版七年级数学上册第三章一元一次方程单元测试卷附解析一、单选题(共10题;共30分)1.(3分)下列式子中,是一元一次方程的是()A.x+2y=1B.−5+1C.2=4D.2t+3=1 2.(3分)若方程2x+1=3和方程2-K3=0的解相同,则a的值是()A.7B.5C.3D.03.(3分)下列等式变形中,正确的是()A.若a=b,则a-3=3-b B.若=,则x=yC.若ac=bc,则a=b D.若=,则b=d4.(3分)已知=−2=1是方程B+2=5的解,则的值是()A.−32B.32C.-2D.25.(3分)已知关于x的方程2x+a=1-x与方程2x-3=1的解相同,则a的值为()A.2B.-2C.5D.-56.(3分)小聪按如图所示的程序输入一个正数x,最后输出的结果为853,则满足条件的x的不同值最多有()A.4个B.5个C.6个D.无数个7.(3分)下列等式变形正确的是()A.若3(+1)−2=1,则3+3−2=1B.若2−6=5+8,则2+5=6+8C.4−r13=1,则3−4(+1)=1D.若−2=5,则=−258.(3分)若3+1与2K73互为相反数,则m的值为()A.B.C.D.9.(3分)在解方程K12−2r33=1时,去分母正确的是()A.3(−1)−2(2+3)=1B.3(−1)+2(2+3)=1C.3(−1)−2(2+3p=6D.3(−1)−2(2+3)=610.(3分)某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.r312+8=1B.r312+K38=1C.12+8=1D.12+K38=1二、填空题(共5题;共15分)11.(3分)若关于的方程B=3−的解为整数,则非负整数的值为. 12.(3分)一件商品按成本价提高30%后标价,又以8折销售,售价为208元这种商品的成本价是元。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)姓名: 考号: 分数:一、单选题(共 24 分)1 .下列各选项是一元一次方程的是( )A .3x 2 + 4 = 5B .m + 2n = 0C .2y +1 = 一3D .4x + 2 > 3 2 .下列运用等式的性质,变形不正确的是( )A .若a = b ,则 a + c = b + cB .若a = b ,则 a 一 3 = b + 3C .若a = b ,则 a 尝 5 = b 尝 5D .若a = b ,则 一2a = 一2b3 .已知方程(k 一 4)x |k|一3 + 5 = 6 是关于x 的一元一次方程,则k 的值为( )A .4B .一4C .4 或一4D .11 4 .如果单项式 x 2m y 与2x 4 y n +3 是同类项,那么n m = ( )A .一9B .9C .一4D .45 .已知x = 1 是关于 x 的方程ax + 2x 一 3 = 0 的解,则 a 的值为( )A .一1B .1C .一3D .36 .若代数式 —1一2x 的值是 1,则 x 的值是( ) 3A .一1B .0C .1D .27 .将一个周长为 42cm 的长方形的长减少 3cm ,宽增加 2cm ,能得到一个正方形.若设长 方形的长为 x cm ,根据题意可列方程为( )A .x + 2 = (42 一 x )一 3B .x 一 3 = (42 一 x )+ 2C .x + 2 = (21一 x )一 3D .x 一 3 = (21一 x )+ 28 .一套仪器由一个 A 部件和三个 B 部件构成,用1m 3 钢材可做 40 个 A 部件或 240 个 B 部 件。
现要用6m 3 钢材制作这种仪器,为了使制作的 A 、B 部件恰好配套,设应用xm 3 钢材制 作 A 部件,则可列方程为( )A .40x 根 3 = 240 根 (6 一 x )B .40x = 240 根 (6 一 x )根 3C .4=40 根 (6 一 x )根 3 = 240xD .40 根 (6 一 x )= 240x 根 33二、填空题(共24 分)9 .若x = 1 是关于x 的方程2x + a = 1 的解,则a = .10 .若代数式2(x - 3) 的值与9 - x 的值互为相反数,x 的值为.11 .如果a + 1 + b - 2 = 0 ,则a -(-b)= .12 .用符号※定义一种新运算a※b =ab+2(a﹣b),若3※x =2021,则x 的值为.13 .已知a:b:c=2:3:5 ,a -b + c = 36 ,则2a +b - 2c = .14 .若方程2x-m =1 和方程3x =2(x-1)的解相同,则m 的值为.15 .某商品标价100 元,现在打6 折出售仍可获利25% ,则这件商品的进价是元.16 .两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30 千米/时,3 小时后甲船能比乙船多航行60 千米,设水流速度是x 千米/时,则可列方程.__________三、解答题(共72 分)17 .解下列方程:(1)16x - 40 = 9x +16 ;(2)4x = 20 x + 16 ;3(3)2(3 - x) = -4(x + 5) ;(4)3(-2x - 5) + 2x = 9 ;(5)1(x - 4) - (3x + 4) = -15;(6)x - 7 - 5x + 8 = 1 .2 2 4 318 .已知 x =2 是方程6x mx + 4 = 0 的解,求m 2 2m 的值.19 .若方程2x 1 = 3 和方程4x a = 2 的解相同,求 a 的值.20 .关于 x 的方程1 ax = 2x + 2a 的解比方程2x 3 =1 的解小 3,求 a 的值.3x 121 .关于 x 的一元一次方程 ── + m = 3 ,其中 m 是正整数.2 (1)当m =2 时,求方程的解;(2)若方程有正整数解,求 m 的值.22 .把一些图书分给某班学生阅读,如果每人分 3 本则剩余 20 本;如果每人分 4 本,则还缺 25 本.这个班有多少学生?23.制作一张桌子需要一个桌面和四个桌腿,1m3 木材可制作20 个桌面或制作400 条桌腿,现有12m3 的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?24 .某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4 天,徒弟单独完成需6 天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1 天,师徒两人再合作完成这项工作,问:徒弟共做了几天?25 .如图,在数轴上点A 表示数a ,点B 表示数b ,并且a ,b 满足a +13 +(5 -b)2 = 0 .(1)求点A ,B 之间的距离;(2)点C 在点A 的右侧,点D 在点B 的左侧,AC 为15 个单位长度,BD 为8 个单位长度,求点C ,D 之间的距离;(3)动点P 以3 个单位长度/秒的速度从点A 出发沿数轴正方向运动,同时点Q 以2 个单位长度/秒的速度从点 B 出发沿数轴负方向运动,则它们几秒钟相遇?相遇点E 表示的数是多少?参考答案1 .C2 .B3 .B4 .D5 .B6 .A7 .D8 .A9 ._110 ._311 .112 .201513 ._2714 .-515 .4816 .3(30 + x)_ 3 (30 _ x)= 60317 .(1)x = 8 ;(2)x = _6 ;(3)x = _13 ;(4)x = _6 ;(5)x = ;(6)518 .4819 .a = 620 .321 .(1) x=1(2) m=222 .这个班有45 名学生.23 .用10 立方米做桌面,用2 立方米做桌腿,可以配成200 套桌椅.1224 .(1)两个人合作需要—天完成5(2)3 天25 .(1)18(2)518 (3) 5 ;11565x = _ -17。
人教版七年级数学上册第三章《一元一次方程》测试卷及答案解析【含详细知识点梳理】
人教版七年级数学上册第三章《一元一次方程》测试卷及答案解析【含详细知识点梳理】第三章测试卷一、选择题(项)1.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d2.把方程3x +2x -13=3-x +12去分母正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)3.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =54.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,那么可列方程( )A .3(x -2)=2x +9B .3(x +2)=2x +9C.x 2+2=x -92D.x3-2=x +925.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A .1B .2C .3D .46.某校为了丰富“阳光体育”活动,现购进篮球和足球共16个,共花了2820元.已知篮球的单价为185元,篮球个数是足球个数的3倍,则足球的单价为( )A .120元B .130元C .150元D .140元 二、填空题(本大题共6小题,每小题3分,共18分)7.若-x n +1与2x 2n -1是同类项,则n =________.8.当x =________时,代数式4x -5与3x -9的值互为相反数.9.若方程x +2m =8与方程2x -13=x +16的解相同,则m =________. 10.一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣1分.若某学生得了80分,则该学生答对了________道题.11.某书店把一本新书按标价的八折出售,仍获利30%.若该书的进价为40元,则标价为________元.12.现定义某种运算“☆”,对给定的两个有理数a ,b ,有a ☆b =2a -b .若⎪⎪⎪⎪1-x 2☆2=4,则x 的值为________.三、(本大题共5小题,每小题6分,共30分) 13.解下列方程: (1)4x +1=2(3-x );(2)2x -13-2x -34=1.14.已知关于x 的方程2(x -1)=3m -1与3x +2=-4的解互为相反数,求m 的值.15.小聪做作业时解方程x +12-2-3x3=1的步骤如下:解:①去分母,得3(x +1)-2(2-3x )=1;②去括号,得3x +3-4-6x =1; ③移项,得3x -6x =1-3+4; ④合并同类项,得-3x =2; ⑤系数化为1,得x =-23.(1)聪明的你知道小聪的解答过程正确吗?答:________.若不正确,请指出他解答过程中的错误________.(填序号)(2)请写出正确的解答过程.16.保护和管理好湿地,对于维护一个城市的生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的面积共2200公顷,其中计划恢复湿地的面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积.17.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A 、B 两地间的路程是多少?四、(本大题共3小题,每小题8分,共24分)18.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.19.小李在解方程3x +52-2x -m3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x =-4,求出m 的值并正确解出方程.20.某服装厂要生产某种型号的学生校服,已知3m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存有这种布料600m ,应如何分配布料做上衣和做裤子才能恰好配套?共能做多少套?五、(本大题共2小题,每小题9分,共18分)21.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读,在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.请根据以上信息解答下列问题:(1)你认为小宇购买________元以上的书,办卡合算;(2)小宇购买这些书的原价是多少元?22.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?六、(本大题共12分)23.在某市第四次党代会上,提出了“建设美丽城市,决胜全面小康”的奋斗目标,为响应市委号召,学校决定改造校园内的一小广场.如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?参考答案与解析1.C2.A3.A4.A5.B6.C7.28. 29. 7 210. 21 1.6512. -5或713.解:(1)x=56.(3分)(2)x=72.(6分)14.解:方程3x+2=-4,解得x=-2.(2分)所以关于x的方程2(x-1)=3m-1的解为x=2.把x=2代入得2=3m-1,解得m=1.(6分)15.解:(1)不正确①②(2分)(2)去分母,得3(x+1)-2(2-3x)=6,去括号,得3x+3-4+6x=6,移项,得3x+6x=6-3+4,合并同类项,得9x=7,解得x=79.(6分)16.解:设计划新增湿地x公顷,则计划恢复湿地(2x+400)公顷.(2分)根据题意,得x+2x+400=2200,解得x=600,∴2x+400=1600.(5分)答:计划恢复湿地1600公顷,计划新增湿地600公顷.(6分)17.解:设A、B两地间的路程为x km,(1分)根据题意得x60-x70=1,(3分)解得x=420.(5分)答:A、B两地间的路程为420km.(6分)18.解:设这个两位数的十位数字为x,则个位数字为7-x,(2分)由题意列方程为10x +7-x+45=10(7-x)+x,解得x=1,(6分)∴7-x=7-1=6,∴这个两位数为16.(8分)19.解:由题意x =-4是方程3(3x +5)-2(2x -m )=1的解,∴3(-12+5)-2(-8-m )=1,∴m =3,(4分)∴原方程为3x +52-2x -33=1,∴3(3x +5)-2(2x -3)=6,5x =-15,∴x =-3.