2019-2020学年度北师大实验中学新初一入学分班考试数学试题-真题-含详细解析

合集下载

2019-2020学年度北师大二附中新初一入学分班考试数学试题-真题-含详细解析

2019-2020学年度北师大二附中新初一入学分班考试数学试题-真题-含详细解析

2019-2020学年度北师大二附中新初一入学分班考试数学试题-真题一、选择题(本大题共11小题,共44分)1.甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是()A. 甲的成绩更稳定B. 乙的成绩更稳定C. 甲、乙的成绩一样稳定D. 无法判断谁的成绩更稳定2.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A. 10−xB. 10−yC. 10−x+yD. 10−x−y3.下表为小洁打算在某电信公司购买一支MAT手机与搭配一个号码的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案号码的月租费(元)400600MAT手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A. 500B. 516C. 517D. 6004.甲、乙两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知甲比乙的速度快.则下列选项中正确的是()A. 甲每分钟跑160米,乙每分钟跑240米B. 甲每分钟跑240米,乙每分钟跑160米C. 甲每分钟跑180米,乙每分钟跑220米D. 甲每分钟跑220米,乙每分钟跑180米5.如图是某校参加兴趣小组的学生人数分布的扇形统计图,则参加人数最少的兴趣小组是()A. 棋类B. 书画C. 球类D. 演艺6.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A. 16B. 19C. 22D. 257.桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()A. 80B. 110C. 140D. 2208.阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?()A. 2150B. 2250C. 2300D. 24509.某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A. 2:1B. 7:5C. 17:12D. 24:1710.如图(一),OP为一条拉直的细线,A、B两点在OP上,且OA:AP=1:3,OB:BP=3:5.若先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为()A. 1:1:1B. 1:1:2C. 1:2:2D. 1:2:511.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加7.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A. 350B. 351C. 356D. 358二、填空题(本大题共7小题,共23.0分)12.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但倍,购进数量比第一次少了30支.则该商店第这次每支的进价是第一次进价的54一次购进的铅笔,每支的进价是________元.13.下列图形是用围棋子按一定规律摆放的,根据摆放规律,第20个图中围棋子的个数是______.14.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是______分.15.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是______元.16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.17.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为___.18.如图,下列各图中的三个数之间具有相同规律.依此规律用含m,n的代数式表示y,则y=______.三、解答题(本大题共6小题,共39.0分)19.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.某农户一次购买玉米种子30千克,需付款多少元?20.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.21.学校在“我和我的祖国”快闪拍摄活动中,为学生化妆.其中5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(1)求每位男生和女生的化妆费分别为多少元;(2)如果学校提供的化妆总费用为2000元,根据活动需要至少应有42名女生化妆,那么男生最多有多少人化妆.22.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮的传播就会有144台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?23.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.24.甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A按顺时针连跳4个边长,跳到点E,再从点E顺时针连跳7个边长,跳到点F.分别求出芳芳、明明跳回起点A的概率,并指出游戏规则是否公平.答案和解析1.【答案】B【解析】解:由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.故选:B.根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.本题考查了方差的意义:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.本题也可以分别计算出甲、乙的方差再判断.2.【答案】D【解析】解:x杯饮料则在B餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10−x−y;故选:D.根据点的饮料和沙拉能确定点了x+y份意大利面,根据题意可得点A餐10−x−y;本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.3.【答案】C【解析】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000= 27400.由已知得:24x+15000>27400,,即x至少为517.解得:x>51623故选C.由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x的一元一次不等式,解不等式即可得出结论.本题考查了一元一次不等式的应用以及一次函数的应用,解题的关键是结合题意找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.4.【答案】B【解析】【分析】本题考查了由二元一次方程组的应用知识,是个行程问题,一次相遇,一次追及,根据路程可列方程组求解.设甲每分钟跑x 米,乙每分钟跑y 米,根据相向而行第一次相遇时两人的总路程为400米,同向行走第一次相遇甲比乙多走400米,可得出方程组.【解答】解:设甲每分钟跑x 米,乙每分钟跑y 米,由题意,得:{x +y =4005x −5y =400, 解得{x =240y =160故选B .5.【答案】A【解析】解:因为“书画”人数所占百分比为1−(30%+35%+17%)=18%, 所以参加人数最少的兴趣小组是棋类,故选:A .根据扇形统计图中扇形的面积越大,参加的人数越多,可得答案.本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.6.【答案】A【解析】解:设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意得,{200x +300y =4100(15−y)+(10−y)=x, 解得,{x =7y =9, 则总人数为7+9=16(人)故选:A .设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意列出二元一次方程,求出其解.本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.7.【答案】B【解析】解:设甲杯中原有水a 毫升,乙杯中原有水b 毫升,丙杯中原有水c 毫升,{a +c −40=2a ①a +b +c +180=3b ②②−①,得b −a =110,故选B .根据题意可以分别设出甲、乙、丙三个杯子内原有水的体积,然后根据题意可以列出方程组,然后作差即可得到原本甲、乙两杯内的水量相差多少毫升,本题得以解决. 本题考查三元一次方程组的应用,解题的关键是明确题目中的等量关系,列出相应的方程组,巧妙变形,得到所求问题的答案. 8.【答案】D【解析】解:设阿慧购买x 盒桂圆蛋糕,则购买(10−x)盒金爽蛋糕,依题意有 {350x +200(10−x)≤250012x +6(10−x)≥75, 解得212≤x ≤313,∵x 是整数,∴x =3,350×3+200×(10−3)=1050+1400=2450(元).