实验四-使用matlab实现卷积的运算

合集下载

卷积运算的matlab命令及其参数设置规则

卷积运算的matlab命令及其参数设置规则

卷积运算是数字信号处理和图像处理中常用的一种运算方式,它在图像滤波、特征提取等领域中发挥着重要作用。

在Matlab中,卷积运算可以通过一些内置的函数实现,同时可以通过设置不同的参数来实现不同的卷积操作。

本文将结合实际案例,介绍卷积运算在Matlab 中的常用命令及其参数设置规则。

一、卷积运算的基本概念在数字信号处理和图像处理中,卷积运算是一种重要的数学运算。

它通常用于图像滤波、特征提取等方面。

卷积运算的基本原理是将一个函数与另一个函数的翻转及平移进行积分。

在离散情况下,卷积运算可以用离散的形式来表示如下:\[y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]\]其中,\(x[k]\)和\(h[n]\)分别代表输入信号和卷积核,\(y[n]\)代表卷积运算的输出结果。

二、Matlab中的卷积运算函数在Matlab中,可以使用conv函数来进行一维和二维的卷积运算。

conv函数的基本语法如下:```y = conv(x, h)```其中,x和h分别代表输入信号和卷积核,y代表卷积运算的输出结果。

这里需要注意的是,x和h的长度必须是有限的,而且二者不能交换位置。

在进行二维卷积运算时,可以使用conv2函数。

conv2函数的基本语法如下:```y = conv2(x, h)```其中,x和h分别代表输入图像和卷积核,y代表二维卷积运算的输出结果。

三、卷积运算参数的设置规则在进行卷积运算时,需要注意一些参数的设置规则,以确保卷积运算的正确性和有效性。

以下是一些常见的参数设置规则:1. 卷积核的选择:卷积核的选择对卷积运算的结果影响很大。

通常情况下,可以根据具体的应用需求来选择合适的卷积核,例如高斯滤波、边缘检测等。

2. 边界处理:在进行卷积运算时,往往需要考虑图像或信号的边界处理。

常见的处理方式包括零填充、边界拓展、周期延拓等。

3. 步长和填充:在进行卷积运算时,可以通过设置步长和填充参数来控制输出结果的大小。

用matlab计算序列卷积和并绘图

用matlab计算序列卷积和并绘图

(一)实验目的:学会用MATLAB 对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。

(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-•i i k f i f )(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a 、f(k)=∑∞-∞=-•i i k i f )()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b 、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)=∑∞-∞=-•i i k h i f )()(3、上机:conv.m 用来实现两个离散序列的线性卷积。

其调用格式是:y=conv(x,h)若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M-1。

(三)实验内容1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。

要求用subplot 和stem 画出x(n),h(n),y(n)与n 的离散序列图形。

源程序: N=5; M=6; L=N+M-1; x=[1,2,3,4,5];h=[6,2,3,6,4,2]; y=conv(x,h); nx=0:N-1; nh=0:M-1; ny=0:L-1;subplot(131); stem(nx,x,'*k'); xlabel('n'); ylabel('x(n)'); grid on ;subplot(132); stem(nh,h,'*k'); xlabel('n'); ylabel('h(n)'); grid on ;subplot(133); stem(ny,y,'*k'); xlabel('n'); ylabel('y(n)'); grid on ; 实验结果:nx (n)nh (n)ny (n )分析实验结果:根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。

MATLAB实验报告卷积

MATLAB实验报告卷积

实验报告学院:机电班级:姓名:学号:实验名称:连续时间信号卷积运算的MATLAB实现1.实验目的:掌握卷积的概念及计算方法2.熟悉通过调用conv()函数求解连续时间信号卷积的数值分析法实验环境:MATLAB 6.5.1软件实验要求:1、已知信号f1(t)=t/2*[ε(t)- ε(t-2)], f2(t)= [ε(t)- ε(t-1)],通过调用conv()函数编程实现卷积计算y(t)= f1(t)* f2(t),画出波形。