(8分)20.解:设做上衣的布料用x m ,则做裤子的布料用(600-x )m ,(2分)由题意得x3×2=600-x 3×3,解得x =360,600-x =240.3603×2=240(套).(7分) 答:做上衣的布料用360m ,做裤子的布料用240m ,才能恰好配套,共能做240套.(8分)21.解:(1)100(3分) 解析:设买x 元的书办卡与不办卡的花费一样多,根据题意,得x =20+80%x ,解得x =100.故买100元以上的书,办卡比较合算.(2)设这些书的原价是y 元,(4分)根据题意,得20+80%y =y -13,解得y =165.(8分) 答:小宇购买这些书的原价是165元.(9分)22.解:(1)由题意,得5020-92×40=1340(元).(3分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(4分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42.(8分)答:甲班有50名同学,乙班有42名同学.(9分)23.解:(1)∵最小的正方形A 的边长是1米,最大的正方形B 的边长是x 米,∴正方形F 的边长为(x -1)米,正方形E 的边长为(x -2)米,正方形C 的边长为(x -3)米或x +12米.(3分)(2)∵MQ =PN ,∴x -1+x -2=x +x +12,解得x =7.(7分) (3)设余下的工程由乙队单独施工,还要y 天完成.(8分)根据题意得⎝⎛⎭⎫110+115×2+115y =1,解得y =10.(11分)答:余下的工程由乙队单独施工,还要10天完成.(12分)第三章 一元一次方程 详细知识点梳理1等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”! 2等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3方程:含未知数的等式,叫方程.4一元一次方程的概念:只含有一个未知数(元)(含未知数项的系数不是零)且未知数的指数是1(次)的整式方程叫做一元一次方程。
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案一、单选题1.如果,那么下列关系式中成立的是()A.B.C.D.2.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x千克到乙脐橙园,则可列方程为().A.B.C.D.3.一张方桌由一个桌面和四条桌腿组成,如果立方米木料可制作方桌的桌面个或制作桌腿条,现有立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用立方米木料做桌面,那么桌腿用木料立方米,根据题意,得()A.B.C.D.4.若是关于的一元一次方程,则()A.1 B.-1 C.±1 D.05.关于x的一元一次方程的解为,则m的值为()A.3 B.C.7 D.6.小李在解方程(x为未知数)时,误将看作,得方程的解为,则原方程的解为()A.B.C.D.7.宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A.在糖果的称盘上加2克砝码B.在饼干的称盘上加2克砝码C.在糖果的称盘上加5克砝码D.在饼干的称盘上加5克砝8.一件商品的标价为元,比进价高出,为吸引顾客,现降价处理,要使售后利润率不低于,则最多可以降到()A.元B.元C.元D.元二、填空题9.若是关于的方程的解,则的值等于.10.小明在一次比赛中做错了3道题,做对的占,他做对了道题.11.在中国共青团建团100周年时,小明同学为留守儿童捐赠了一个书包.已知一个书包标价58元,现在打折出售,支付时还可以再减免3元,小明实际支付了43.4元,若设打了x折,则根据题意可列方程为.12.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是.13.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题;“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.三、解答题14.解方程:(1) ;(2) .15.小明在对关于的方程去分母时,得到了方程,因而求得的解是,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.16.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?17.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?18.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.参考答案:1.D2.D3.A4.B5.A6.C7.A8.B9.-210.4211.12.171013.2514.(1)解:移项得:合并同类项得:系数化为1得:(2)解:方程两边同时乘以6得:去括号得:移项得:合并同类项得:系数化为1得:15.解:不正确;把代入∴解得:∴原方程为去分母,得解得:;16.解:设甲种零件制作x天,乙种零件制作(30-x)天根据题意得: 200x× 3=2×150(30-x)x=1030-x=30-10=20 天答:甲种零件制作10天,乙种零件制作20天.17.(1)解:设商场销售种型号计算器的销售价格是元,则销售种型号计算器的销售价格是元由题意得:解得答:商场销售种型号计算器的销售价格是42元.(2)解:设需要购进型号的计算器台,则购进型号的计算器台由题意得:解得答:需要购进型号的计算器40台.18.(1)解:设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000x=52∴92﹣x=40答:甲校有52人参加演出,乙校有40人参加演出.(2)解:乙:92﹣52=40人甲:52﹣10=42人两校联合:50×(40+42)=4100元而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装即比实际人数多买91﹣(40+42)=9套。
(易错题)人教版初中七年级数学上册第三章《一元一次方程》模拟检测卷(含答案解析)
一、选择题1.(0分)[ID :68198]下列各等式的变形中,等式的性质运用正确的是( ) A .由02x=,得2x = B .由14x -=,得5x = C .由23a =,得23a =D .由a b =,得a b c c= 2.(0分)[ID :68193]已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( ) A .①②③④B .①③④C .②③④D .①②3.(0分)[ID :68190]从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( ) A .408 3.6x x -= B .4083.6x=- C .3.6840x x -= D .3.6408x x-= 4.(0分)[ID :68189]新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm5.(0分)[ID :68182]甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为( ) A .100﹣x =2(68+x) B .2(100﹣x)=68+x C .100+x =2(68﹣x)D .2(100+x)=68﹣x6.(0分)[ID :68164]如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D .7.(0分)[ID :68163]下列解方程中去分母正确的是( ) A .由,得B .由,得C .由,得D .由,得8.(0分)[ID :68255]下列运用等式的性质对等式进行的变形中,错误的是( ) A .()()2211a x b x +=+若,则a b = B .若a b =,则ac bc = C .若a b =,则22a b c c = D .若x y =,则33x y -=-9.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( ) A .54B .72C .45D .6210.(0分)[ID :68242]图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A .2314B .3638C .42D .4411.(0分)[ID :68228]已知方程(1)30mm x -+=是关于x 的一元一次方程,则m 的值是( ) A .±1B .1C .-1D .0或112.(0分)[ID :68225]我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=13.(0分)[ID :68219]如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D14.(0分)[ID :68216]整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x =15.(0分)[ID :68209]某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( ) A .不赚不赔B .赚9元C .赔18元D .赚18元二、填空题16.(0分)[ID :68347]如果3m -与21m +互为相反数,则m =________.17.(0分)[ID :68335]如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.18.(0分)[ID :68332]购买某原料有如下优惠方案:①一次性购买金额不超过1万元不享受优惠;②一次性购买金额超过1万元但不超过3万元给予9折优惠;③一次性购买金额超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠. (1)若某人购该原料付款9900元,则他购买的原料原价是________元;(2)某人分两次购买该原料,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料,可比分两次购买少付________元.19.(0分)[ID :68330]用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________. 20.(0分)[ID :68329]如果34x x =-+,那么3x +________4=.21.(0分)[ID :68327]当3x =时,式子22x +与5x k +的值相等,则k 的值是______. 22.(0分)[ID :68313]某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有_______人.23.(0分)[ID :68310]所谓方程的解就是使方程中等号左右两边相等的未知数的值。
人教版七年级数学上册第三章《一元一次方程》测试卷含答案
人教版七年级数学上册第三章《一元一次方程》测试卷含答案班级: 姓名: 得分:一、选择题(每小题4分,共32分)1.下列等式变形正确的是( )A.如果s = ab,那么b = ;B.如果x = 6,那么x = 3C.如果x - 3 = y - 3,那么x - y = 0;D.如果mx = my,那么x = y2. 方程 x - 3 = 2 + 3x 的解是( ) A.-2;B.2;C.-;D. 3.关于x 的方程(2k -1)x 2 -(2k + 1)x + 3 = 0是一元一次方程, 则k 值为( )A.0B.1C.D.24.已知:当b = 1,c = -2时,代数式ab + bc + ca = 10, 则a 的值为( )A.12B.6C.-6D.-12 5.下列解方程去分母正确的是( )A.由,得2x - 1 = 3 - 3x;B.由,得2(x - 2) - 3x - 2 = - 4 C.由,得3y + 3 = 2y - 3y + 1 - 6y; D.由,得12x - 1 = 5y + 20 6.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )122s a 12121212121132x x --=232124x x ---=-131236y y y y +-=--44153x y +-=A.0.92aB.1.12aC.D. 7.若关于x 的一元一次方程ax +b =0(a ≠0)的解是正数,则( )A .a ,b 异号B .b >0C .a ,b 同号D .a <08.已知方程7x +2=3x -6与x -1=k 的解相同,则3k2-1的值为( )A .18B .20C .26D .-26 二、填空题(每小题4分,共16分)9.已知x=2是关于x 的方程ax-5x-6=0的解,则a= .10.已知|x+1|+(y+3)2=0,则(x+y )2的值是 .11.当m= 时,单项式15x 2m-1y 2与-8x m+3y 2是同类项. 12.将一个底面半径为6 cm,高为40 cm 的“瘦长”的圆柱钢材压成底面半径为12 cm 的“矮胖”的圆柱形零件,则它的高变成了 cm .三、解答题(共52分)13.(16分)解下列方程:(1)2x−13−10x−16=2x+14-1; (2)1.5x 0.6−1.5−x 2=0.5.14.(8分)当m 为何值时,式子2m-5m−13的值与式子7−m 2的值的和等于5?1.12a 0.81a15.(8分)一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.(10分)某地为了打造风光带,将一段长为360 m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道?17.(10分)某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?参考答案一、选择题1.B2.D3.D4.B5.D6.A7.D 8.A二、填空题9.810.16 根据绝对值和平方的非负性,可知x+1=0,且y+3=0,解得x=-1,y=-3,所以(x+y )2=16. 11.4 根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4.12.10 设高变成了x cm,根据题意,得π×122×x=π×62×40,解得x=10.所以圆柱的高变成了10cm .三、解答题13.解:(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得8x-4-20x+2=6x+3-12,移项、合并同类项,得-18x=-7.系数化为1,得x=718. (2)原方程可化为15x 6−1.5−x 2=0.5, 即5x 2−1.5−x 2=0.5.去分母,得5x-(1.5-x )=1,去括号,得5x-1.5+x=1,移项,合并同类项,得6x=2.5,系数化为1,得x=512.14.解:根据题意,得2m-5m−13+7−m 2=5.解这个方程,得m=-7.所以当m=-7时,式子2m-5m−13的值与式子7−m 2的值的和等于5.15.解:设飞机在静风中的速度为x 千米/时,则(x+24)×256=(x-24)×3, x=840.答:飞机在静风中的速度是840千米/时.16.解:设甲工程队整治河道x m,则乙工程队整治河道(360-x )m .依题意,得x24+360−x16=20.解得x=120.当x=120时,360-x=240.答:甲工程队整治河道120m,则乙工程队整治河道240m.17.解:设该用户5月份用水x t,根据题意,得1.4x=6×1.2+2(x-6).解这个方程,得x=8.所以8×1.4=11.2(元).答:该用户5月份应交水费11.2元.。