答:阿慧花2450元购买蛋糕.故选:D .可设阿慧购买x 盒桂圆蛋糕,则购买(10−x)盒金爽蛋糕,根据不等关系:①购买10盒蛋糕,花费的金额不超过2500元;②蛋糕的个数大于等于75个,列出不等式组求解即可.本题考查一元一次不等式组的应用,解答此类问题的关键是明确题意,列出相应的一元一次不等式组,注意要与实际相联系.9.【答案】C【解析】解:设一楼座位总数为7x,则一楼售出座位4x个,未售出座位3x个,二楼座位总数为5y,则二楼售出座位3y个,未售出座位2y个,根据题意,知:3x=2y,即y=32x,则4x+3y3x+2y =4x+3×32x3x+2×32x=172x6x=1712,故选:C.设一楼座位总数为7x,二楼座位总数为5y,分别表示出一、二楼售出、未售出的座位数,由一、二楼未售出的座位数相等得到y关于x的表达式,再列式表示此场音乐会售出与未售出的座位数比,将y代入化简即可得.本题主要考查方程思想及分式的运算,根据一、二楼未售出的座位数相等得到关于y 关于x的表达式是解题的关键.10.【答案】B【解析】解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,AB=a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A 点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选:B.根据题意可以设出线段OP的长度,从而根据比值可以得到图(一)中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决.本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度.11.【答案】B【解析】解:小昱所写的数为1,3,5,7,…,101,…;阿帆所写的数为1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n −1)×2,整理得:2(n −1)=100,即n −1=50,解得:n =51,则阿帆所写的第51个数为1+(51−1)×7=1+50×7=1+350=351. 故选:B .根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n 个数为101,根据规律确定出n 的值,即可确定出阿帆在该页写的数.此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.12.【答案】4【解析】【分析】本题考查了分式方程的应用有关知识,设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支,根据题意得:600x −60054x =30,解得:x =4,经检验,x =4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为4.13.【答案】420【解析】解:∵图1中棋子的数量2=1×2,图2中棋子的数量6=2×3,图3中棋子的数量12=3×4,……∴第20个图中围棋子的个数是20×21=420,故答案为:420.根据已知图形得出图n中围棋子数量为n(n+1),据此可得.本题主要考查图形的变化规律,解题的关键是根据题意得出图n中围棋子数量为n(n+ 1).14.【答案】85【解析】解:90×22+3+5+90×32+3+5+80×52+3+5=85(分),故答案为:85.根据加权平均数的计算方法进行计算即可.本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.15.【答案】80【解析】解:设该书包的进价为x元,根据题意得:130×80%−x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.故答案为:80.设该书包的进价为x元,根据售价×80%−进价=进价×利润率列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.16.【答案】556个【解析】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.根据题意可得前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.【答案】6【解析】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:{a>bb>4 a<8,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b的取值范围,再取其中最大的整数值即可得出结论.本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.18.【答案】m(n+2)【解析】解:∵1×(2+2)=4,3×(4+2)=18,5×(6+2)=40,…,∴y=m(n+2),故答案为m(n+2).根据数的特点,上边的数与比左边的数大2的数的积正好等于右边的数,然后写出M 与m、n的关系即可本题是对数字变化规律的考查,观察出上边的数与比左边的数大2的数的积正好等于右边的数是解题的关键.19.【答案】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x >5,y =20×0.8(x −5)+20×5=16x +20;(2)把x =30代入y =16x +20,∴y =16×30+20=500;∴一次购买玉米种子30千克,需付款500元;【解析】(1)根据题意,得①当0≤x ≤5时,y =20x ;②当x >5,y =20×0.8(x −5)+20×5=16x +20;(2)把x =30代入y =16x +20,即可求解;本题考查一次函数的应用;能够根据题意准确列出关系式,利用代入法求函数值是解题的关键.20.【答案】解:设乙每小时做x 个零件,甲每小时做(x +6)个零件,根据题意得:90x+6=60x , 解得:x =12,经检验,x =12是原方程的解,且符合题意,∴x +6=18.答:乙每小时做12个零件.【解析】设乙每小时做x 个零件,甲每小时做(x +6)个零件,根据时间=总工作量÷工作效率,即可得出关于x 的分式方程,解之并检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 21.【答案】解:(1)设每位男生的化妆费是x 元,每位女生的化妆费是y 元,依题意得:{5x +3y =1903x =2y. 解得:{x =20y =30. 答:每位男生的化妆费是20元,每位女生的化妆费是30元;(2)设男生有a 人化妆,依题意得:2000−20a 30≥42.解得a ≤37.即a 的最大值是37.答:男生最多有37人化妆.【解析】(1)设每位男生的化妆费是x 元,每位女生的化妆费是y 元.关键描述语:5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(2)设男生有a 人化妆,根据女生人数=2000−男生化妆费用3≥42列出不等式并解答. 考查了一元一次不等式的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.22.【答案】解:设每轮感染中平均一台电脑会感染x 台电脑,根据题意得:1+x +(1+x)x =144,整理,得:x 2+2x −143=0,解得:x 1=11,x 2=−13(不合题意,舍去).答:每轮感染中平均一台电脑会感染11台电脑.【解析】设每轮感染中平均一台电脑会感染x 台电脑,根据经过两轮的传播共有144台电脑被感染,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.【答案】解:(1)设每头牛值x 两银子,每只羊值y 两银子,根据题意得:{5x +2y =192x +5y =16, 解得:{x =3y =2. 答:每头牛值3两银子,每只羊值2两银子.(2)设购买a 头牛,b 只羊,依题意有3a +2b =19,b =19−3a 2,∵a ,b 都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.【解析】(1)设每头牛值x 两银子,每只羊值y 两银子,根据“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.(2)可设购买a头牛,b只羊,根据用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),列出方程,再根据整数的性质即可求解.本题考查了二元一次方程(组)的应用,找准等量关系,正确列出二元一次方程(组)是解题的关键.24.【答案】解:芳芳:画树状图可得:有4种等可能的结果,其中1种能跳回起点A,;故芳芳跳回起点A的概率为14明明:画树状图可得:有12种等可能的结果,其中3种能跳回起点A,;故明明跳回起点A的概率为14∴芳芳、明明跳回起点A的概率相等,故游戏规则公平.【解析】运用树状图法,分别求得芳芳、明明跳回起点A的概率,进而得出游戏规则是否公平.本题主要考查了游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.。