2、已知信号f(t)=e-t *ε(t), h(t)= t2 *e-2t *ε(t),y(t)=f(t)* h(t)(1)用符号分析法编程实现计算y(t)的理论解;(2)过调用conv()函数编程实现卷积计算y(t)的数值解并画图实验程序及结果:第一题:M文件(1) function f=uCT(t)f=(t>=0);主程序:k1=0:p:2;k2=0:p:1;f1=k1/2.*[uCT(k1)-uCT(k1-2)]; f2=uCT(k2)-uCT(k2-1);y=conv(f1,f2)*p;k0=k1(1)+k2(1);k3=length(f1)+length(f2)-2; k=k0:p:k3*p+k0;subplot(311)plot(k1,f1);xlabel('t')ylabel('f1(t)')axis([-0.5 2.5 -0.5 1.5])grid onsubplot(312);plot(k2,f2)grid onaxis([-0.5 2.5 -0.5 1.5]) xlabel('t')ylabel('f2(t)')subplot(313)axis([-0.5 4 -0.5 1.5])grid onxlabel('t')ylabel('f1(t)*f2(t)')实验结果:第二题:M文件function f=uCT(t)f=(t>=0);主程序:syms tao>> t=sym('t','positive');>> f=exp(-t);>> h=t^2*exp(-2*t);>> fh_tao=subs(f,t,tao)*subs(h,t,t-tao); >> yt=int(fh_tao,0,t)yt =-(-2*exp(t)+t^2+2*t+2)/exp(t)^2p=0.01;k1=0:p:3;k2=0:p:12;f=exp(-k1).*uCT(k1);h=(k2).^2.*exp(-2.*k2).*uCT(k2);y=conv(f,h)*p;k0=k1(1)+k2(1);k3=length(f)+length(h)-2;k=k0:p:k3*p+k0;subplot(221)plot(k1,f);xlabel('t')ylabel('f(t)')grid onaxis([-0.5 3.5 -0.5 1.5])subplot(222)plot(k2,h);xlabel('t')ylabel('h(t)')grid onaxis([-0.5 11 -0.05 0.2])subplot(223)plot(k,y);grid onxlabel('t')ylabel('f(t)*h(t)数值')axis([-0.5 15 -0.01 0.1])subplot(224)yt =-(-2.*exp(k)+k.^2+2.*k+2)./exp(k).^2; plot(k,yt);grid onxlabel('t')ylabel('f(t)*h(t)理论') axis([-0.5 15 -0.01 0.1]) 实验结果:。

matlab卷积函数

matlab卷积函数

matlab卷积函数在Matlab中,卷积是一种常用的信号处理操作,它用于将两个函数(或向量)合并到一起。

Matlab提供了多个函数来执行卷积操作,其中最常用的是conv和conv2函数。

1. conv函数conv函数可用于一维和多维信号的卷积操作。

它的基本语法如下:y = conv(x, h)其中,x是输入信号,h是卷积核或输入信号的反转版本。

返回值y 是卷积结果。

-对于一维信号:例如,我们有一个包含N个元素的向量x和一个包含M个元素的向量h,则卷积操作可以用以下代码实现:y = conv(x, h)该代码将向量x和h卷积在一起,并将结果存储在向量y中。

-对于二维信号:对于二维信号,conv函数的使用与一维信号类似,只是输入和输出的维数不同。

我们可以使用以下代码将一个二维矩阵convolve与另一个二维矩阵h:y = conv2(x, h)2. conv2函数conv2函数也用于一维和二维信号的卷积操作,但它提供了更多的选项和灵活性。

其基本语法如下:y = conv2(x, h)其中,x是输入信号,h是卷积核或输入信号的反转版本。

返回值y 是卷积结果。

-对于一维信号:该函数的用法与conv函数类似,只是二者返回结果的维数不同。

conv2函数的结果将是一个大小为(N+M-1)的向量,其中N和M分别是输入信号x和卷积核h的长度。

-对于二维信号:对于二维信号,我们可以使用conv2函数对两个二维矩阵x和h进行卷积操作。

该函数将返回一个与输入矩阵尺寸相关的矩阵,其中包含了卷积的结果。

y = conv2(x, h, shape)shape参数是一个字符串,用于指定输出矩阵的维数。

可以选择的选项包括:- 'full':(默认)输出矩阵的大小将是(N+M-1)。

- 'same':输出矩阵的大小将与输入矩阵相同,即N。

- 'valid':在输出矩阵中,有效的卷积元素将保留,其中无需使用输入矩阵外的任何元素。

matlab 卷积 傅里叶变换乘积

matlab 卷积 傅里叶变换乘积

Matlab 中的卷积和傅里叶变换乘积一、matlab 中的卷积在 Matlab 中,卷积是一种常见的信号处理操作,它可以用来处理数字信号、图像处理、控制系统等领域。