一元一次方程 第三章检测题及答案
第三章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x +2y =1 B.1x -3=2 C .x =0 D .x 2-4x =32.下列根据等式的性质变形正确的是( )A .若3x +2=2x -2,则x =0B .若12x =2,则x =1 C .若x =3,则x 2=3x D .若2x +13-1=x,则2x +1-1=3x 3.(2016·大连)方程2x +3=7的解是( )A .x =5B .x =4C .x =3.5D .x =24.若x =-3是方程2(x -m)=6的解,则m 的值为( )A .6B .-6C .12D .-125.解方程2x +13-x +16=2,有下列四步,其中最开始发生错误的是( ) A .2(2x +1)-(x +1)=12 B .4x +2-x +1=12C .3x =9D .x =36.若式子3x +12比2x -23小1,则x 的值为( ) A.135 B .-513 C .-135 D.5137.(2016·南平)某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60-x =20%(120+x )B .60+x =20%×120C .180-x =20%(60+x )D .60-x =20%×1208.小明在假期里参加了连续四天一期的科技艺术节,这四天的日期之和是66,则科技艺术节第一天的日期是( )A .14日B .15日C .16日D .17日9.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.一个队打14场负5场,共得19分,那么这个队胜( )A .3场B .4场C .5场D .6场10.(2016·黄冈)一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5秒B .6秒C .5秒D .4秒二、填空题(每小题3分,共24分)11.若(m -2)x |2m -3|=6是一元一次方程,则m 等于 .12.已知14a x +1b 4与9a 2x -1b 4是同类项,则x 的值为 . 13.小辉求出方程2x -■=4x +1的解是x =- 32,但他不慎将墨水滴到方程的一个常数上,这个常数是 .14.三个连续整数的和为24,则这三个连续整数的积是 .15.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共590人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为 .16.一件服装的标价为300元,打八折销售仍可获利60元,则该件服装的成本价是 元.17.(2016·天水)规定一种运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为 . 18.李明组织本班同学一起去看电影《变形金刚5》,票价每张60元,20张以上(不含20张)可以打八折,他们一共花了1200元,他们共买了 张电影票.三、解答题(共66分)19.(16分)解方程:(1)2(3y -1)-3(2-4y )=9y +10; (2)x +24-1=2x -36;(3)5y +13+y -14=2-5y -512; (4)x -12[x -12(x -12)]=2.20. (6分)已知y =1是方程2-13(m -y )=2y 的解,求关于x 的方程m(x +4)=2mx -4的解.21.(8分)如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形以及另两块长方形的纸板,恰好拼成一个大正方形.问大正方形的面积是多少?22.(8分)某厂在规定的天数内生产一批抽水机支持抗旱,如果每天生产25台,那么到规定的时间差50台,如果每天生产28台,那么在规定时间内超额40台,问这批抽水机有多少台?规定多少天完成任务?23.(8分)小杰到食堂买饭,看到A,B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时每队有多少人排队?24.(10分)在十一黄金周期间,小明、小亮等同学随家人一同到江郎山游玩.如图是购买门票时,小明与他爸爸的对话.(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.25.(10分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?第三章检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( C )A .x +2y =1 B.1x-3=2 C .x =0 D .x 2-4x =3 2.下列根据等式的性质变形正确的是( C )A .若3x +2=2x -2,则x =0B .若12x =2,则x =1 C .若x =3,则x 2=3x D .若2x +13-1=x ,则2x +1-1=3x 3.(2016·大连)方程2x +3=7的解是( D )A .x =5B .x =4C .x =3.5D .x =24.若x =-3是方程2(x -m)=6的解,则m 的值为( B )A .6B .-6C .12D .-125.解方程2x +13-x +16=2,有下列四步,其中最开始发生错误的是( B ) A .2(2x +1)-(x +1)=12 B .4x +2-x +1=12C .3x =9D .x =36.若式子3x +12比2x -23小1,则x 的值为( C ) A.135 B .-513 C .-135 D.5137.(2016·南平)某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( A )A .60-x =20%(120+x )B .60+x =20%×120C .180-x =20%(60+x )D .60-x =20%×1208.小明在假期里参加了连续四天一期的科技艺术节,这四天的日期之和是66,则科技艺术节第一天的日期是( B )A .14日B .15日C .16日D .17日9.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.一个队打14场负5场,共得19分,那么这个队胜( C )A .3场B .4场C .5场D .6场10.(2016·黄冈)一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( D )A .7.5秒B .6秒C .5秒D .4秒二、填空题(每小题3分,共24分)11.若(m -2)x |2m -3|=6是一元一次方程,则m 等于__1__.12.已知14a x +1b 4与9a 2x -1b 4是同类项,则x 的值为__2__. 13.小辉求出方程2x -■=4x +1的解是x =-32,但他不慎将墨水滴到方程的一个常数上,这个常数是__2__.14.三个连续整数的和为24,则这三个连续整数的积是__504__.15.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共590人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为__x +2x +56=590__.16.一件服装的标价为300元,打八折销售仍可获利60元,则该件服装的成本价是__180__元.17.(2016·天水)规定一种运算“*”:a*b =13a -14b ,则方程x*2=1*x 的解为__x =107__. 18.李明组织本班同学一起去看电影《变形金刚5》,票价每张60元,20张以上(不含20张)可以打八折,他们一共花了1200元,他们共买了__20或25__张电影票.三、解答题(共66分)19.(16分)解方程:(1)2(3y -1)-3(2-4y)=9y +10; (2)x +24-1=2x -36; 解:y =2 解:x =0(3)5y +13+y -14=2-5y -512; (4)x -12[x -12(x -12)]=2. 解:y =1 解:x =17620.(6分)已知y =1是方程2-13(m -y)=2y 的解,求关于x 的方程m(x +4)=2mx -4的解. 解:y =1代入2-13(m -y )=2y ,解得m =1,把m =1代入m (x +4)=2mx -4,解得x =8 21.(8分)如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形以及另两块长方形的纸板,恰好拼成一个大正方形.问大正方形的面积是多少?解:设大正方形的边长为x 厘米,由图可得x -2-1=4+5-x ,解得x =6,所以大正方形的面积为36平方厘米22.(8分)某厂在规定的天数内生产一批抽水机支持抗旱,如果每天生产25台,那么到规定的时间差50台,如果每天生产28台,那么在规定时间内超额40台,问这批抽水机有多少台?规定多少天完成任务?解:设规定x 天完成任务,得25x +50=28x -40,解得x =30,25×30+50=800(台),即这批抽水机有800台,规定30天完成任务23.(8分)小杰到食堂买饭,看到A ,B 两窗口前面排队的人一样多,就站在A 窗口队伍的里面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人.此时,若小杰迅速从A 窗口队伍转移到B 窗口后面重新排队,将比继续在A 窗口排队提前30秒买到饭,求开始时每队有多少人排队?解:设开始时,每队有x 人在排队,2分钟后,B 窗口排队的人数为x -6×2+5×2=x -2,根据题意得x 4=2+x -26+12,解得x =26,则开始时每队有26人排队 24.(10分)在十一黄金周期间,小明、小亮等同学随家人一同到江郎山游玩.如图是购买门票时,小明与他爸爸的对话.(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.解:(1)设共有成人x 人,由题意得35x +35×12×(12-x )=350,解得x =8,即一共去了成人8人,学生4人(2)第一种方式收费350元,第二种方式收费16×35×0.6=336(元).故购团体票更省钱25.(10分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?解:(1)设两人合做需x 天,由题意得x 30+x 20=1,解得x =12.因为12<15,所以正常情况下能履行合同 (2)完成75%所用天数为34÷(130+120)=9(天),若调走甲,设共需y 天完成,由题意得34+y -920=1,解得y =14,因为14<15,所以能履行合同;若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5>15,所以不能履行合同,由上可知调走甲更合适。
七年级数学下册《第三章 一元一次方程》单元测试卷-带答案(人教版)