最新2019-2020年度北师大版七年级数学上册《有理数》课时练习及解析-精品试题

最新2019-2020年度北师大版七年级数学上册《有理数》课时练习及解析-精品试题

北师大版数学七年级上册第二章第一节有理数课时练习一、选择题(共13题)1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列(1)+5度;(2)-6度;各量分别表示什么?()A.上升5度;下降6度B.上升6度;下降6度C.上升5度;上升6度D.下降5度;下降6度答案:A解析:解答:根据正负数所表示的意义,可以判定答案为A.分析:考查正负数的定义,注意正负数表示意义相反的量2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对答案:B解析:解答:根据正负数所表示的意义,向东走负数就是向西走正数.分析:考查正负数的定义,注意正负数表示意义相反的量3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数答案:B解析:解答:零既不是正数也不是负数分析:考查正负数,0是正负数的分界点4.下列说法中,正确的是()(可以看第4页课本)A.正整数、负整数和零统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数答案:A解析:解答:根据对整数的认识我们可以知道正整数和负整数统称整数;故答案为A;分数有的不是有理数所以B、D错误;零既不是正数也不是负数所以C错误.分析:考查对整数分类的掌握.5.如果水位下降了3m记着-3m,那么,水位上升4m记作()A.1m B.7m C.4m D.-7m答案:C解析:解答:正负数表示具有相反意义的量,下降为负,反过来上升为正,水位上升4m记作4m.分析:考查对正负数意义的理解.6.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米答案:C解析:解答:正负数表示的是意义相反的量,故向东走负数米就表示向西走正数米,所以答案选择C.分析:考查正负数表示的意义7.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数答案:B解析:解答:A选项应该是正数、负数和零统称为有理数;C选项0不是最小的数,负数比0还要小;D选项0既不是正数也不是负数;故答案为B选项分析:考查对基本概念的掌握.8.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克答案:C解析:解答:C选项中的身高和体重不是同一个单位量,所以这两个量的变化不具有相反的意义.分析:注意相反意义的量应该是表示的同一个单位量.9.下列说法中不正确的是()A.0是自然数B.0是正数C.0是整数D.0是非负数答案:B解析:解答:通过分析我们可知0既不是正数也不是负数,故答案为B分析:考查对0这个数的分类.10.下列说法不正确的是()A.0不是正数也不是负数B.负数是带“—”的数,正数是带有“+”的数C.非负数是正数或0D.0是一个特殊的整数,它并不只是表示“没有”答案:B解析:解答:—(—1)表示的是正数,所以正数并不一定都带有“+”,所以B选项错误. 分析:注意对基本概念和定义的掌握.11.a一定表示()A.正数B.负数C.不是正数就是负数D.以上答案均不对答案:D解析:解答:a是一个字母,可以代表任何数,包括零,所以A、B、C选项错误,正确答案选D.分析:对字母表示的数如果没有限制条件那么就有可能代表所有的数.12.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃答案:D解析:解答:以0℃为标准,高于0℃记作正,低于0℃记作负,2℃表示比标准高2℃,-8℃表示比标准低8℃,所以最高和最低的差为10℃分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题13.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A.美美 B.多多 C.田田 D.乐乐答案:D解析:解答:85分为标准,高于标准为正,低于标准为负,因此可知乐乐高于标准,并且高于标准13分,即成绩最高的为乐乐,答案为D选项.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题二、填空题(共7题)14.如果收入15•元记作+•15•元,•那么支出20•元记作________元.答案:—20解析:解答:正负数是表示意义相反的量,如果收入为正那么支出为负,所以支出20元记作—20元.分析:注意正负数是表示意义相反的量15.某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~390克.答案:380解析:解答:385克为标准,高于标准为正,低于标准为负,因此可知合格的范围为最多高于标准5克或是最多低于标准5克,因此可以判断合格范围是在385克的基础上加或减去5克.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题16.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。

【北师大版】七年级下册数学《期末考试题》(含答案解析)

【北师大版】七年级下册数学《期末考试题》(含答案解析)

2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。

2019-2020学年度北师大实验中学新高一入学分班考试数学试题-含详细解析

2019-2020学年度北师大实验中学新高一入学分班考试数学试题-含详细解析
有球都被放入盒中,则( )
6.
A. 乙盒中黑球不多于丙盒中黑球
B. 乙盒中红球与丙盒中黑球一样多
C. 乙盒中红球不多于丙盒中红球
D. 乙盒中黑球与丙盒中红球一样多
某学校运动会的立定跳远和 30 秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为 10 名学生的预赛成
绩,其中有三个数据模糊.
学生序号
1
2
“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数 n 充分大时,计算单位圆的内接正 6n 边形的周长和外切
正 6n 边形(各边均与圆相切的正 6n 边形)的周长,将它们的算术平均数作为2的近似值.按照阿尔⋅卡西的方
法,的近似值的表达式是(
A. 3(sin
C. 3(sin
3.
30°

60°

19.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:
()男学生人数多于女学生人数;
()女学生人数多于教师人数;
()教师人数的两倍多于男学生人数.
①若教师人数为 4,则女学生人数的最大值为______.
②该小组人数的最小值为______.
第 5 页,共 23 页
20.某网店统计了连续三天售出商品的种类情况:第一天售出 19 种商品,第二天售出 13 种商品,第三天售出 18 种
A. 中位数
B. 平均数
C. 方差
D. 极差
11. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有 2 位优秀,2 位良好,我
现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,
根据以上信息,则(
)
A. 乙可以知道两人的成绩

北师大版2019-2020学年初一数学下册单元测试卷《第5章生活中的轴对称》测试卷 含答案

北师大版2019-2020学年初一数学下册单元测试卷《第5章生活中的轴对称》测试卷 含答案

七年级下册单元测试卷《第5章生活中的轴对称》测试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1、将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.2、如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处3、如图,已知△ABC是等边三角形,点D,E,F分明是边AB,BC,AC的中点,则图中等边三角形的个数是()A.2个B.3个C.4个D.5个4、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°5、如图,在正方体的两个面上画了两条对角线AB,AC,则∠BAC等于()A.60°B.75°C.90° D.135°6、图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1) B.(2)C.(3) D.(4)7、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()号.A.1 B.2 C.3 D.48、如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处 B.4处C.3处D.2处9、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CEC.AD D.AC10、如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题6小题,每小题4分,共24分)11、如图,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品__________.12、如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.13、下列轴对称图形中,只用一把无刻度的直尺能画出对称轴的序号是_________.①菱形②三角形③等腰梯形④正五边形14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为__________.15、如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:______________.16、数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是__________.三:解答题(一)(本大题共3题,每小题6分,共18分)17、生活中因为有美丽的图案,才显得丰富多彩,以下是来自现实生活中的两个图案(图1、2、).请在图3,图4中画出两个是轴对称图形的新图案.18、如图,在矩形ABCD 中,点E 为BC 的中点,点F 在CD 上,要使△AEF 的周长最小时,画图确定点F 的位置.19、如果一个图形有两条对称轴,如长方形,那么这两条对称轴夹角是多少度?其他有两条对称轴的图形的两条对称轴是否也具有这个特征?如果一个图形有三条对称轴,如正三角形,它的三条对称轴相邻两条的夹角是多少度?其他有三条对称轴的图形的三条对称轴是否也具有这个特征?如果一个图形有n 条对称轴,那么每相邻的两条对称轴的夹角为多少度?四、解答题(二)(本大题共3题,每小题7分,共21分)20、如图,直线AD 和CE 是△ABC 的两条对称轴,AD 和CE 相交于点O . (1)从边来看,△ABC 是什么三角形?说明理由.(2)OD 与OE 有什么数量关系?说明理由21、如图图,△ABC 中,∠C =090, ∠A =030.(1)作图:用尺规作线段AB 的中垂线DE,交AC 于点D,交AB 于点E,(保留作图痕迹,不要求写作法和证明)(2)连接BD ,请你判断BD 是否平分∠CBA ,并说明你的理由。