卷积的定义是指两个函数的积分平均,表示一种平滑的操作。

1.1 一维卷积对于一维信号,可以使用 Matlab 中的 conv 函数进行卷积运算。

假设有两个信号 x 和 h,可以使用以下代码进行卷积运算:```matlaby = conv(x, h);```其中,x 和 h 分别为待卷积的两个信号,y 为卷积结果。

1.2 二维卷积对于二维图像,可以使用 Matlab 中的 conv2 函数进行卷积运算。

假设有两个图像 A 和 B,可以使用以下代码进行卷积运算:```matlabC = conv2(A, B);```其中,A 和 B 分别为待卷积的两个图像,C 为卷积结果。

1.3 卷积的应用卷积在数字信号处理、图像处理、控制系统等领域都有广泛的应用。

在数字信号处理中,卷积可以用于滤波、信号去噪等操作;在图像处理中,卷积可以实现图像模糊、边缘检测等功能;在控制系统中,卷积可以用于系统的传递函数求解等问题。

二、matlab 中的傅里叶变换乘积傅里叶变换乘积是指对两个函数进行傅里叶变换后,将它们相乘再进行逆傅里叶变换的操作。

这在信号处理和通信系统中有着重要的应用。

2.1 一维傅里叶变换乘积在 Matlab 中,可以使用 fft 函数对信号进行傅里叶变换,然后使用ifft 函数对结果进行逆变换。

假设有两个信号 x 和 h,可以使用以下代码进行乘积运算:```matlaby = ifft(fft(x) .* fft(h));```其中,x 和 h 分别为待变换的两个信号,y 为变换乘积结果。

2.2 二维傅里叶变换乘积对于二维图像,可以使用 fft2 函数对图像进行傅里叶变换,然后使用ifft2 函数对结果进行逆变换。

假设有两个图像 A 和 B,可以使用以下代码进行乘积运算:```matlabC = ifft2(fft2(A) .* fft2(B));```其中,A 和 B 分别为待变换的两个图像,C 为变换乘积结果。

如何通过Matlab进行卷积与卷积运算

如何通过Matlab进行卷积与卷积运算

如何通过Matlab进行卷积与卷积运算使用Matlab 进行卷积与卷积运算引言:卷积与卷积运算在信号处理、图像处理、机器学习等领域中起着至关重要的作用。

Matlab作为一款强大的数学工具,提供了丰富的函数和工具箱,能够便捷地进行卷积与卷积运算。

本文将介绍如何使用Matlab进行卷积与卷积运算,并通过实例说明其应用。

一、卷积的基本概念卷积是一种数学运算,常用于信号处理中。

它将两个函数进行混合,输出一个新的函数。

在离散卷积中,输入的两个函数通常是序列或矩阵。

卷积的定义如下:[f * g](n) = ∑[f(k) * g(n-k)] (k=-∞ to ∞)其中,f * g 表示卷积运算,f 表示输入函数,g 表示卷积核函数,n 表示输出函数的索引。

二、Matlab中的卷积函数在Matlab中,可以使用conv函数来进行一维离散卷积的计算。

conv函数的语法如下:y = conv(x,h)其中,x 表示输入函数,h 表示卷积核函数,y 表示输出函数。

在使用conv函数时,需要注意输入函数和卷积核函数的维度匹配,以及输入函数和卷积核函数的长度关系。

在长度不一致的情况下,可以使用padarray函数进行填充。

三、卷积运算的应用举例为了更好地理解卷积与卷积运算的应用,下面将通过几个实例进行详细讲解。

实例一:图像模糊图像模糊是一种常见的图像处理技术,可以用于去除图像中的噪声和细节。

在Matlab中,可以通过卷积运算实现图像模糊。

首先,需要构建一个卷积核函数,例如:h = ones(5, 5) / 25;此处构建了一个5x5的全1卷积核函数,并将其除以25,以实现平均模糊。

然后,使用conv函数对输入图像进行卷积运算:blurred_image = conv(input_image, h);实例二:音频信号滤波在音频处理中,常常需要对音频信号进行滤波以去除噪声或者强调特定频率。

卷积运算可以实现各种滤波器的设计和应用。

用MATLAB实现线性卷积运算

用MATLAB实现线性卷积运算

北京邮电大学实验报告实验名称:用MATLAB实现线性卷积运算学院:信息与通信工程学院班级:姓名:学号:日期:2018年5月一、实验原理1、算法产生背景DFT 是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换频域的采样。