七年级数学下册《第三章一元一次方程》单元测试卷-带答案(人教版) 一、单选题1.方程x−1=1−x的解是()A.x=−1B.x=1C.x=−2D.x=22.如果等式ax=b成立,则下列等式恒成立的是().A.abx=ab B.x= C.b-ax=a-b D.b+ax=b+b3.下列方程中,解为x=2的是()A.3x+6=3B.﹣x+6=2xC.4﹣2(x﹣1)=1D.12x+2=04.A种饮料比B种饮料的单价少1元,晓峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元.如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x-1)+3x=13B.2(x+1)+3x=13C.2x+3(x+1)=13D.2x+3(x-1)=135.若关于x 的一元一次方程x-m+2=0 的解是负数,则m 的取值范围是()A.m≥2B.m>2C.m<2D.m≤26.解方程2(3x−1)−(x−4)=1时,去括号正确的是()A.6x−1−x−4=1B.6x−1−x+4=1C.6x−2−x−4=1D.6x−2−x+4=17.解方程x−13−4−x2=1去分母正确的是()A.2(x−1)−3(4−x)=1B.2x−1−12+x=1C.2(x−1)−3(4−x)=6D.2x−2−12−3x=68.若关于x的方程3x+6=0的解是关于x的方程3x+3k=1的解的2倍,则k=()A.133B.34C.43D.-2二、填空题9.从12点整开始到1点,经过分钟,钟表上时针和分针的夹角恰好为110∘. 10.鸡兔同笼,数头有8只,数脚有26只,笼中有只鸡,只兔.11.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了3h.已知水流的速度是3km/h,则船在静水中的平均速度为km/h12.某商场以每件200元的价格购进一批秋季夹克衫,由于季节突变导致滞销,于是商场决定在标价基础上打八折销售,每件夹克衫仍可获利20%,则该夹克衫的标价为元.13.某商店在某时刻以每件60元的价格卖出一件衣服,盈利25%,则这件衣服的进价是.三、解答题14.解方程8y﹣3(3y+2)=6.15.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?16.延庆区某中学七年级(1)(2)两个班共104人,要去延庆地质博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如图:其中(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1240元.(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?17.在今年的中考中,某校取得了优异的成绩.为了让更多的人分享这一喜讯,学校准备印刷宣传材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收取0.4元印刷费,不收制版费.(1)设印制宣传材料数量x(份),请用含x的式子表示:甲印刷厂的收费元;乙印刷厂的收费元.(2)若学校准备印制3000份宣传材料,试通过计算说明选择哪家印刷厂比较合算?(3)求印制宣传材料数量x为何值时,甲乙两个印刷厂的费用相同.18.一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.19.明德中学某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.(1)求单独到甲,乙文具店购买奖品,应各付多少元?(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.参考答案1.B2.D3.B4.A5.C6.D7.C8.C9.20或5001110.3;511.1512.30013.4814.解:8y﹣9y﹣6=6﹣y=12y=﹣1215.解:设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,依题意得:12×(27﹣x)×2=10x×3解得x=12则27-x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.16.解:(1)设七年级(1)班x人,则七年级(2)班(104﹣x)人由题意可得:13x+11(104﹣x)=1240解得x=48则104﹣x=56.答:七年级(1)班48人,七年级(2)班56人;(2)1240﹣104×9=304(元);(3)七年级(1)班按照实际人数购票的费用为:48×13=624元购51张票的费用为:51×11=561元.∵624>561∴购买51张票划算些.17.(1)(0.2x+500);0.4x(2)解:当x=3000时,0.2x+500=0.2×3000+500=1100(元)0.4x=0.4×3000=1200(元)因为1100<1200,所以选择甲印刷厂比较合算;(3)解:当0.2x+500=0.4x时,x=2500当x=2500份时,甲乙两个印刷厂的费用相同.18.解:设小红答对了x道题,由题意得:3x﹣(30﹣x)×1=78.19.(1)解:甲:20×8+0.8(x−40)=0.8x+128乙:(20×8+0.8x)×0.9=0.72x+144(2)令0.8x+128=0.72x+144x=200答:圆珠笔买200支时,到两家文具店所付金额一样多.(3)(方案一)单独去甲店:0.8x+128=0.8×60+128=176(元)(方案二)单独去乙店:0.72x+144=0.72×60+144=187.2(元)(方案三)20×8=1600.8×0.9×(60−40)=14.4(元)160+14.4=174.4由此方案三最省钱,即去甲店买20本笔记本,去乙店买20支圆珠笔。
人教版七年级数学上册第三章《一元一次方程》综合测试卷(含答案)
人教版七年级数学上册第三章《一元一次方程》综合测试卷(含答案)题号 一 二三总分 1920 21 22 23 24分数一.选择题(共10小题,每题3分,满分30分) 1.下列等式中,是一元一次方程的有( )①2013+4x=2014;3x -2x=100;③2x+6y=15;④3x 2-5x+26=0 A.1个 B.2个 C.3个 D.4个 2.如果某数的3倍比这个数的2倍小2,那么这个数是( ) A.2 B.-1 C.-2 D.0.5 3. 若代数式2x ﹣3与32x +的值相等,则x 的值为( ) A .3B .1C .﹣3D .44.三个正整数的比是,它们的和是,那么这三个数中最大的数是( )A.56B.48C.36D.12 5.若方程2152x kx x -+=-的解为,则的值为( )A.B.C.D.6.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( ) A .x =-4B .x =-3C .x =-2D .x =-17.下列说法中,正确的是( )A.在等式2x =2a -b 的两边都除以2,得到x =a -bB.等式两边都除以同一个数,等式一定成立C.等式两边都加上同一个整式,所得结果仍是等式D.在等式4x =8的两边都减去4,得到x =48.小虎在解关于x 的一元一次方程2x-m=x 时,由于粗心大意,移项时忘记了改变符号,变形为2x+x=-m.求得方程的解为x=1,则原方程的解为( )A.x=-1 B.x=1 C.x=2 D.x=39.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A.95元B.90元C.85元D.80元10.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.5二、填空题(每题3分,共24分)11.若关于x的方程(a﹣3)x|a|﹣2+8=0是一元一次方程,则a=12.一般情况下不成立,但也有数可以使得它成立,例如:m=n=0.使得成立的一对数m、n我们称为“相伴数对”,记为(m,n).若(x,1)是“相伴数对”,则x的值为.13.一元一次方程x﹣2=4的解是.14.若代数式的值与代数式的值互为相反数,则a=.15.阅读理解:a,b,c,d是有理数,我们把符号称为2×2阶行列式,并且规定:=ad﹣bc,则满足等式=1的x的值是.16.20个工人生产螺栓和螺母,已知一个工人一天生产3个螺栓或4个螺母,且一个螺栓配2个螺母,如何分配工人生产螺栓和螺母?如果设生产螺栓的工人数为x个,根据题意可列方程为:.17.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开)18. 一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.三.解答题(共46分,19题6分,20 ---24题8分)19.解下列方程:(1)10(1)5x -=; (2)7151322324x x x -++-=-;(3)2(2)3(41)9(1)y y y +--=-; (4)0.89 1.33511.20.20.3x x x --+-=.20.当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2?21.当n 为何值时,关于x 的方程的解为0?22. 已知,x =2是方程2﹣(m ﹣x )=2x 的解,求代数式m 2﹣(6m +2)的值.23.有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.24.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问: (1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B C D B D D C B C C二.填空题11.﹣3.12.﹣.13. x=9.14.﹣.15.﹣10.16. 2×3x=4(20﹣x).17. 20 , 21 , 2218. 10三.解答题19.解:(1),去括号,得移项,得,系数化为1,得(2) 7151322324x x x-++-=-,去分母,得,去括号,得,移项,得,合并同类项,得系数化为1,得(3), 去括号,得, 移项,得,合并同类项,得, 系数化为1,得 (4),去分母,得, 去括号,得, 移项,得,合并同类项,得, 系数化为1,得20.解:方程x x m +=+135的解是251mx -=, 方程的解是.由题意可知251m -,解关于m 的方程得73-. 故当73-时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2.21.解:把x =0代入方程得,+1=+n ,去分母得, 2n +6=3+6n ,所以n =,即当n = 时,关于x 的方程的解为0.22. 解:把x =2代入方程得:2﹣(m ﹣2)=4, 解得:m =﹣4,则m 2﹣(6m +2) =16﹣(﹣24+2) =38.23.解:设第一座铁桥的长为米,那么第二座铁桥的长为米,•过完第一座铁桥所需要的时间为600x 分,过完第二座铁桥所需要的时间为250600x -分. 依题意,可列出方程600x +560=250,600x -解方程得所以答:第一座铁桥长100米,第二座铁桥长150米.24.(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱。
七年级数学上册《第3章 一元一次方程》单元测试卷及答案详解
人教新版七年级上册《第3章一元一次方程》单元测试卷(2)一.选择题(共8小题)1.将方程=1+中分母化为整数,正确的是()A.=10+B.=10+C.=1+D.=1+2.方程去分母得()A.2+2(2x﹣4)=﹣(x﹣7)B.12+2(2x﹣4)=﹣x﹣7C.12+(2x﹣4)=﹣(x﹣7)D.12+2(2x﹣4)=﹣(x﹣7)3.把方程+=16的分母化为整数,结果应为()A.+=16B.+=16C.﹣=160D.+=1604.将方程3﹣=x去分母得()A.3﹣3x﹣5=2x B.3﹣3x+5=2x C.6﹣3x+5=2x D.6﹣3x﹣5=2x 5.方程﹣x=+1去分母得()A.3(2x+3)﹣x=2(9x﹣5)+1B.3(2x+3)﹣6x=2(9x﹣5)+6C.3(2x+3)﹣x=2(9x﹣5)+6D.3(2x+3)﹣6x=2(9x﹣5)+16.解方程﹣=3时,去分母正确的是()A.2(2x﹣1)﹣10x﹣1=3B.2(2x﹣1)﹣10x+1=3C.2(2x﹣1)﹣10x﹣1=12D.2(2x﹣1)﹣10x+1=127.小明在解方程去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣28.解方程=x﹣时,去分母正确的是()A.3(x+1)=x﹣(5x﹣1)B.3(x+1)=12x﹣5x﹣1C.3(x+1)=12x﹣(5x﹣1)D.3x+1=12x﹣5x+1二.填空题(共5小题)9.当t=时,整式5t+与4(t﹣)的值相等.10.代数式与代数式k+3的值相等时,k的值为.11.解方程时,去分母得.12.x等于数时,代数式的值比的值的2倍小1.13.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:若对任意有理数x、y(x≠y),x⊕y=,若2⊕a=0,则a的值是.三.解答题(共8小题)14.解一元一次方程:(1)7x﹣5=3x﹣1(2)﹣2=15.解一元一次方程:(1)4x+5=2(x﹣1)+1;(2).16.解方程(1)3(2x﹣1)﹣4(2﹣5x)=11;(2)=1.17.解方程:(1)=1;(2).18.解方程(1)2(2x﹣1)﹣2(4x+3)=7(2)﹣=1(3)=+1.19.有一个两位数,它的十位上的数字比个位上的数字大7,并且这个两位数等于个位上数字与十位上数字之和的9倍,求这个两位数.20.一架飞机在两个城市之间飞行,无风时飞机每小时飞行552千米,在一次往返飞行中,顺风飞行用了5.5小时,逆风飞行用了6小时,求这次飞行时风的速度.21.如图框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.人教新版七年级上册《第3章一元一次方程》单元测试卷(2)参考答案与试题解析一.选择题(共8小题)1.将方程=1+中分母化为整数,正确的是()A.=10+B.=10+C.=1+D.=1+【考点】解一元一次方程.【分析】方程各项分子分母扩大相应的倍数,使其小数化为整数得到结果,即可作出判断.【解答】解:方程整理得:=1+.故选:C.2.方程去分母得()A.2+2(2x﹣4)=﹣(x﹣7)B.12+2(2x﹣4)=﹣x﹣7C.12+(2x﹣4)=﹣(x﹣7)D.12+2(2x﹣4)=﹣(x﹣7)【考点】解一元一次方程.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:12+2(2x﹣4)=﹣(x﹣7),故选:D.3.把方程+=16的分母化为整数,结果应为()A.+=16B.+=16C.﹣=160D.+=160【考点】解一元一次方程.【分析】把、的分子、分母均同时乘10,即可把方程+=16的分母化为整数.【解答】解:把方程+=16的分母化为整数,结果应为:+=16.故选:B.4.将方程3﹣=x去分母得()A.3﹣3x﹣5=2x B.3﹣3x+5=2x C.6﹣3x+5=2x D.6﹣3x﹣5=2x 【考点】解一元一次方程.【分析】方程两边乘以2去分母得到结果,即可作出判断.【解答】解:去分母得:6﹣(3x﹣5)=2x,去括号得:6﹣3x+5=2x,故选:C.5.