北师大版2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷解析版

北师大版2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷解析版

2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.2.(2分)2019的相反数是()A.B.﹣C.|2019|D.﹣20193.(2分)下列图形中属于棱柱的有()A.5个B.4个C.3个D.2个4.(2分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣D.﹣15.(2分)下列哪个图形经过折叠可以得到正方体()A.B.C.D.6.(2分)下列计算正确的是()A.7+(﹣8)=﹣15B.4﹣(﹣4)=0C.0﹣3=3D.﹣1.3+(﹣1.7)=﹣37.(2分)用一个平面去截一个几何体,若截面形状是长方形(包括正方形),那么该几何体不可能是()A.圆柱B.五棱柱C.圆锥D.正方体8.(2分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A.B.C.D.9.(2分)对4袋标注质量为450g的食品的实际质量进行检测,检测结果(用正数记超过标准质量的克数,用负数记不足标准质量的克数)如表;袋数.第1袋第2袋第3袋第4袋检测结果/g﹣2+3﹣5+4最接近标准质量的是()A.第1袋B.第2袋C.第3袋D.第4袋10.(2分)有理数a、b在数轴上的位置如图所示,则a+b的值()A.小于a B.大于b C.大于0D.小于0二、填空题(每小题3分,共18分]11.(3分)计算:﹣3+2=.12.(3分)如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作万元.13.(3分)如图是一个几何体的表面展开图,这个几何体共有条棱.14.(3分)若A.B两地的海拔高度分别是﹣129.5米和﹣71.3米,则A.B两地相差米.15.(3分)一个小立方体的六个面分别标有数字1、2、3、4、5、6.从三个不同的方向看到的情形如图所示,则数字6的对面是.16.(3分)若|x|=3,|y|=5,且x+y>0,则x﹣y=.三、解答题(第17题6分,第18、19题各8分,共22分)17.(6分)计算:18.(8分)计算:19.(8分)所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:正数集合{…};分数集合{…};负整数集合{…}四、(每小题8分,共16分)20.(8分)某检修小组开车从A地出发,在一条东西方向的马路上检修线路,一天中行驶记录如下(向东行驶为正,向西行驶为负.单位:km).+9,﹣8,+6,﹣13,+7,﹣12,+3,﹣2.(1)收工时检修小组在A地什么方向?距A地多远?(2)若每千米耗油0.6升,检修小组工作一天需耗油多少升?21.(8分)画出数轴,用数轴上的点表示下列各数.并用“<”将它们连接起来.五、(本题10分)22.(10分)(1)如图1是由大小相同的小立方块搭成的几何体,请在图2的方格中画出从上面和左面看到的该几何体的形状图.(只需用2B铅笔将虚线化为实线)(2)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体最大需要个小立方块.六、(本题10分)23.(10分)如图是一张长方形纸片,AB长为3cm,BC长为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是;(2)若将这个长方形纸片绕AB边所在直线旋转一周,则形成的几何体的体积是cm3(结果保留π);(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留π).七、(本题12分)24.(12分)下表是今年某水库一周内的水位变化情况(正号表示水位比前一天上升,负号表示水位比前一天下降),该水库的警戒水位是34m.(上周末的水位达到警戒水位).星期一二三四五六日水位变化/m+0.22+0.81﹣0.36+0.03+0.29﹣0.35﹣0.01(1)本周星期河流的水位最高,水位是m,本周星期河流的水位最低,水位是m;(2)本周三的水位位于警戒水位之(填“上”或“下”),与警戒水位的距离是m;(3)与上周末相比,本周末河流水位是上升了还是下降了?变化了多少米?八、(本题12分)25.(12分)如图,数轴的单位长度为1.点M.A.B.N是数轴上的四个点,其中点A.B表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置.并用点O表示:(2)点M表示的数是,点N表示的数是,M,N两点间的距离是.(3)将点M先向有移动4个单位长度,再向左移动2个单位长度到达点C.点C表示的数是,在数轴上距离c点3个单位长度的点表示的数是.2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.2.【解答】解:2019的相反数是﹣2019,故选:D.3.【解答】解:根据棱柱的定义可得:符合棱柱定义的有第一、二、三、七、八个几何体都是棱柱,共5个.故选:A.4.【解答】解:|﹣3|>|﹣2|,∴﹣3<﹣2,故选:B.5.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项能围成正方体,故选:C.6.【解答】解:7+(﹣8)=﹣1因此A选项不符合题意,4﹣(﹣4)=8因此B选项不符合题意,0﹣3=﹣3因此C选项不符合题意,﹣1.3+(﹣1.7)=﹣1.3﹣1.7=﹣3因此D选项符合题意,故选:D.7.【解答】解;A、用垂直于地面的一个平面截圆柱截面为矩形,与要求不符;B、五棱柱的截面可以是长方形,与要求不符;C、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,与要求相符;D、正方体的截面可以是长方形,与要求不符.故选:C.8.【解答】解:从正面看所得到的图形为:B故选:B.9.【解答】解:∵|﹣2|<|+3|<|+4|<|﹣5|,∴第1袋最接近标准质量.故选:A.10.【解答】解:观察数轴可知:﹣2<a<﹣1,0<b<1,∴﹣2<a+b<0.故选:D.二、填空题(每小题3分,共18分]11.【解答】解:﹣3+2=﹣1.故答案为:﹣1.12.【解答】解:如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作﹣4万元.故答案为:﹣4.13.【解答】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱,如图:所以这个几何体共有9条棱.故答案为:9.14.【解答】解:根据题意得:﹣71.3﹣(﹣129.5)=58.2(米),答:A.B两地相差58.2米;故答案为:58.2.15.【解答】解:由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴数字6的对面是3,故答案为:3.16.【解答】解:∵|x|=3,|y|=5,且x+y>0,∴x=3,y=5;x=﹣3,y=5,则x﹣y=﹣2或﹣8,故答案为:﹣2或﹣8.三、解答题(第17题6分,第18、19题各8分,共22分)17.【解答】解:原式=﹣12+﹣8﹣=﹣20+=﹣.18.【解答】解:=2.4+0.6﹣3.1+0.8=0.7.19.【解答】解:故答案为:正数有:,7,15.分数有:,,﹣1.25,负整数有:﹣3.四、(每小题8分,共16分)20.【解答】解:(1)9﹣8+6﹣13+7﹣12+3﹣2=﹣10 km,答:收工时检修小组在A地西面,距A地10km.(2)0.6×(9+8+6+13+7+12+3+2)=0.6×60=36(升)答:工作一天耗油36升.21.【解答】解:﹣(2)<﹣1<﹣1<0<|﹣3|.五、(本题10分)22.【解答】解:(1)如图所示:(2)搭这样的一个几何体最大需要5+4=9个小立方块.故答案为:9.六、(本题10分)23.【解答】解:(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是圆柱;(2)π×42×3=48π(cm3).故形成的几何体的体积是48πcm3;(3)情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).故形成的几何体的表面积是42πcm2或56πcm2.故答案为:圆柱;48π.七、(本题12分)24.【解答】解:通过计算本周每一天的水位为:周一、34.22米,周二、35.03米,周三、34.67米,周四、34.7米,五周、34.99米,周六、34.64米,周日、34.63米,(1)故答案为:二,35.03,一,34.22(2)34.67米>34米,34.67﹣34=0.67米,故答案为:上,0.67,(3)∵34.63米>34米,34.63﹣34=0.63米,答:本周末河流水位是上升了,变化了0.63米.八、(本题12分)25.【解答】解:(1)距离A点和B点的距离相等的点是点O.如图所示,点O即为所求.(2)点M表示的数是﹣4,点N表示的数是5,所以M,N两点间的距离是5﹣(﹣4)=9.故答案为9.(3)如图,将点M先向右移动4个单位长度是0,再向左移动2个单位长度到达点﹣2,得点C表示的数是﹣2.距离点C3个单位长度的点表示的数是﹣5或1.故答案为﹣2,﹣5或1.。