在形式上,变换两端<时域和频域上)的序列是有限长的。

DFT 具备明确且合理的物理含义,适合应用于数字系统,同时可以方便地由计算机进行运算。

对于线性非移变离散系统,可由线性卷积表示时域输入输出关系,即(> (>*(> ynxnhn通常采用循环卷积降低运算量,但实际中往往无法满足对信号处理的实时性要求。

因此,产生了重叠相加法和重叠保留法两种典型的算法,用以快速计算线性卷积,成为了DFT 的一个重要应用。

2、算法基本思想1)重叠相加法重叠相加法是将待过滤的信号分割成长为N 的若干段,如图1 所示,每一段都可以和有限时宽单位取样响应作卷积,再将过滤后的各段重叠相加。

具体算法实现原理如图2 所示,建立缓存序列,每次输入N 点序列,通过计算x(n> 和h(n> 的循环卷积实现线性卷积运算,将缓存的M-1 点序列和卷积结果相加,并输出前N 点作为计算结果,同时缓存后M-1 点,如此循环,直至所有分段计算完毕,则输出序列y(n>为最终计算结果。

2)重叠保留法重叠保留法相当于将x�l(n>和h(�n>作循环卷积,然后找出循环卷积中相当于线性卷积的部分。

在这种情况下,将序列y(n>分为长为N的若干段(如图3所示>,每个输入段和前一段有M-1个重叠点。

此时只需要将发生重叠的前M-1个点舍去,保留重叠的部分并输出,则可获得序列y(n>,算法如图4所示。

二、流程图设计1、重叠相加法2、重叠保留法三、MATLAB源代码1、重叠相加源码2.重叠保留源码2、四、实验结果与分析对两种算法采用同一序列进行测试分析。

用matlab计算序列卷积和并绘图

用matlab计算序列卷积和并绘图

(一)实验目的:学会用MATLAB对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。

(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-•iikfif)(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a、f(k)= ∑∞-∞=-•iikif)()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)= ∑∞-∞=-•iikhif)()(3、上机:conv.m用来实现两个离散序列的线性卷积。

其调用格式是:y=conv(x,h)若x的长度为N,h的长度为M,则y的长度L=N+M-1。

(三)实验内容1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。

要求用subplot和stem画出x(n),h(n),y(n)与n的离散序列图形。

源程序:N=5;M=6;L=N+M-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(131); stem(nx,x,'*k'); xlabel('n');ylabel('x(n)'); grid on ;subplot(132); stem(nh,h,'*k'); xlabel('n');ylabel('h(n)'); grid on ;subplot(133); stem(ny,y,'*k'); xlabel('n');ylabel('y(n)'); grid on ;实验结果:nx (n)nh (n)ny (n )分析实验结果:根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。

matlab卷积的原理及应用

matlab卷积的原理及应用

MATLAB卷积的原理及应用概述MATLAB(Matrix Laboratory)是一种常用的数学软件,可以用于进行数值计算、数据分析、算法开发等多种科学计算任务。