方程﹣x=+1去分母得()A.3(2x+3)﹣x=2(9x﹣5)+1B.3(2x+3)﹣6x=2(9x﹣5)+6C.3(2x+3)﹣x=2(9x﹣5)+6D.3(2x+3)﹣6x=2(9x﹣5)+1【考点】解一元一次方程.【分析】方程的两边都乘以6,去分母得到结果.【解答】解:方程的两边都乘以6,得3(2x+3)﹣6x=2(9x﹣5)+6.故选:B.6.解方程﹣=3时,去分母正确的是()A.2(2x﹣1)﹣10x﹣1=3B.2(2x﹣1)﹣10x+1=3C.2(2x﹣1)﹣10x﹣1=12D.2(2x﹣1)﹣10x+1=12【考点】解一元一次方程.【分析】方程左右两边乘以4得到结果,即可作出判断.【解答】解:解方程﹣=3时,去分母得:2(2x﹣1)﹣10x﹣1=12,故选:C.7.小明在解方程去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【考点】解一元一次方程.【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x﹣1=x+a﹣1,把x=2代入方程即可得到一个关于a的方程,求得a的值,然后把a 的值代入原方程,解这个方程即可求得方程的解.【解答】解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.8.解方程=x﹣时,去分母正确的是()A.3(x+1)=x﹣(5x﹣1)B.3(x+1)=12x﹣5x﹣1C.3(x+1)=12x﹣(5x﹣1)D.3x+1=12x﹣5x+1【考点】解一元一次方程.【分析】根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.【解答】解:方程两边都乘以12,去分母得,3(x+1)=12x﹣(5x﹣1).故选:C.二.填空题(共5小题)9.当t=﹣时,整式5t+与4(t﹣)的值相等.【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到t的值.【解答】解:根据题意得:5t+=4(t﹣),去括号得:5t+=4t﹣1,解得:t=﹣,故答案为:﹣.10.代数式与代数式k+3的值相等时,k的值为8.【考点】解一元一次方程.【分析】根据题意可列出两个代数式相等时的方程,解方程即可.【解答】解:根据题意得:=k+3,去分母得:4(2k﹣1)=3k+36,去括号得:8k﹣4=3k+36,移项合并同类项得:5k=40,解得:k=8.故答案为:8.11.解方程时,去分母得3x﹣(2x+1)=6.【考点】解一元一次方程.【分析】方程两边利用等式的基本性质乘以6即可.【解答】解:方程两边同时乘以6得:3x﹣(2x+1)=6,故答案为:3x﹣(2x+1)=6.12.x等于数时,代数式的值比的值的2倍小1.【考点】解一元一次方程;代数式求值.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=2×﹣1,即=﹣1,去分母得:2(3x﹣2)=3(4x﹣1)﹣6,去括号得:6x﹣4=12x﹣3﹣6,移项合并得:﹣6x=﹣5,解得:x=,故答案为:13.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:若对任意有理数x、y(x≠y),x⊕y=,若2⊕a=0,则a的值是1或.【考点】解一元一次方程;有理数的混合运算.【分析】已知等式利用题中的新定义化简,计算即可求出a的值.【解答】解:根据题意得:当a<2时,4+3a﹣7=0,即a=1;当a>2时,﹣6+2a﹣7=0,即a=,综上,a的值是1或,故答案为:1或三.解答题(共8小题)14.解一元一次方程:(1)7x﹣5=3x﹣1(2)﹣2=【考点】解一元一次方程.【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:7x﹣3x=﹣1+5,合并同类项得:4x=4,系数化为1得:x=1,(2)去分母得:3(y﹣1)﹣24=2(2y﹣3),去括号得:3y﹣3﹣24=4y﹣6,移项得:3y﹣4y=﹣6+3+24,合并同类项得:﹣y=21,系数化为1得:y=﹣21.15.解一元一次方程:(1)4x+5=2(x﹣1)+1;(2).【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去括号得:4x+5=2x﹣2+1,移项合并得:2x=﹣6,解得:x=﹣3;(2)去分母得:2x+1﹣4=4x﹣4x﹣2,移项合并得:2x=1,解得:x=.16.解方程(1)3(2x﹣1)﹣4(2﹣5x)=11;(2)=1.【考点】解一元一次方程.【分析】(1)(2)根据解一元一次方程的步骤解答即可.【解答】解:(1)3(2x﹣1)﹣4(2﹣5x)=11,去括号,得6x﹣3﹣8+20x=11,移项,得6x+20x=11+3+8,合并同类项,得26x=22,系数化为1,得x=;(2)=1,去分母,得3(x﹣3)﹣4(﹣2x﹣5)=6,去括号,得3x﹣9+8x+20=6,移项,得3x+8x=6+9﹣20,合并同类项,得11x=﹣5系数化为1,得x=﹣.17.解方程:(1)=1;(2).【考点】解一元一次方程.【分析】(1)(2)按含分母的一元一次方程的解法,求解即可.【解答】解:(1)去分母,得3(x﹣3)﹣2(2x+1)=6,去括号,得3x﹣9﹣4x﹣2=6,合并同类项,得﹣x=17,系数化为1,得x=﹣17;(2)去分母,得5(3x+1)﹣10=3x﹣2﹣2(2x+3),去括号,得15x+5﹣20=3x﹣2﹣4x﹣6,移项,得15x﹣3x+4x=﹣2﹣6﹣5+20,合并同类项,得16x=7,系数化为1,得x=.18.解方程(1)2(2x﹣1)﹣2(4x+3)=7(2)﹣=1(3)=+1.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣2﹣8x﹣6=7,移项合并得:﹣4x=15,解得:x=﹣3.75;(2)去分母得:8x﹣4﹣15x﹣3=24,移项合并得:﹣7x=31,解得:x=﹣;(3)方程整理得:=+1,去分母得:12x+27=10x+15+15,移项合并得:2x=3,解得:x=1.5.19.有一个两位数,它的十位上的数字比个位上的数字大7,并且这个两位数等于个位上数字与十位上数字之和的9倍,求这个两位数.【考点】一元一次方程的应用.【分析】若设十位上的数字是x,则个位上的数字是x﹣7.两位数可表示为10x+x﹣7.根据题意即可列出方程.【解答】解:设十位上的数字是x,则有:10x+x﹣7=9(x+x﹣7),解得:x=8,则x﹣7=1.即两位数是81.20.一架飞机在两个城市之间飞行,无风时飞机每小时飞行552千米,在一次往返飞行中,顺风飞行用了5.5小时,逆风飞行用了6小时,求这次飞行时风的速度.【考点】一元一次方程的应用.【分析】等量关系:两个城市之间的距离不变,即逆风速度×逆风时间=顺风速度×顺风时间.【解答】解:设风的速度是x千米/时.根据题意得:(552﹣x)×6=(552+x)×5.5,解得x=24,答:风的速度24千米/时.21.如图框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.【考点】一元一次方程的应用.【分析】根据图表中数字规律设四个数字是a,a+1,a+7,a+8,再根据和为68可得方程a+a+1+a+7+a+8=68,再解方程即可;再设四个数字是x,x+1,x+7,x+8,则4x+16=49,解得x不是整数,故不存在.【解答】解:设四个数字是a,a+1,a+7,a+8,a+a+1+a+7+a+8=68,解得:a=13,则四个数是13、14、20、21,故这样的长方形的位置有1个;设四个数字是x,x+1,x+7,x+8,则4x+16=49,解得:x=,x不是整数,故不能使框内的四个数字的和为49.。
人教版七年级上册数学第三章《一元一次方程》测试题含答案解析
《一元一次方程》单元检测题一、单选题1.某商品打七折后价格为a元,则原价为()A. a元B. a元C. 30%a元D. a元2.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A. B. C. D.3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5B. 4C. 3D. 24.下列变形中:①由方程去分母,得x﹣12=10;②由方程两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A. 4B. 3C. 2D. 15.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人6.一件毛衣先按成本提高 标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()A. B. -C. D. -7.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A. 不盈不亏B. 盈利20元C. 亏损10元D. 亏损30元8.方程x-3=-6的解是().A. x=2B. x=-2C. x=3D. x=-39.方程2x-3y=7,用含x的代数式表示y为()A. y=(7-2x)B. y=(2x-7)C. x=(7+3y)D. x=(7-3y)10.方程的解是()A. B. C. D.11.方程的解是()A. B. C. D.二、填空题12.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.13.已知A=5x+2,B=11-x,当x=________时,A比B大3.14.当_____时,代数式与代数式的值相等.15.已知方程,用含的代数式表示为________.16.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元.三、解答题17.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.18.老王的房子准备开始装修,请来师徒二人做泥水.已知师傅单独完成需10天,徒弟单独完成需15天。
一元一次方程检测试卷含答案解析
第三章 一元一次方程考试范围:第三章一元一次方程;考试时间:100分钟;第I 卷(选择题 共42分)一、选择题(1--6题每题2分,7--16每题3分,共计42分)1.下列运用等式的性质对等式进行的变形中,正确的是( ). A.若,则 B .若,则 C ,则 D .若,则2.若 与kx -1=15的解相同则k 的值为( ).A.2B.8C.-2D.63.下列方程①②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,( ).A .2个B .3个C .4个D .5个4.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 A .70元 B .120元 C .150元 D .300元 5A .B .C .D .6m 的值为( ) A7.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电标价是( ) A .3200元 B .3429元 C .2667元 D .3168元8.用“●”“■”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A 、5B 、4C 、3D 、2 9.某商店在某一时间以每件50元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店( ) A 、亏损6.7元 B 、盈利6.7元 C 、不亏不盈 D 、以上都不正确10.若,,都是不等于零的数,且,则( )A .2B .-1C .2或-1D .不存在11.种饮料比种饮料单价少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花了13元,如果设种饮料单价为元/瓶,那么下面所列方程正确的是A .B .C .D .12.日历上竖列相邻的三个数,它们的和是39,则第一个数是( ) A.6 B.12 C.13 D.1413 )A.-14.若与互为相反数,则a=( )A .B .10C .D .﹣1015.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【 】A .7岁B .8岁C .9岁D .10岁16.相传有个人不讲究说话艺术常引起误会。
人教版七年级数学下册第三章 一元一次方程章末检测(含答案)