实验中学新初一分班考试数学试卷及答案

实验中学新初一分班考试数学试卷及答案

北师大附属实验数学分班试题一、选择题(把正确答案的序号写在后面的括号里)(每小题1分共6分)如果a÷7/8=b×7/8(ab都是自然数),那么()。

[ ①a>b ②a=b ③a<b ]2、在自然数中,凡是5的倍数()[ ①一定是质数②一定是合数③可能是质数,也可能是合数]3、小麦的出粉率一定,小麦的重量和磨成的面粉的重量()[ ①成反比例②成正比例③不成比例]4、一个比的前项是8,如果前项增加16,要使比值不变,后项应该()。

[ ①增加16 ②乘以2 ③除以1/3 ]5一个三角形的三个角中最大是89度,这个三角形是()。

[ ①锐角三角形②直角三角形③钝角三角形]6、一个圆柱体,如果它的底面直径扩大2倍,高不变,那么它的体积扩大()倍。

[ ①2 ②4 ③6 ]二、填空题(1—9题每题2分,10—11每题4分)(共26分)。

1、二千零四十万七千写作(),四舍五入到万位,约是()万。

2、68个月=()年()个月4升20毫升=()立方分米( )3、0.6:( )= 9.6÷( )=1.2= 1 5 =( )%4、自然数a除自然数b,商是18,a与b的最小公倍数是()。

5、在比例尺是1 :50000的图纸上,量得两点之间的距离是12厘米,这两点的实际距离是()千米。

6、在一个比例里,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是()。

7、一个圆柱体和一个圆锥体等底等高,如果它们的体积相差32立方分米,那么圆锥体的体积为()立方厘米。

8、从168里连续减去12,减了()次后,结果是12。

9一根钢材长5米,把它锯成每段长50厘米,需要3/5小时,如果锯成每段长100厘米的钢段,需要()小时。

10、一个长方体木料的长和宽都是4分米,高是8分米,这根木料的体积是();如果把这根木料锯成两个正方体,那么这两个正方体的表面积的和是()。

11、一个长方形的面积是210平方厘米,它的长和宽是两个连续的自然数,这个长方形的周长是()。

北师大版七年级数学下册2019-2020年度第二学期期末模拟测试卷一(含答案)

北师大版七年级数学下册2019-2020年度第二学期期末模拟测试卷一(含答案)