其中,卷积是MATLAB中常用的数字信号处理技术,被广泛应用于图像处理、音频处理等领域。

本文将介绍MATLAB中卷积的原理以及其在不同领域的应用。

原理卷积操作是一种数学运算,用于将两个函数之间的关系转化为一个新的函数。

在MATLAB中,卷积操作可以通过conv函数实现。

其原理如下:1.对于输入函数f(x)和g(x),首先需要将其离散化。

对连续函数可以使用采样或插值的方式进行离散化,得到f(n)和g(n)。

2.将g(n)进行翻转操作得到g(-n)。

3.将f(n)和g(-n)进行逐元素相乘,并求和得到卷积结果h(n)。

4.h(n)即为f(n)和g(n)的卷积结果。

MATLAB中的conv函数可以直接实现以上的卷积操作。

下面通过一个简单的示例来演示如何使用MATLAB进行卷积运算。

应用图像处理卷积在图像处理中有广泛的应用。

其中,图像模糊、边缘检测、图像锐化都是基于卷积的算法。

以下是一些常见的图像处理应用:•图像模糊:可以通过卷积一个平滑的核函数,将图像中的噪声进行模糊处理。

•边缘检测:可以通过卷积一个边缘检测的核函数,找出图像中的边缘信息。

•图像锐化:可以通过卷积一个锐化的核函数,增强图像中的细节。

音频处理卷积在音频处理中也有着重要的应用。

以下是一些常见的音频处理应用:•混响效果:通过卷积一个混响的冲激响应函数,给音频信号增加混响效果。

•清晰度增强:通过卷积一个清晰度增强的核函数,增强音频信号的清晰度。

•降噪处理:通过卷积一个降噪的核函数,降低音频信号中的噪声。

数字信号处理卷积在数字信号处理中也是一种常用的技术。

以下是一些常见的数字信号处理应用:•信号滤波:可以通过卷积一个滤波器的核函数,将信号中的高频成分进行滤除。

•信号解调:可以通过卷积一个解调的核函数,将调制信号解调为原始信号。

实验四-使用matlab实现卷积的运算

实验四-使用matlab实现卷积的运算

实验四-使用m a t l a b实现卷积的运算(总5页)-本页仅作为预览文档封面,使用时请删除本页-实验四 使用matlab 实现卷积的运算一 实验目的1、学习MATLAB 语言的编程方法及熟悉MATLAB 指令; 2、深刻理解卷积运算,利用离散卷积实现连续卷积运算; 二 实验内容1、 完成)(1t f 与)(2t f 两函数的卷积运算其中:)4()()(),()(221--==-t u t u t f t u e t f t 在一个图形窗口中,画出)(1t f 、)(2t f 以及卷积结果。

要求每个坐标系有标题、坐标轴名称。

p = ; %定义时间间隔t= 0:p:10;%定义时间向量f1=exp(-2*t).*u(t); %将f (t )表示出来f2=u(t)-u(t-4);f=conv(f1,f2);subplot(1,2,1);plot(t,f1,t,f2); title('f1=e^-2t*u(t)'' / ''f2=u(t)-u(t-4)');xlabel('t(sec)'); % 这行代码是给出x 坐标的标签ylabel('f(t)');grid on ;subplot(1,2,2);plot(f); title('f=f1*f2');xlabel('t(sec)'); % 这行代码是给出x 坐标的标签ylabel('f')grid on2、 若系统模型为:)(3)()(4)(4)(''''t f t f t y t y t y +=++ 其中 )()(t u e t f t -=求零状态响应,画出波形(函数本身画出一幅图,自己再画出一幅输入波形图)。

零状态响应:a= [1 4 4]; %将y (t )各阶导数的系数放在向量a 中b= [1 3]; %将f (t )各阶导数的系数放在向量b 中sys = tf(b, a); %求系统函数systd = ; %定义时间间隔t = 0 : td : 10; %定义时间向量f = exp(-t).*u(t); %将f (t )表示出来y = lsim(sys, f, t); %求系统的零状态响应yplot(t, y); %绘出零状态响应的波形xlabel('t(sec)'); % 这行代码是给出x 坐标的标签ylabel('y(t)'); % 这行代码是给出y 坐标的标签grid on输入波形图:a= [1 4 4]; %将y(t)各阶导数的系数放在向量a中b= [1 3]; %将f(t)各阶导数的系数放在向量b中sys = tf(b, a); %求系统函数systd = ; %定义时间间隔t = 0 : td : 10; %定义时间向量f = exp(-t).*u(t);plot(t,f);xlabel('t(sec)'); % 这行代码是给出x坐标的标签ylabel('f(t)');grid on三 实验原理:1、 离散卷积和:调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和, 其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。

卷积运算matlab

卷积运算matlab

卷积运算matlab一、什么是卷积运算在数字信号处理和图像处理领域,卷积运算是一种常用的数学运算方法,它可以通过两个函数产生一个新的函数。

在信号处理中,卷积运算常用于信号滤波、图像边缘检测等领域。

而在图像处理中,卷积运算可以实现图像的模糊、锐化和特征提取等功能。

二、卷积运算的原理卷积运算的原理可以用以下公式表示:$$(f*g)(t)=\in t_{-\i nf ty}^{\in ft y}f(\t au)g(t-\ta u)d\ta u$$其中,$f(t)$和$g(t)$表示两个函数,$*$表示卷积运算符,$(f*g)(t)$表示卷积运算的结果。