人教版七年级数学下册第三章一元一次方程章末检测一、单选题1.方程x x -=-22的解是()A .1=x B .1-=x C .2=x D .0=x 【答案】C 2.方程17.0123.01=--+x x 可变形为()A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 【答案】A3.解方程3112-=-x x 时,去分母正确的是()A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 【答案】B4.一个数的31与2的差等于这个数的一半.这个数是()A 、12B 、–12C 、18D 、–18【答案】B 5.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为().A.80元B.85元C.90元D.95元【答案】C6.已知关于x 的一元一次方程(a +3)x |a |–2+6=0,则a 的值为A .3B .–3C .±3D .±2【答案】AA .0B .1C .–1D .0或1【答案】A8.下列运用等式性质正确的是A .如果a =b ,那么a +c =b –cB .如果a =b ,那么a c =b cC .如果a c =bc ,那么a =bD .如果a =3,那么a 2=3a 2【答案】C 9.若a=4时,关于x 的方程ax+b=0的解是x=2,那么ax-b=0的解是()A .x=2B .x =−21C .x=-2D .x =21【答案】C 10.某原料供应商对购买其原料的顾客实行如下优惠:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元给九折优惠;(3)一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在供应商购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为()元.A.1460B.1540C.1560D.2000【答案】A11.A、B 两地相距240千米,火车按原来的速度行驶需要4时,火车提速后,速度比原来加快30%,那么提速后只需要()A 、1033时B 、1313时C 、1034时D 、1314时【答案】B12.x 增加2倍的值比x 扩大5倍少3,列方程得()A.352+=x x B.352-=x x C.353+=x x D.353-=x x 【答案】D二、填空题13.如果x=4是方程ax=a+4的解,那么a 的值为______【答案】3414.若x =5是方程ax +3bx ﹣10=0的解,则3a +9b 的值为_____【答案】615.甲、乙两辆汽车从相隔400米的两站同时同向出发,经过2小时后,甲车追上乙车,若甲车的速度是a 千米/时,则乙车的速度是;【答案】(a-20)16.如果对于任意非零的有理数a ,b 定义运算如下:a a b ab b ⊕=+.已知x ⊕2⊕3=5,则x 的值为__________【答案】0.6三、解答题17.解下列方程(1)22)141(34=---a a (2)151423=+--x x(3)5)72(6)8(5+-=+x x (4)163242=--+x x 【答案】(1)a=-8(2)x=-9(3)x=11(4)x=018.张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?【答案】当学生人数为4人,两家旅行社的收费一样19.一家商店将某型号彩电先按原售价提高40﹪,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款.求每台彩电的原价格.【答案】每台彩电的原价为2250元20.在一次有12个队参加的足球循环赛中(每两队之间比赛一场),规定胜一场记3分,平一场记1分,负一场记0分.某队在这次循环赛中所胜场数比所负场数多2场,结果共积19分.问:该队在这次循环赛中战平了几场?【答案】该队在这次循环赛中战平了1场21.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配?【答案】若按个人完成的工作量付给报酬,甲、乙各分300元22.某工厂现有15m3木料,准备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.(1)已知一张圆桌由一个桌面和一条桌腿组成,如果1m3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,求制作桌面的木料为多少;(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题:①如果1m3木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3m3木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?【答案】(1)5m3(2)①9m3的木料做桌面,6m3的木料做桌腿②12m3的木料做桌面,3m3的木料做桌腿。
人教版七年级数学第三章一元一次方程测试题带答案
人教版七年级上册数学第三章一元一次方程章节测试含答案一、单选题(共15题,共计45分)1、方程-3x=1/3 的解是()A.X=-9B.X=9C. X=1/9D.X=-1/92、如图,有一根16米的电线杆在A处断裂,电线杆顶部C落在离电线杆底部B点8米远的地方,则电线杆断裂处A离地面的距离AB的长为()A.6米B.7米C.8米D.9米3、下列说法正确的是()A.带负号的数一定是负数.B. 方程2=1/x是一元一次方程.B.单项式3x²的次数是 D. 单项式与单项式的和一定是多项式.4、方程3x﹣1=4的解是()A.x=-5/3B. x=5/3C.x=﹣1D.x=15、如果关于x的方程(2a-3)x=0 的解是x=-1 ,那么a的值是()A.−2B.−1C.1D.26、下列说法中,错误的是()A.多项式2x²-xy²34的次数为3B.用平面去截一个圆锥,截面的形状不可能是长方形C.“用两根钉子就可以把一根木条固定在墙上”依据的是“两点之间,线段最短”D.若a=b,则a-c=b-c7、某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店()A.不赚不亏B.赚5元C.亏5元D.赚10元8、下列方程中,解为x=2的方程是()A.3x-2=3B.-x+6=2xC.4-2(x-1)=1D.1/2x=19、已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay10、下列方程中:①4x-7=0;②3xy=z;③x-7=x2;④4xy=3 ;⑤xy/2=x/3 ;⑥3/x=1 ,属于一元一次方程的个数有()A.0个B.1个C.2个D.3个11、若关于x的方程2x+m=4的解是负数,则m的取值范围是()A. m>4B. m<4C. m>−4D. m<−4A.等腰三角形B.等边三角形C.直角三角形D.不能确定12、下列各式中,是一元一次方程的是()A. x2−1=0B. x+2y=5C. 1x+1=0 D. 3x−7=013、一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元.若设成本是x元,可列方程为()A.0.8x+28=(1+50%)xB.0.8x﹣28=(1+50%)xC.x+28=0.8×(1+50%)xD.x ﹣28=0.8×(1+50%)x14、如果x=﹣2是方程2x+m﹣4=0的解,那么m的值为()A.-8B.0C.2D.815、若3x−1与x+2互为相反数,则x的值为()A. 12B. −12C. 34D. −14二、填空题(共10题,共计30分)16、方程2x−3=7的解是x=__.17、若3是关于x的方程ax−2=2的解,则a=___.18、一包洽洽瓜子售价8元,商家为了促销,顾客每买一包洽洽瓜子获一张奖券,每4张奖券可兑换一包洽洽瓜子,则每张奖券相当于____ 元.19、已知 a −2b =3,则 2a −4b +1=___.20、小华到新华书店购买一套丛书,该按书八五折销售(即按原价的85%销售)比打九折销售时少3元钱,那么这套丛书的原价是____ 元.21、关于x 的两个方程5x ﹣3=4x 与ax ﹣12=0的解相同,则a= ____.22、方程 2(x −3)=4 去括号后变为 ___。
第三章 一元一次方程 章末检测卷含答案(人教版)
第三章 一元一次方程 章末检测卷(人教版)本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程变形中,正确的是( ) A .方程4455x =-,未知数系数化为1,得1x = B .方程3541x x +=+,移项,得3415x x -=-+C .方程()371323()x x x --=-+,去括号,得 377323x x x -+=-- D .1231337x x -+=-,去分母,得 7(12)3(31)63x x -=+- 【答案】D【分析】根据等式的性质逐一判断求解即可得到答案.【详解】解:A. 方程4455x =-,未知数系数化为1,得1x =-,原选项计算错误,不符合题意;B. 方程3541x x +=+,移项得3415x x -=-,原选项计算错误,不符合题意;C. 方程37(1)32(3)x x x --=-+,去括号,得377326x x x -+=--,原选项计算错误,不符合题意;D. 方程1231337x x -+=-,去分母,得7(12)3(31)63x x -=+-,正确,符合题意;故选D . 2.关于x 的代数式ax b +,当x 分别取值1,0,1,2?-时,对应的代数式的值如下表:5axb,则x A .2- B .3 C .4- D .5【答案】A【分析】在表格任意选取两组数据代入ax +b 中,即可确定a 、b 的值,进而求解. 【详解】解:当x =0时,ax +b =1,∴b =1, 当x =1时,ax +b =-1,∴a +1=-1,∴a =-2, ∴-2x +1=5,-2x =4,x =-2.故选:A .3.已知1x =是方程122()3-=-x x a 的解,那么关于y 的方程(4)24+=+a y ay a 的解是( ).A .y =1B .y =-1C .y =0D .方程无解【答案】C【分析】由x =1是方程122()3-=-x x a 的解,可代入求出a 的值,然后把a 的值代入方程(4)24+=+a y ay a 中,解方程后即可求出y 的值.【详解】解:∵1x =是方程122()3-=-x x a 的解,∴122(1)3a -=-,解得1a =,将1a =代入(4)24+=+a y ay a 得:424y y +=+,解得0y =.故选:C . 4.在有理数范围内定义运算“☆”:12b b a a -=+☆,如:()1313112---=+=-☆.如果()21x x =-☆☆成立,则x 的值是( )A .1-B .5C .0D .2【答案】B【分析】根据新定义12b b a a -=+☆,将()21x x =-☆☆变形为方程,解之即可. 【详解】解:∵12b b a a -=+☆,∴()21x x =-☆☆可化为111222x x ---+=+,解得:x=5,故选B .5.在某市奥林匹克联赛中,实验一中学子再创辉煌,联赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( ) ①设答对了x 道题,则可列方程:()5240144x x --=; ②设答错了y 道题,则可列方程:()5402144y y --=; ③设答对题目总共得a 分,则可列方程:1444052a a -+=; ④设答错题目总共扣b 分,则可列方程:1444052b b--=. A .4个 B .3个C .2个D .1个【答案】B【分析】①若设答对了x 道题,等量关系:5×答对数量-2(40-x )=144;②若设答错了y 道题,等量关系:5×(40-y )-2y =144;③若设答对题目得a 分,等量关系:答对的数量+答错数量=40;④设答错题目扣b 分,答对的数量+答错数量=40.【详解】解:①若设答对了x 道题,则可列方程:5x -2(40-x )=144,故①符合题意; ②若设答错了y 道题,则可列方程:5(40-y )-2y =144,故②符合题意; ③若设答对题目得a 分,则可列方程:1444052a a -+=,故③符合题意; ④设答错题目扣b 分,则可列方程144++4052b b=,故④不符合题意.所以,共有3个正确的结论.故答案是:B .6.某书中一道方程题:()231x x --∆=+,∆处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是9x =,那么∆处应该是数字( ) A .1 B .2 C .3 D .4【答案】B【分析】设∆处数字为a ,把9x =代入方程计算即可求出a 的值.【详解】解:设∆处数字为a ,把9x =代入方程,得:()29391a ⨯--=+,解得:2a =故选:B7.若关于x 的方程6326a x x x -=-无解,则a 的值为( ) A .1 B .﹣1 C .0 D .±1【答案】A【分析】先去分母可得:()226,a x -=再由220a -=可得答案. 【详解】解:6326a x x x -=-, 去分母得:236,ax x x =-+ 整理得:()226,a x -= 当220a -=时,方程无解,1.a ∴= 故选:A8.轩轩在数学学习中遇到一个有神奇魔力的“数值转换机”,按如图所示的程序计算,若开始输入的值x 为正整数,最后输出的结果为41,则满足条件的x 值最多有( )个.A .1B .2C .3D .4【答案】D【分析】根据题意可知,若输入x ,则输出3x -1,又分两种情况考虑,大于20,输出答案;否则重新输入,根据题意可建立方程求得结果.【详解】解:根据题意知,输入x ,则直接输出3x -1,则当3x -1=41时,x =14;当3x -1=14时,x =5;当3x -1=5时,x =2;当3x -1=2时,x =1.∵x 为正整数,因此符合条件的一共有4个数,分别是14,5,2,1.故选:D . 9.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .3x =-B .2x =-C .13x =D .13x =-【答案】A【分析】先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.【详解】解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6,去括号得:4x -2=3x +1-6,解得:x =-3.故选:A10.小明计划和爸爸一起自驾游,如表是这月份的日历,用如图框住5个日期,他们的和是50,图中x 是出行日期,爸爸的车牌尾号是“9”,则出行日期是几号,这天能出行吗?( )(注:北京市限行政策:周一到周五限行,周末和节假日不限行,每周一限行尾号为1和6,每周二限行尾号为2和7,每周三限行尾号为3和8,每周四限行尾号为4和9,每周五限行尾号为0和5)A .11,不能B .11,能C .10,能D .10,不能【答案】A【分析】根据日历表示出其它几个数字,根据数字之和等于50列出方程,求得x ,再根据日历和限行标准即可得出结论.【详解】解:其它几个数为:1,2,8,6x x x x ---+,根据题意(1)(2)(8)(6)50x x x x x +-+-+-++=,解得11x =, 由日历可知,11号是周四,周四限行尾号为4和9, 故出行的日期是11号,这天不能出行,故选:A .11.若关于x 的一元一次方程11()5322m x x +-=-的解是整数,则所有满足条件的整数m 取值之和是( ) A .-16 B .-12 C .-10 D .-8【答案】D【分析】依次移项,合并同类项,系数化为1得到()18m x +=,先讨论m =-1,再讨论m ≠1,解原方程,根据“方程解为整数”,得到列出几个关于m 的一元一次方程,解之,求出m 的值,相加求和即可得到答案.