北师大版七年级数学下册2019-2020 年度第二学期期末模拟测试卷一一、选择题(共10 小题,每小题 3 分,计30 分,每小题只有一个选项是符合要求的)1.下列计算正确的是()A.3a2﹣4a2=a2 B.a2•a3=a6 C.a10÷a5=a2 D.(a2)3=a62.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)3.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3 相差2 的概率是()A.B.C.D.5.已知三角形三边分别为2,a﹣1,4,那么a 的取值范围是()A.1<a<5 B.2<a<6 C.3<a<7 D.4<a<66.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了 10 分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路7.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形8.已知实数a、b 满足a+b=2,ab=,则a﹣b=()A.1 B.﹣ C.±1 D.±9.如图:∠A+∠B+∠C+∠D+∠E+∠F 等于()A.180°B.360°C.540°D.720°10.如图,在△ABC 中,点D、E、F 分别是BC、AD、EC 的中点,若△ABC 的面积是16,则△BEF 的面积为()A.4 B.6 C.8 D.10二、填空题(共 4 小题,每小题 3 分,计12 分)11.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300 亿元人民币等值专项贷款,将300 亿元用科学记数法表示为元.12.∠1 与∠2 有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=.13.如图,点P 关于OA、OB 的对称点分别为C、D,连接CD,交OA 于M,交OB 于N,若PMN 的周长=8 厘米,则CD 为厘米.14.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是(只需添加一个条件即可)三、解答题(共9 小题,计78 分解答应写出过程)15.(12分)计算(1)106÷10﹣2×100(2)(a+b﹣3)(a﹣b+3)(3)103×97(利用公式计算)(4)(﹣3a2b)2(2ab2)÷(﹣9a4b2)16.(6分)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.17.(6分)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x),其中x=﹣,y=1.18.(6分)如图,在正方形网格中,△ABC 是格点三角形,画出△ABC 关于直线l对称的△A1B1C1.19.(9分)将分别标有数字 1,2,3 的三张卡片洗匀后,背面朝上放在桌面上.请完成下列各题.(1)随机抽取1 张,求抽到奇数的概率.(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?(3)在(2)的条件下,试求组成的两位数是偶数的概率.20.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F 的度数.21.(9分)如图,直线 AB 与 CD 相交于点 O,∠AOM=90°.(1)如图1,若射线OC 平分∠AOM,求∠AOD 的度数;(2)如图2,若∠BOC=4∠NOB,且射线OM 平分∠NOC,求∠MON 的度数.22.(10分)已知一个等腰三角形的两个内角分别为(2x﹣2)°和(3x﹣5)°,求这个等腰三角形各内角的度数.23.(12 分)如图 1,在△ABC 中,∠BAC=90°,AB=AC,过点 A 作直线 DE,且满足BD⊥DE 于点 D,CE⊥DE 于点 E,当 B,C 在直线 DE 的同侧时,(1)求证:DE=BD+CE.(2)如果上面条件不变,当B,C 在直线DE 的异侧时,如图2,问BD、DE、CE 之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C 在直线DE 的异侧时,如图3,问BD、DE、CE 之间的数量关系如何?写出结论并证明.参考答案一、选择题1.D.2.D.3.C.4.B.5.C.6.B.7.A.8.C.9.B.10.A.二、填空题(共4 小题,每小题3 分,计12 分)11.3×1010.12.60°或120°.13.8.14.AE=AC.三、解答题(共9 小题,计78 分解答应写出过程)15.解:(1)原式=106+2+0=108;(2)原式=a2﹣(b﹣3)2=a2﹣b2+6b﹣9;(3)原式=(100+3)×(100﹣3)=1002﹣32=10000﹣9=9991;(4)原式=(9a4b2)•(2ab2)÷(﹣9a4b2)=﹣2ab2.16.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.17.解:原式=(x2+4xy+4y2﹣9x2+y2﹣5y2)÷2x=(﹣8x2+4xy)÷2x=﹣4x+2y,当x=﹣、y=1 时,原式=﹣4×(﹣)+2×1=2+2=4.18.解:如图,△A1B1C1 即为所求.19.解:(1)在这三张卡片中,奇数有:P(抽到奇数)=;(2)可能的结果有:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(3)由(2)得组成的两位数是偶数的概率==.20.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC 和△DEF 中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°21.解(1)∵∠AOM=90°,OC 平分∠AOM,∴∠AOC=∠AOM=×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD 的度数为135°;(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM 平分∠CON,∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90°,∴x=36°,∴∠MON=x°=×36°=54°,即∠MON 的度数为54°.22.解:①当(2x﹣2)°和(3x﹣5)°是两个底角时,2x﹣2=3x﹣5,x=3,∴三个内角分别是4°,4°,172°;②当2x﹣2 是顶角时,2x﹣2+2(3x﹣5)=180°,解得x=24,∴三个内角分别是46°,67°,67°;③当3x﹣5 是顶角时,3x﹣5+2(2x﹣2)=180°,解得x=27,∴三个内角分别是76°,52°,52°23.(1)证明:如图1,∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)解:BD=DE+CE,理由:如图2,∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°.∴∠BAD+∠ABD=90°.∵∠BAD+∠EAC=90°∴∠ABD=∠EAC.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AE=AD+ED,∴BD=DE+CE.(3)解:DE=CE﹣BD,理由是:如图3,同理易证得:△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD﹣AE,∴DE=CE﹣BD.。

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

实验中学2019-2020初一第一学期期中试卷(有答案版)终级版

实验中学2019-2020初一第一学期期中试卷(有答案版)终级版


(4)现要用 9 个数-5,-4,-3,-2,-1,0,1,2,3 构造一个三阶幻方.请将构造的
幻方填写在下面 3×3 的方格中.
(初一年级数学试卷)第 6 页,共 8 页
北师大附属实验中学 2019-2020 学年度第一学期初一年级数学期中考试试卷
2. 数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点 A、B
三、解答题(本题共 50 分,第 21 题 16 分,每小题 4 分,第 22 题 4 分,第 24 题 8 分,每小题 4 分,第 23、25、26 题每题 5 分,第 27 题 7 分)
21.计算:
(1) −3 − (−4) + (−12) +16
(初一年级数学试卷)第 3 页,共 8 页
北师大附属实验中学 2019-2020 学年度第一学期初一年级数学期中考试试卷
命题人:徐健
审题人:陈平
一、选择题(本题共 10 小题,每小题 3 分,共 30 分) 下面各题均有四个选项,其中只.有.一.个.是符合题意的。
1. 如果高出海平面 20 米,记作+20 米,那么–30 米表示
A.高出海平面 30 米
B.低于海平面 30 米
C.不足 30 米
D.低于海平面 20 米
则可列式为
A.
B.
C.
D.
10.如图①,是长为 ,宽为 b 的长方形卡片,把六张
这样的小长方形卡片不重叠地放在一个底面为长方形
(长为 4,宽为 3)的盒子底部(如图②),盒子底部未被卡
片覆盖的部分用阴影表示,则图②中两块阴影部分的周
长之和为
A.8
B.10
C.12
D.14

2019年北师大附实验中学初一新生分班测试数学试卷(Word版,无答案)

2019年北师大附实验中学初一新生分班测试数学试卷(Word版,无答案)

2019北京师范大学附属实验中学初一分班考试数学一、填空题1.若212[0.75(5+⨯+1)3]0.3982+⊗⨯÷=,那么=2.将530分成两个质数的和,那么这两个质数的乘积的最小值为3.两个农妇共带245只鸡蛋去卖,一个带的多,一个带的少,但卖得同样的价钱,一个农妇对另一个说:“如果我有你那么多鸡蛋,我能卖32元。

”另一个说:“如果我有你那么多鸡蛋,只能卖18元。

”那么,两人中带的较少的人带了个鸡蛋。

4.斐波那契数列1、1、2、3、5、8、13、21、···中的第n个数记为F n,问:F11+F12+F13+F14+F15是不是这个数列中的数呢?答案:5.如图,将立方体绕它的对角线A C1旋转,应该形成哪种立体图形?答案:6.用1或2可以组成至少有连续3个1的八位数共个7.在黑板上写下数1,2,3,···,2004,2005,每次擦去其中最小的4个数,再写上这4个数的和被7除的余数,直至黑板上的数不足4个为止,这时黑板上剩下的数是8.某商场春节期间采用两种方式促销:第一种:按6.5折购买;第二种:满200元返200元购物券。