在离散情况下,卷积运算可以用以下公式表示:$$(f*g)[n]=\su m_{m=-\i nf ty}^{\in fty}f[m]g[n-m]$$其中,$f[n]$和$g[n]$表示两个离散序列,$[n]$表示序列的下标,$*$表示卷积运算符,$[m]$表示离散序列的下标。

三、在MATL AB中进行卷积运算M A TL AB中提供了方便快捷的函数用于进行卷积运算。

具体步骤如下:1.准备输入序列首先,我们需要准备两个输入序列,分别表示$f[n]$和$g[n]$。

f=[1,2,3,4,5];g=[1,1,1];2.执行卷积运算接下来,使用MA TL AB的`c on v`函数执行卷积运算。

r e su lt=c on v(f,g);3.查看结果最后,我们可以通过打印`r es ul t`来查看卷积运算的结果。

d i sp(r es ul t);四、实际应用案例卷积运算在实际应用中具有广泛的应用性。

下面以图像处理中的边缘检测为例说明卷积运算的应用。

1.准备图像首先,我们需要准备一张待处理的图像。

i m ag e=im re ad('ima g e.jp g');2.定义边缘检测算子接下来,我们需要定义一个边缘检测算子,例如S ob el算子。

s o be l=[1,0,-1;2,0,-2;1,0,-1];3.执行卷积运算然后,使用M AT LA B的`co nv2`函数执行卷积运算。

用matlab计算序列卷积和并绘图

用matlab计算序列卷积和并绘图

(一)实验目的:学会用MATLAB对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。

(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-•iikfif)(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a、f(k)= ∑∞-∞=-•iikif)()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)= ∑∞-∞=-•iikhif)()(3、上机:用来实现两个离散序列的线性卷积。

其调用格式是:y=conv(x,h)若x的长度为N,h的长度为M,则y的长度L=N+M-1。

(三)实验内容1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。

要求用subplot和stem画出x(n),h(n),y(n)与n的离散序列图形。

源程序:N=5;M=6;L=N+M-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(131); stem(nx,x,'*k'); xlabel('n');ylabel('x(n)'); grid on ;subplot(132); stem(nh,h,'*k'); xlabel('n');ylabel('h(n)'); grid on ;subplot(133); stem(ny,y,'*k'); xlabel('n');ylabel('y(n)'); grid on ;实验结果:nx (n)nh (n)ny (n )分析实验结果:根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。

用matlab计算序列卷积和并绘图

用matlab计算序列卷积和并绘图

(一)实验目的:学会用MATLAB对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。

(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-•iikfif)(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a、f(k)= ∑∞-∞=-•iikif)()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)= ∑∞-∞=-•iikhif)()(3、上机:用来实现两个离散序列的线性卷积。

其调用格式是:y=conv(x,h)若x的长度为N,h的长度为M,则y的长度L=N+M-1。

(三)实验内容1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。

要求用subplot和stem画出x(n),h(n),y(n)与n的离散序列图形。

源程序:N=5;M=6;L=N+M-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(131); stem(nx,x,'*k'); xlabel('n');ylabel('x(n)'); grid on ;subplot(132); stem(nh,h,'*k'); xlabel('n');ylabel('h(n)'); grid on ;subplot(133); stem(ny,y,'*k'); xlabel('n');ylabel('y(n)'); grid on ;实验结果:分析实验结果:根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。

快速卷积的MATLAB实现

快速卷积的MATLAB实现

摘要在信号处理中,许多具体的应用是以线性卷积为基础的。

当序列点数较少时可以直接计算线性卷积,然而当序列长度很长时,直接计算卷积的运算量非常庞大。

快速卷积是实现卷积的一种快速算法,减少了运算量,节约了时间,给我们计算卷积提供了很大的便利。

本课程设计是以Matlab为基础,完成序列的卷积和快速卷积运算的编程实现,以及相应的分析和比较。

关键字:Matlab 卷积快速卷积目录1.基于设计题目的原理简介 (1)1.1 序列卷积的定义 (1)1.2 快速傅里叶变换FFT概念 (1)1.3 快速卷积方法及实现 (1)2.程序设计及运行结果分析 (3)2.1 题目一 (3)2.2 题目二 (4)2.3 题目三 (7)3.心得体会 (10)参考文献 (11)专业综合课程设计成绩评定表 (12)1.基于设计题目的原理简介卷积是数字信号处理(DSP)系统中最常见的,也是最重要的运算之一,无论在时域或频域都离不开卷积运算,FFT是DFT的快速算法,当满足一定条件时可用来计算线性卷积,称为快速卷积。