【详解】解:115322m x x ⎛⎫+-=- ⎪⎝⎭,∴()18m x +=,若m =-1,则原方程可整理得:0=8(不成立,舍去); 若m ≠-1,则81x m =+,∵解是整数,∴x =1或-1或2或-2或4或-4或8或-8, 可得:m =7或-9或3或-5或1或-3或0或-2, ∴7-9+3-5+1-3+0-2=-8,故选D .12.[)x 表示大于x 的最小整数,如[)[)3.24,32=-=-,则下列判断:①2563⎡⎫-=-⎪⎢⎣⎭;②[)x x -有最小值是-1;③[)x x -有最大值是0;④存在实数x ,使[)0.5x x -=-成立;⑤若m 为整数,m x 为任意实数,则[)[)m x m x +=+,其中正确的有______个. A .1 B .2 C .3 D .4【答案】C【分析】根据题意[x )表示大于x 的最小整数,结合各项进行判断即可得出答案. 【详解】解:①2553⎡⎫-=-⎪⎢⎣⎭,故本判断错误;②当x 为整数时,[)1x x -=-,当x 为小数时,[)10x x -<-<∴[)x x -最小为-1;故本判断正确; ③由②得,[)0x x -≠,故本判断错误; ④存在实数x ,使[)0.5x x -=-成立,故本判断正确;⑤[)[)3210-+=-= [)32330-+=-+= [)[)5 3.28.28--=-=-[)()5 3.2538-+-=-+-=-∴[)[)m x m x +=+成立,∴正确的判断是②④⑤故答案为:C 二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上) 13.已知()314602m m x -++=是关于x 的一元一次方程,则m 的值为___________. 【答案】4【分析】根据一元一次方程的定义判断即可. 【详解】解:∵()314602m m x -++=是关于x 的一元一次方程, ∴||31m -=且()1402m +≠,解得:4m =,故答案为:4. 14.已知关于x 的一元一次方程12020x +3=2x +b 的解为x =3,那么关于y 的一元一次方程12020(y +1)+3=2(y +1)+b 的解y =_____. 【答案】2【分析】根据已知条件得出方程y +1=3,求出方程的解即可. 【详解】解:∵关于x 的一元一次方程12020x +3=2x +b 的解为x =3, ∴关于y 的一元一次方程12020(y +1)+3=2(y +1)+b 中y +1=3,解得:y =2,故答案为:2.15.对于实数a 、b 、c 、d ,我们定义运算a bc d=ad ﹣bc ,例如:2135=2×5﹣1×3=7,上述记号就叫做二阶行列式.若267x x -=4,则x =____________.【答案】18【分析】直接利用新定义得出一元一次方程,进而解方程得出答案.【详解】解:由题意可得:7(x ﹣2)﹣6x =4,解得:x =18.故答案为:18.16.某商场的收银台平均每小时有60个顾客来排队,每位收银员每小时能应付80个顾客,若某天只开设1个收银台,付款开始后4个小时没有顾客排队了,若当天开设2个收银台,开始付款______小时后,没有顾客排队. 【答案】0.8【分析】首先求出开始付款时有多少人排队,再设付款开始x 小时后没有顾客排队,列出方程,解之即可.【详解】解:设每小时排队付款的人数为1份, 则刚开始付款时排队的人数是:80×4-4×60=80人, 即开始付款时已经有80人在排队,设付款开始x 小时后没有顾客排队,根据题意可得方程: 80×2×x =80+60x ,解得:x =0.8,故答案为:0.8.17.8个人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机).其中一辆小汽车在距离火车站15km 的地方出现故障.这时唯一可利用的交通工具是另一辆小汽车,已知包括司机在内这辆车限乘5人,且这辆车的平均速度是60km/h ,人步行的平均速度是5km/h .则汽车出现故障起这8个人最快赶到火车站用时__________分钟(上下车时间忽略不计). 【答案】37【分析】要想8人都能赶上火车,应考虑尽量让车走的同时,人也在走,先用小汽车把第一批人送到离火车站较近的某一处,让第一批人步行,与此同时第二批人也在步行中;接着小汽车再返回接第二批人,使第二批人与第一批同时到火车站,据此求解.【详解】解:由题意可知:最快的方案是:当小汽车出现故障时,乘这辆车的4个人下车步行,另一辆车将车内的4个人送到某地方后,让他们下车步行,再立即返回接出故障汽车而步行的另外4个人,使得两批人员最后同时到达车站,在这一方案中,每个人不是乘车就是在步行,没有人浪费时间原地不动,所以两组先后步行相同的路程,设这个路程为x 千米,那么每组坐车路程为 15-x 千米,共用时间15560x x-+小时;当小汽车把第一组送到离火车站x 千米处、回头遇到第二组时,第二组已经行走了x 千米, 这时小汽车所行路程为 15-x +15-2x =30-3x (千米);由于小汽车行30-3x 千米的时间与第二组行走x 千米的时间相等,所以有:303605x x-=, 解得:x =2(千米).所用时间为:21523756060-+=小时=37分钟,故答案为:37.18.一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:0m n ==时,我们称使得2323m n m n ++=+成立的一对数,m n 为“相伴数对”,记为(,)m n . (1)若(2,)n 是“相伴数对”,则n =_______;(2)(,)m n 是“相伴数对”,则代数式321[(679)]433m n n m ---+++的值为_______. 【答案】92- -2【分析】(1)根据“相伴数对”的定义可得222323n n++=+,解此方程即可求解;(2)根据“相伴数对”的定义可得2323m n m n ++=+,则可求出940m n +=,然后先将原式化简,代入计算即可求值.【详解】解:(1)∵(2,)n 是“相伴数对”, ∴222323n n ++=+解得92n =-.故答案为:92-.(2)∵(,)m n 是“相伴数对”,∴2323m n m n ++=+,解得940m n +=, ∵321[(679)]433m n n m ---+++327[23]433m n n m =---+++32723433m n n m=-+---155243m n =--- ()594212m n =-+-,∴原式=502212-⨯-=-.故答案为:-2. 三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.解方程:(1)()534x x =-; (2)211232x x++-=, (3)()()3206411y y y -=--; (4)0.10.20.10.30.20.5x x -+-=; (5)32(7)[94(2)]123x x ----=. 【答案】(1)6x =-;(2)1x =;(3)165y =;(4)1x =-;(5)737x =- 【分析】(1)根据去括号, 移项、合并同类项,系数化为1的步骤解方程即可; (2)根据去分母,去括号, 移项、合并同类项,系数化为1的步骤解方程即可; (3)根据去括号, 移项、合并同类项,系数化为1的步骤解方程即可;(4)先整理方程,然后根据去分母,去括号, 移项、合并同类项,系数化为1的步骤解方程即可;(5)根据去分母,去括号, 移项、合并同类项,系数化为1的步骤解方程即可. 【详解】解:(1)去括号,得5312x x =-, 移项、合并同类项,得212x =-, 解得,6x =-;(2)去分母,得()()1222131-+=+x x , 去括号,得124233x x --=+, 移项,得433122x x --=-+, 合并同类项,得77x -=-, 系数化为1,得1x =;(3)去括号,得6036444y y y -=-+, 移项、合并同类项,得516y -=-, 系数化为1,得165y =; (4)原方程可化为:21010.325x x -+-=,去分母,得()()5221013x x --+=, 去括号,得5102023x x ---=, 移项、合并同类项,得1515x -=, 系数化为1,得1x =-;(5)去分母,得()()9749426x x ⎡---⎤⎣⎦-=, 去括号,得9633632166x x --+-=, 移项,得9166633632x x -=++-, 合并同类项,得773x -=, 系数化为1,得737x =-. 20.解方程:219731x x +=+. 【答案】125x =-【分析】方法1 考虑绝对值符号里含有未知数,所以对x 的取值情况分类讨论即可; 方法2 从方程右边入手,表明7x +31应为非负数,从而可求得x 的取值范围,再由此取值范围确定2x +19的符号,从而去掉绝对值符号,解方程即可. 【详解】【方法1】 当2190x +≥,即192x ≥时,219219x x +=+. 原方程可化为219731x x +=+.解方程,得125x =-· ∵192x ≥-,∴125x =-符合题意. 当2190x -<,即192x <-时,219219x x +=--. 原方程可化为219731x x --=+,解方程,得509x =-. ∵192x <-,∴509x =-不符合题意,舍去. 综上所述,125x =-. 【方法2】由题意可知,7310x +≥,即317x ≥-.∴2190x +>. ∴219219x x +=+.∴219731x x +=+. 解方程,得125x =-,∴125x =-符合题意. 【技巧点拨】方程219731x x +=+的绝对值内含有未知数,该方程为绝对值方程.由于绝对值的存在,在解绝对值方程时会存在不同的情况,所以需要分类讨论.解题时,我们可以直接针对绝对值内的整体219x +的正负进行分类讨论,也可以由731x +是非负数来判断219x +的符号情况.这两种方法需要学生对绝对值的含义有较深的理解才能熟练应用.21.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?【答案】(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)设应安排甲队工作a 天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙队每天能完成绿化的面积是x 平方米,则甲队每天能完成绿化的面积是(x +200)米,依题意得:x +x +200=800解得:x =300,x +200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米. (2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元); 选择方案②乙队单独完成所需费用=1200040016000300⨯=(元); 选择方案③甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元); ∴选择方案①完成施工费用最少.22.把y ax b =+(其中a 、b 是常数,x 、y 是未知数)这样的方程称为“雅系二元一次方程”.当y x =时,“雅系二元一次方程y ax b =+”中x 的值称为“雅系二元一次方程”的“完美值”,例如:当y x =时,“雅系二元一次方程”34y x =-化为34x x =-,其“完美值”为2x =. (1)求“雅系二元一次方程”56y x =-的“完美值”;(2)3x =-是“雅系二元一次方程”13y x m =+的“完美值”,求m 的值;(3)是否存在常数n ,使得“雅系二元一次方程”32yx n 与31y x n =-+的“完美值”相同?若存在,请直接写出n 的值及此时的“完美值”;若不存在,请说明理由. 【答案】(1)32x =;(2)2m =-;(3)存在这样的n ,n 的值为5,此时完美值为2x =.【分析】(1)由题意,可得式子56x x =-,求出x 即可;(2)由题意,可得式子13x x m =+,把3x =-代入即可求得m ;(3)由题意,可分别求得“雅系二元一次方程”32y x n 与31y x n =-+的“完美值”,根据“完美值”相同即可求得n 的值,从而可求得x 的值.【详解】(1)由已知可得,56x x =-,解得32x =, ∴“雅系二元一次方程”56y x =-的“完美值”为32x =; (2)由已知可得13x x m =+,把3x =-代入13x x m =+中,得13(3)3m -=⨯-+ ∴2m =-; (3)存在 由题意可得:32x x n =-+,即25x n =;31x x n =-+,即12n x -= , 则2152n n -=解得:n =5∴x =2∴n 的值为5,此时完美值为2x =. 47.如图,A 、B 两地相距90千米,从A 到B 的地形依次为:60千米平直公路,10千米上坡公路,20千米平直公路.甲从A 地开汽车以120千米/小时的速度前往B 地,乙从B 地骑摩托车以60千米/小时的速度前往A 地,汽车上坡的速度为100千米/小时,摩托车下坡的速度为80千米/小时,甲、乙两人同时出发.(1)求甲从A 到B 地所需要的时间.(2)求两人出发后经过多少时间相遇?(3)求甲从A 地前往B 地的过程中,甲、乙经过多少时间相距10千米?【答案】(1)2330小时;(2)3572小时;(3)1330或3364小时 【分析】(1)分段求出所需时间,相加即可得到甲从A 到B 地所需要的时间;(2)先判断在哪段相遇,再根据题意列出正确的方程即可求解;(3)先判定甲从A 地前往B 地的过程中,甲、乙有两次相距10千米的机会,分情况求解即可.【详解】(1)甲在AC 段所需时间为:16011202t ==小时, 甲在CD 段所需时间为:210110010t ==小时,甲在DB 段所需时间为:32011206t ==小时, 所以甲从A 到B 地所需要的时间为12311123210630t t t ++=++=小时. 答:甲从A 到B 地所需要的时间为2330小时.(2)乙在BD 段所需时间为:4201603t ==小时,乙在DC 段所需时间为:5101808t ==小时, 1111138242+=<,甲在AC 段所需时间为12,∴甲乙会在AC 段相遇, 同时出发,则甲走了1124小时,走了111205524⨯=千米,甲乙相遇时间为60551135120602472t -=+=+小时. 