打折商品不收券、不返券。

秋秋陪妈妈去逛商场,想买两件商品,一件375元,另一件225元,妈妈问秋秋:“我不想再买别的东西,应选择哪种方式才合算呢?”秋秋答:9.重排任意一个三位数3个数位上的数字,至多得到6个三位数(允许百位数字为0),其中有一个答数和一个最小数,它们的差构成另一个三位数(允许百位数字为0)。

例如:3位数990,重排后得到990和099,差为891;再重排891,得到981和189,差为792;···。

重复2005次后,得到的所有数为_______。

10.甲、乙两人从400米的环形跑道点A背向同时出发,8分钟后两人第3次相遇。

已知每秒钟甲比乙多行0.1米,那么两人第2次相遇的地点与A点沿跑道上的最短距离是米。

最新初一新生分班考试数学试题含答案

最新初一新生分班考试数学试题含答案

初一新生编班考试数学试题90分钟)(考试时精品文档…………间…20分)13题每题2分,共—7题每空0.5分,8—1一、你能填得又快又对吗?,把它改写成以万做单位的数)—9这十个数字组成最大的十位数是(、用1。

)是(),四舍五入到亿位约是()立方分米()立方米(2、3.04立方米线…)分)小时(4小时= 3…??…)成)%=(()÷20= 3、2÷()=(=0.4= (10)…)。

3整除,则□里可以填的数有( 54、四位数21□能被……)元。

、小王以八五折买了一件衬衫,比标价便宜18元,这件衬衫原来标价是(5…名…姓。

,则另一个数是()、两个数的最大公约数是612,最小公倍数是180,其中一个数是36……,如果把乙数的小数点向右移动两位后,甲、乙两数的比48、甲、乙两数的和是48、7…订。

)值为1,甲数是(……20厘米,大正方形的面积是8、右图中,已知圆的直径是……级)平方厘米。

()平方厘米,小正方形的面积是(…班…厘米的两个正方体拼成一个长方体,长方体的表面积是原来两个正方体a9、把棱长为……??…。

表面积的??………%。

厘米的正方形内有一个最大的圆,这个圆的面积占正方形面积的()、10一个边长20…校…)岁。

倍。

儿子今年(岁,11、父亲今年比儿子大303年后,父亲的年龄是儿子的4 学……如果从一层楼走到四层楼需12、某人到十层大楼的第八层办事,不巧停电,电梯停升,装…)秒才能到。

秒,那么以同样的速度往上走到八层,还需要(45……厘米的圆柱形铁块,现在要把它锻造成一个底面与圆厘米。

高、一个底面半径13820……)…镇…(…精品文档乡………….精品文档柱相同的圆锥,这个圆椎的高是()厘米。

精品文档.精品文档二、相信你一定能选对。

(每题1分,共5分)111,a×b×c=,那么等于()1、如果a×b=c56511D、C、1 A、1 B、56302、把5克食盐溶于75克水中,盐占盐水的()。

北师大版2019-2020学年七年级数学下册《第3章变量之间的关系》单元测试卷(含答案)

北师大版2019-2020学年七年级数学下册《第3章变量之间的关系》单元测试卷(含答案)