Matlab具有强大的矩阵运算能力,方便实用的绘图功能和语言的高度集成性,在DSP开发中,使用Matlab可以快速对系统进行仿真运算。

1.1 序列卷积的定义设x(n)和h(n)是两个离散序列,进行下列求和运算:∑∞-∞== -=nnhnxmnhmxny)(*)()()()(这样,随着n的不同取值,这个求和公式就定义了一个新序列y(n),称为序列x(n)与h(n)的卷积,记为y(n)=x(n)*h(n) 。

由于DSP主要依靠计算机完成,而计算机无论在时域或频域只能处理有限长的离散信号。

此时只需令上述公式中的n在一个范围内取值即可。

1.2 快速傅里叶变换FFT概念DFT就是对序列频谱的离散化,在数字信号处理中有着重要的作用,但直接计算DFT 的运算量非常大,它与序列长度的平方成正比,因此制约了DFT的应用。

快速傅里叶变换FFT是实现DFT的一种快速算法,能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。

用matlab计算序列卷积和并绘图

用matlab计算序列卷积和并绘图

用matlab计算序列卷积和并绘图(一)实验目的:学会用MATLAB对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。

(二)实验原理:1、离散时间序列f1(k)和f2(k)的卷积和定义:f(k)=f1(k)*f2(k)=∑∞-∞=-•iikfif)(2)(12、在离散信号与系统分析中有两个与卷积和相关的重要结论:a、f(k)= ∑∞-∞=-•iikif)()(δ=f(k)* δ(k)即离散序列可分解为一系列幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状态响应为y(k),则有:y(k)= ∑∞-∞=-•iikhif)()(3、上机:conv.m用来实现两个离散序列的线性卷积。

其调用格式是:y=conv(x,h)若x的长度为N,h的长度为M,则y的长度L=N+M-1。

(三)实验内容1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。

要求用subplot和stem画出x(n),h(n),y(n)与n的离散序列图形。

源程序:N=5;M=6;L=N+M-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2];y=conv(x,h);nx=0:N-1;nh=0:M-1;ny=0:L-1;subplot(131); stem(nx,x,'*k'); xlabel('n');ylabel('x(n)'); grid on ;subplot(132); stem(nh,h,'*k'); xlabel('n');ylabel('h(n)'); grid on ;subplot(133); stem(ny,y,'*k'); xlabel('n');ylabel('y(n)'); grid on ;实验结果:nx (n )nh (n )ny (n )分析实验结果:根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。

MATLAB信号卷积

MATLAB信号卷积

利用MATLAB实现信号的时域卷积一.引言MATLAB具有强大的图形处理功能及符号运算功能,为实现信号的可视化以及时域分析提供了强有力的工具,所以我们要利用MATLAB编程辅助分析与计算。

现在我们利用MATLAB 编程辅助计算连续时间信号、离散时间信号的卷积。

我们利用MATLAB编制一个M函数dconv(),该函数可以计算离散序列x1n 和x2n的卷积xn=x1n*x2n,此程序要计算xn,返回xn的非零点对应向量,还将绘制出序列x1n, x2n和xn 的时域波形图;我们要验证并调用这个dconv()函数计算“hn=xn=un-u(n-4)”这两个序列的卷积和运算,并绘制图像。

现在我们再利用MATLAB编制一个计算连续时间信号卷积积分的M函数ddconv(),此函数要计算出两个连续信号f1(t)和f2(t)的卷积积分f (t)的近似值,并绘制f1(t)、f2(t)和f (t)的时域波形图。