答:两人出发后经过3572小时相遇. (3)设甲,乙经过x 小时后,两人相距10千米,①相遇前,相距10千米,甲在AC 上,乙在CD 上,此时,甲走的路程为:120x ,乙走的路程为:12080()3x +-, ∴1120102080()903x x +++-=,解得:1330x = ②相遇后,相距10千米,甲在CD 上,乙在AC 上, 此时,甲的路程为160100()2x +-,乙的路程为113060()24x +-, 1160100()3060()10022x x ∴+-++-=,解得:3364x = ∴甲从A 地前往B 地的过程中,甲,乙经过1330或3364小时相距10千米. 答:甲从A 地前往B 地的过程中,甲,乙经过1330或3364小时相距10千米. 24.某县2021以来受持续干旱影响,河道来水偏少,已严重影响生产和生活用水,自来水厂推行阶梯水价,引导人们节约用水,调整后的用水价格如下:2)小明家1月份水费的均价为1.75元/吨,求小明家1月份的用水量?(3)小明家3、4两个月的总用水量为56吨(4月份用水较少),3、4两个月的水费合计93元,请问小明家3、4月份的用水量分别是多少?【答案】(1)小明家5月份的水费是36元;(2)小明家1月份的用水量为32吨;(3)小明家3、4月份的用水量分别为31吨和25吨【分析】(1)利用表格中数据直接求出小明家5月份用水量为23吨应需缴纳的水费即可;(2)利用表格中数据得出小明家1月份使用水量超过30吨,进而求出即可;(3)设4月份用水量是y(0<y<28)吨,分类讨论再根据各段的缴费列代数式,根据等量关系:共交水费93元,列出方程即可求解.【详解】解:(1)20×1.5+(23-20)×2=36(元).答:小明家5月份的水费是36元;(2)设小明家1月份的用水量为x吨,用水量为30吨时的均价为20 1.51025303⨯+⨯=(元).∵53<1.75,∴x>30,∴20×1.5+10×2+(x-30)×3=1.75x.解方程,得x=32.答:小明家1月份的用水量为32吨;(3)设小明家4月份的用水量为y(0<y<28)吨,依题意则其3月份的用水量为(56-y)吨.①当0<y≤20时,则56-y>30,1.5y+[20×1.5+10×2+(56-y-30)×3]=93.化简得1.5y=35,解得y=703,这与0<y≤20矛盾.②当20<y<28时,则28<56-y<36.a.当28<56-y≤30时,[20×1.5+(y-20)×2]+[20×1.5+(56-y-20)×2]=93,化简得:(2y-10)+(102-2y)=93.该方程无解;b.当30<56-y<36时,[20×1.5+(y-20)×2]+[20×1.5+10×2+(56-y-30)×3]=93,化简得:(2y-10)+(128-3y)=93.解得y=25.y=25同时满足20<y<28和30<56-y<56.所以56-y=56-25=31.综上所述,小明家3、4月份的用水量分别为31吨和25吨.25.红苹果专卖店.对某种品牌苹果采取如下经营方式,一次性购买多于40千克苹果时,价格为每千克5元,一次性购买多于20千克,但不多于40千克的苹果时,价格为每千克6元,一次性购买不多于20时.价格为每千克8元.(1)刘英一次性购买了该品牌苹果若干千克,共花了186元.刘英购买了多少千克苹果?(2)王红两次共购买了该品牌苹果50千克(第二次多于第一次),共付出334元,请问王红第一次,第二次分别购买了苹果多少千克?【答案】(1)刘英购买了31千克苹果,(2)王红第一次购买了苹果17千克,第二次购买了苹果33千克.【分析】(1)根据共花了186元,可判断刘英购买苹果超过20千克,不多于40千克,设购买了x千克苹果,根据题意列方程即可;(2)分第一次购买不多于20千克和多于20千克少于40千克两种情况,设未知数,列出方程即可.【详解】解:(1)根据题意,一次性购买多于40千克苹果时,费用多于40×5=200(元),一次性购买不多于20时,费用少于20×8=160(元),刘英一次性购买了该品牌苹果若干千克,共花了186元.可知,刘英购买苹果超过20千克,不多于40千克,设购买了x千克苹果,根据题意列方程得,6x=186,解得,x=31,答:刘英购买了31千克苹果.(2)设第一次购买y千克苹果,则第二次购买(50-y)千克苹果,若第一次购买苹果不超过20千克,第二次购买苹果超过20千克,少于40千克,列方程得,8y+6(50-y)=334,解得,y=17,50-y=33,王红第一次购买了苹果17千克,第二次购买了苹果33千克.若第一次购买苹果不超过20千克,第二次购买苹果超过40千克,列方程得,8y+5(50-y)=334,解得,y=28,不符合题意,舍去;若第一次购买苹果超过20千克,第二次购买苹果超过20千克,少于40千克,列方程得,6y+6(50-y)=334,方程无解;.故王红第一次购买了苹果17千克,第二次购买了苹果33千克.26.A、B两地果园分别有苹果20吨和30吨,C、D两地分别需要苹果15吨和35吨;已知从A、B到C、D的运价如表:地的苹果为吨,从果园将苹果运往C地的苹果为吨,从B果园将苹果运往D地的苹果为吨.(2)若从A果园运到C地的苹果为x吨,用含x的代数式表示从A果园到C、D两地的总运费是元;用含x的代数式表示从B果园到C、D两地的总运费是元.(3)若从A果园运到C地的苹果为x吨,从A果园到C、D两地的总运费和B果园到C、D两地的总运费之和是545元,若从A果园运到C地的苹果为多少吨?【答案】(1)(20-x),(15-x),(x+15);(2)(3x+240),(285-x);(3)10吨【分析】(1)由A果园的苹果吨数结合从A果园运到C地的苹果吨数即可得出从A果园运到D地的苹果重量,再根据C、D两地需要的苹果重量即可得出从B果园运到C、D两地苹果的重量;(2)根据运费=重量×每吨运费即可得出从A果园到C、D两地的总运费,再根据运费=重量×单吨运费即可得出从B果园到C、D两地的总运费;(3)根据(2)的结论结合总运费即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵A果园有苹果20吨,从A果园运到C地的苹果为x吨,∴从A果园运到D地的苹果为(20-x)吨,从B果园将苹果运往C地的苹果为(15-x)吨,∴从B果园将苹果运往D地的苹果为35-(20-x)=(x+15)吨.故答案为:(20-x),(15-x),(x+15);(2)从A果园到C、D两地的总运费是15x+12(20-x)=(3x+240)元;从B果园到C、D两地的总运费是10(15-x)+9(x+15)=(285-x)元.故答案为:(3x+240),(285-x);(3)根据题意得:3x+240+285-x=545,解得:x=10.答:从A果园运到C地的苹果为10吨.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程检测题
(本检测题满分:100分,时间:90分钟)
一、选择题(每小题3分,共30分) 1.下列方程中,是一元一次方程的是( ) A.
B.
C.
D.
2.若方程2152x kx x -+=-的解为,则的值为( )
A.
B.
C.
D.
3.一个两位数的个位数字与十位数字都是,如果将个位数字与十位数字分别加2和1,所得新数比原数大12,则可列的方程是( ) A.
B.
C.
D.
4.若方程532=+x ,则106+x 等于( ) A.15 B.16 C.17 D.34
5.若关于x 的方程2
30m mx
m --+=是一元一次方程,则这个方程的解是( ) A.0x = B.3x = C.3x =- D.2x =
6.甲、乙两人练习赛跑,甲每秒跑,乙每秒跑,甲让乙先跑,设后甲可追上乙,则下列四个方程中不正确的是( ) A. B. C. D.
7.三个正整数的比是,它们的和是,那么这三个数中最大的数是( ) A.56 B.48 C.36 D.12
8.(2013•山东济宁中考)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( ) A.60元 B.80元 C.120元 D.180元
9. 已知()2
135m --有最大值,则方程5432m x -=+的解是( )
A. B. C.
D.
10.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:
11222
y y -
=-,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是5
3
y =-
,于是很快就补好了这个常数,你能补出这个常数吗?它应是( ) A.1 B.2 C.3 D.4 二、填空题(每小题3分,共24分) 11. 如果31a +=,那么= .
12.当m = __________时,方程的解为.
13.已知方程23
252x x -+=-
的解也是方程32x b -=的解,则=_________. 14.已知方程233
m
x x -=
+的解满足10x -=,则m ________.
15.方程
432-=+x m x 与方程6)16(2
1
-=-x 的解相同,则m 的值为__________. 16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是____元.
17.甲水池有水31吨,乙水池有水11吨,甲水池的水每小时流入乙水池2吨, x 小时后, 乙水池有水________吨,甲水池有水_______吨,________小时后,甲水池的水与乙水池的水一样多.
18.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开) 三、解答题(共46分) 19.(12分)解下列方程:
(1)10(1)5x -=;
(2)
715132
2324
x x x -++-=-
; (3)2(2)3(41)9(1)y y y +--=-;
(4)0.89 1.33511.20.20.3
x x x --+-=
. 20.(5分)当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程
的解大2? 21.(5分)(2013•湖南张家界中考)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?
22.(6分)某检查团从单位出发去A 处检查,在A 处检查1 h 后,又绕路去B 处检查,在B 处停留h 后返回单位,去时的速度是5 km/h ,返回时的速度是4 km/h .来回共用了6.5 h ,如果回来时因为绕道关系,路程比去时多2 km ,求去时的路程.
23.(6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,•求这一天有几名工人加工甲种零件.
24.(6分)江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多
,求粗加工的该种山货质量.
25.(6分)植树节期间,两所学校共植树棵,其中海石中学植树的数量比励东中学的倍少棵,求两校各植树多少棵.
第三章 一元一次方程检测题参考答案
1.B 解析:
中,未知数的次数是2,所以不是一元一次方程;
中,
有两个未知数,所以不是一元一次方程;D.是分式方程.故选B. 2.C 解析:将
代入
中,得,解得 故选C.
3.D 解析:这个两位数原来是(),新数是,
故
成立.
4.B 解析:解方程,可得将代入,可得.故选B.
5.A 解析:若原方程是一元一次方程,则,所以.方程为,所以方程的解是0x =.
6.B 解析:后甲可追上乙,是指时,甲跑的路程等于乙跑的路程,所以可列方程:,所以A 正确; 将移项,合并同类项可得,所以C 正确; 将移项,可得,所以D 正确.故选B.
7.B 解析:设这三个正整数为,根据题意可得 所以这三个数中最大的数是故选B.
8.C 解析:设这款服装的进价为x 元,由题意,得300×0.8-x =60,解得x =180,300-180=120,所以这款服装每件的标价比进价多120元.故选C. 9.A 解析:由有最大值,可得
,则
则
,
解得
故选A.
10.C 解析:设所缺的部分为,则x y y -=-2
1212,把5
3y =-代入,可求得
,故
选C .
11. 解析:因为可解得 12.5 解析:将代入方程得,解得
.
13. 解析:由,得
所以可得
14. 解析:由,得 当时,由,得,解得;
当
时,由
,得,解得
.
综上可知,
15.-6 解析:方程
6)16(
2
1
-=-x 的解为.将代入方程
43
2-=+x m
x 得
03
2=+
m
,解得.
16.20 解析:设原价为x 元,由题意,得0.9x -0.8x =2,解得x =20.
17.
18. 解析:设中间一个数为,则与它相邻的两个数为,
根据题意可得
19.解:(1), 去括号,得 移项,得, 系数化为1,得
(2)
715132
2324
x x x -++-=-
, 去分母,得,
去括号,得,
移项,得
,
合并同类项,得 系数化为1,得
(3)
, 去括号,得, 移项,得
,
合并同类项,得, 系数化为1,得 (4)
,
去分母,得, 去括号,得, 移项,得
,
合并同类项,得, 系数化为1,得
20.解:方程x x m +=+135的解是2
51m
x -=, 方程的解是.
由题意可知251m -,解关于m 的方程得73
-.
故当
7
3
-时,关于x 的方程x x m +=+135的解比关于x 的方程的解
大2.
21.解:设该市规定的每户每月标准用水量为x 吨, 因为12×1.5=18<20,所以x <12,
从而可得方程:1.5x +2.5(12-x )=20,解得x =10. 答:该市规定的每户每月标准用水量为10吨.
22.解:设去时的路程为,则回来时路程为2km x +(),去时路上用 h 5
x
,回来时路上
用
2 h 4x +, 则21
1 6.5542
x x ++++=,解得10.x =
答:去时的路程为10 km.
23.解:设这一天有名工人加工甲种零件,
则这一天加工甲种零件个,乙种零件个.
根据题意,得,解得. 答:这一天有6名工人加工甲种零件.
24.解:设粗加工的该种山货质量为,
根据题意,得,解得.答:粗加工的该种山货质量为.
25.解:设励东中学植树棵.
依题意,得解得.
答:励东中学植树棵,海石中学植树棵.。