编完之后,我们利用ddconv()函数求“et=ut+12-ut-1,ht=12t[ut-ut-2]”这两个连续时间信号的卷积积分运算,并绘制图形。

二.基本原理对于信号的时域卷积有:(1)离散时间信号的卷积和:它的定义为,离散时间信号x1n和x2n的卷积和为:xn=x1n*x2n=m=-∞∞x1(m)x2n-m设序列x1n在区间n1~ n2非零,序列x2n在m1~ m2非零,那么就有xn=x1n*x2n的非零区间就为n1+m1~(n2+m2)并且区间长度为n1+m1-n2+m2+1,则只需计算序列xn的非零区间就可以表示整个序列.那么由上可知,在利用MATLAB的conv()函数的时候就要注意其卷积后的区间长度已经发生变化,在绘制卷积后的图像的时候就要有意识的先减去扩大的区间长度,不然绘制的卷积后的时域图像就是错误的,和横坐标不是正确的对应关系,并且我们在使用conv()函数的时候要先构造x1n和x2n,让它们有限,才能返回序列xn的非零样值时间序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 实验目的
1、 学习MATLAB 语言的编程方法及熟悉MATLAB 指令;
2、
深刻理解卷积运算,利用离散卷积实现连续卷积运算;
二 实验内容
1、 完成)(1t f 与)(2t f 两函数的卷积运算 其中:)4()()(),
()(221--==-t u t u t f t u e
t f t
在一个图形窗口中,画出)(1t f 、)(2t f 以
及卷积结果。

要求每个坐标系有标题、坐标轴名称。

p = ; %定义时间间隔 t= 0:p:10;
%定义时间向量
f1=exp(-2*t).*u(t); %将f (t )表示出来 f2=u(t)-u(t-4); f=conv(f1,f2); subplot(1,2,1);
plot(t,f1,t,f2); title('f1=e^-2t*u(t)'' / ''f2=u(t)-u(t-4)');
xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f(t)'); grid on ;
subplot(1,2,2);
plot(f); title('f=f1*f2');
xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f')
grid on
2、 若系统模型为:
)(3)()(4)(4)('
'
'
't f t f t y t y t y +=++ 其中 )()(t u e t f t
-= 求零状态响应,画出波形(函数本身画出一幅图,自己再画出一幅输入波形图)。

零状态响应:
a= [1 4 4]; %将y (t )各阶导数的系数放在向量a 中 b= [1 3]; %将f (t )各阶导数的系数放在向量b 中 sys = tf(b, a); %求系统函数sys td = ; %定义时间间隔
t = 0 : td : 10; %定义时间向量
f = exp(-t).*u(t); %将f (t )表示出来 y = lsim(sys, f, t); %求系统的零状态响应y plot(t, y); %绘出零状态响应的波形
xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('y(t)'); % 这行代码是给出y 坐标的标签 grid on
输入波形图:
a= [1 4 4]; %将y(t)各阶导数的系数放在向量a中b= [1 3]; %将f(t)各阶导数的系数放在向量b中sys = tf(b, a); %求系统函数sys
td = ; %定义时间间隔
t = 0 : td : 10; %定义时间向量
f = exp(-t).*u(t);
plot(t,f);
xlabel('t(sec)'); % 这行代码是给出x坐标的标签ylabel('f(t)');
grid on
三 实验原理: 1、 离散卷积和: 调用函数:conv ()
∑∞
-∞
=-=
=i i k f i f f f conv S )()(1)2,1(为离散卷积和,
其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。

但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。

为得到该值,进行以下分析: 对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。

则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。

2、 连续卷积和离散卷积的关系:
计算机本身不能直接处理连续信号,只能由离散信号进行近似: 设一系统(LTI )输入为
)(t P ∆,输出为)(t h

,如图所示。

)(t P ∆
∆ )(t h ∆

1 t

)()(t h t P ∆∆→
LTI
)()(lim )(lim )(0
t h t h t P t =→=∆→∆∆→∆δ
若输入为f(t):
∆∆-∆=
≈∑∞
-∞
=∆
∆)()()()(k t P k f t f t f k
得输出:
∆∆-∆=
∑∞
-∞
=∆
∆)()()(k t h
k f t y k
当0→∆时:⎰∑∞
∞-∞
-∞
=∆
→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim
)(lim )(0
⎰∑∞

-∞
-∞
=∆
→∆∆→∆-=
∆∆-∆==τττd t h f k t h
k f t y t y k )()()()(lim
)(lim )(0
所以:

∆-∆=-==∑⎰→∆)()(lim
)()()(*)()(21
2121k t f k f
d t f f t f t f t s τ
ττ
如果只求离散点上的f 值)(n f ∆
]
)[()()()()(2121
∑∑∞
-∞
=∞
-∞=∆-∆∆=∆
∆-∆∆=
∆k k k n f k f k n f k f
n f
所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。

3、 连续卷积坐标的确定:
设)(1t f 非零值坐标范围:t1~t2,间隔P )(2t f 非零值坐标范围:tt1~tt2,间隔P
)(*)()(21t f t f t s =非零值坐标:t1+tt1~t2+tt2+1。

相关文档
最新文档