七年级下册单元测试卷《第3章变量之间的关系》测试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1、在一次运动会的100米比赛中,小明以8米/秒速度奔跑,设小明离终点的距离为y (米),则y与奔跑时间t(秒)之间的关系()8 C、 y=100-8t D、y=8t-100A、y=8tB、y=t2、如图,OA和BA分别表示甲乙两名学生运动的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米 B.2米 C.1.5米 D.1米3、家用电饭煲煮饭时,饭熟后保温,下列四种图象能刻画煮饭后电饭煲的温度随时间变化而变化情况的是()A.B.C.D.4、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系()A.B. C .D.5、一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A.B.C.D.6、下列图象中,能反映出投篮时篮球的离地高度与投出后的时间之间关系的是()A.B.C.D.7、如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的图象大致是()A.B.C.D.8、向一个容器中注水,注满为止.若注水量V(c3m)与容器中水的高度h(cm)之间关系的图象大致如图,则这个容器是下列四个图中的()A.B.C.D.9、李先生手中有一张记录他从出生到24岁期间的身高情况表(见如表):年龄x/岁0 3 6 9 12 15 18 21 24身高h/cm 48 100 130 140 150 158 165 170 170.4下列说法错误的是()A.李先生的身高增长速度总体上先快后慢B.李先生的身高在21岁以后基本不长了C.李先生的身高从0岁到24岁平均每年增高7.1cmD.李先生的身高从0岁到24岁平均每年增高5.1cm10、小明和他爸爸做了一个实验,小明由一幢245米高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:下落时间t(s) 1 2 3 4 5 6下落路程s(m) 5 20 45 80 125 180下列说法错误的是()A.苹果每秒下落的路程不变B.苹果每秒下落的路程越来越长C.苹果下落的速度越来越快D.可以推测,苹果下落7秒后到达地面二、填空题(本大题6小题,每小题4分,共24分)11、一杯滚烫的水10min后冷却下来,在这个变化过程中,自变量是______,因变量是___________.12、如图,射线l,乙l分别表示甲,乙两名运动员在自行车比赛甲中所走路程S与时间t的关系图象,则甲的速度_____乙的速度(用“>”,“=”,“<”填空).13、如图,小刚骑自行车从A地到B地,一段时间后,小强也从A地出发追赶小刚,两人所走的路程与行走的时间如图,看图回答问题:(1)小强比小刚晚出发______小时.(2)小强速度是小刚速度的______倍.14、某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系________________.15、如图给出了一家商场一个月内家用电器和生活用品的销售情况,请你根据图中的信息回答下列问题:(1)该商场本月第四周家用电器与生活用品的销售额哪个较大?_________.(2)根据这两种商品的销售情况,请你为这家商场提供一份进货建议.______________________________________________________________.16、如图1,在长方形ABCD中,动点P从点B出发,沿BC-CD-DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的图象如图2所示,则△ABC的面积是_______.三、解答题(一)(本大题共3题,每小题6分,共18分)17、将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)4张白纸粘合后的总长度_____________.(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式_____________;(3)求当x=20时,y的值为_______________.18、某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:方案一①买一个书包赠送一个文具盒;方案二②按总价九折付款.若某班需购8个书包,文具盒若干个(不少于8个),如果设购文具盒数为x(个),付款为y(元)(1)分别求出两种优惠方案中y与x之间的关系式;(2)若两种优惠图象如图,购买60个文具盒时选哪种优惠方案更省钱?19、如图,AB=a,点P是线段AB上的一个动点,分别以AP,BP为边作正方形.当P点运动时,两个正方形的大小会随着改变.若AP为x.(1)当点P运动时,两个正方形的周长和为C会改变吗?若不会改变,请求出来.(2)猜想:当点P运动时,两个正方形的面积的和S会改变吗?四、解答答题(二)(本大题共3题,每小题7分,共21分)20、出租车收费按路程计算,3千米以内(含3千米)收费8元,超过3千米时,每1千米加收1.80元.(1)写出车费y(元)与路程x(千米)(x≥3)之间关系式;(2)某人在离家6千米处,身上仅有14元,他们打算乘出租车回家,问钱够不够?21、某学校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,甲种方式:收制版费6元,每印一份收印刷费0.1元;乙种方式:没有制版费,每印一份收印刷费0.12元,若数学学案需印刷x份.(1)填空:按甲种收费方式应收费_____元;按乙种收费方式应收费_______元;(2)若该校一年级需印500份,选用哪种印刷方式合算?(3)印刷多少份时,甲、乙两种收费方式一样多?22、如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B 地,乙也于同日下午骑摩托车按同路从A地出发驶往B地.如图所示,图中的折线PQR 和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙哪一个先出发?先出发多长时间?(2)甲和乙哪一个先到达B地?先到多长时间?(3)分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.(4)乙出发大约用多长时间就追上甲?五、解答题(三)(本大题共3题,每小题9分,共27分)23、“龟兔赛跑”的故事同学们非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题.(1)折线OABC表示赛跑过程中_______(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全程是________米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?24、用一根长是20cm的细绳围成一个长方形,这个长方形的一边的长为x cm,它的面积为y c2m.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围能使得到的长方形的面积最大?最大是多少?(5)估计一下,当围成的长方形的面积是22c2m时,x的值应在哪两个相邻整数之间?25.我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”.如图1,平行四边形MNPQ的的一边PQ作左右平移,图2反映它的边NP的长度(cm)随时间(s)变化而变化的情况 .请解答下列问题(1)在这个变化过程中,自变量是_______,因变量是_______.(2)观察图2,P向左平移前,边NP的长度是______cm,请你根据图象呈现的规律写出0至5秒间l与r的关系式(3)填写下表,并根据表中呈现的规律写出8至14秒间l与t的关系式参考答案1、C2、解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64-12)÷8=6.5(m/s),故快者比慢者的速度每秒快:8-6.5=1.5(m/s).故选:C.3、解:当饭熟之前,温度逐渐升高,饭熟后开始保温,一段时间温度不变,接着温度逐渐降低.故选:A.4、解:太阳能热水器在太阳光的照射下,不断加热热水器内的水,水温不断上升,当升到100℃时,由于水的特性,水温就不再变化,即使太阳光强度不强,由于太阳能热水器的功能,也能使水保持100℃.故选:B.5、解:公共汽车经历:加速-匀速-减速到站-加速-匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.故选:B.6、解:∵投篮时篮球的离地高度与投出后的时间之间关系的图象为抛开物体线路,∴能够反映出投篮时篮球的离地高度与投出后的时间之间关系的是C选项的图象.故选:C.7、解:一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过半径OA 这一段,蚂蚁到O 点的距离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离S 不变,图象是与x 轴平行的线段;走另一条半径OB 时,S 随t 的增大而减小; 故选:B .8、解:由题可得,水深与注水量之间图象是一条直线,说明随着水的深度变高,需要的注水量也是均匀升高,从而可知水瓶形状是均匀的 ∴水瓶的形状是圆柱, 故选:A .9、解:A 、从0-18增长较快,18-24增长变慢,所以高增长速度总体上先快后慢是正确; B 、从21岁步入成年,身高在21岁以后基本不长了是正确的;C 、(170.4-48)÷24=5.1cm ,从0岁到24岁平均每年增高7.1cm 是错误的;D 、(170.4-48)÷24=5.1cm ,从0岁到24岁平均每年增高5.1cm 是正确的. 故选:C .10、解:由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为15、25、35、45等等,所以观察备选答案A 不对. 故选:A .11、解:一杯滚烫的水10min 后冷却下来,在这个变化过程中,自变量是时间,因变量是温度.故答案为:时间、温度.12、解:根据题意:相同时间时甲走的路比乙多,故甲的速度大于乙的速度. 故答案为>.13、(1)小强比小刚晚出发4小时.(2)100÷8=12.5(千米/时),100÷(6-4)=50(千米/时)小强速度是小刚速度的4倍.14、解:⎪⎩⎪⎨⎧>-⨯⨯+⨯≤≤=)20)(20(258.02025)200(25x x x x y 即:⎩⎨⎧>+≤≤=)20(10020)200(25x x x x y15、(1)该商场本月第四周生活用品的销售额比家用电器的销售额大;(2)从折线图看出,家用电器的销售额较平稳,而生活用品的销售额增幅较大,所以这家商场可以增加生活用品的进货量,家用电器的近货量可保持不变. 16、解:∵动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,而当点P 运动到点C ,D 之间时,△ABP 的面积不变,图象上横轴表示点P 运动的路程,x=4时,y 开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5, ∴AB=5,BC=4,∴△ABC 的面积是:21×4×5=10. 故答案为:10.17、解:(1)4张白纸粘合后的总长度=4×20-2×3=80-6=74(厘米); (2)由题意得:y=20x-(x-1)×2=18x+2; (3)当x=20时,y=18x+2=362. 18、解:(1)①y=30×8+5(x-8)=5x+200; ②y=(30×8+5x )×90%=4.5x+216;∴两种优惠方案中的y 与x 的关系式为:方案一:y=5x+200, 方案二:y=4.5x+216; (2)当购买60个文具盒时,第二个方案的图象在第一个方案的图象的下方,所以第二个方案最省钱.19、(1)ΘAP 为x ,则BP 为a-x ,∴周长和C=4x+4(a-x )=4a ;∴周长的和不变(2)Θ两个正方形的面积和用“S ”来表示. S=2x +2)(x a -=ax a x x ax a x 22222222-+=+-+∴当P 点运动时,两个正方形的大小会随着改变,所以两个正方形的面积的和也会改变.20、解:(1)由题意可得:y=8+1.8(x-3)=1.8x+2.6; (2)由(1)得:y=1.8×6+2.6=13.4<14, 故乘出租车回家钱够.21、解:(1)甲种收费方式应收费0.1x+6,乙种收费方式应收费0.12x ; 故答案为:0.1x+6;0.12x ;(2)把x=500代入甲种收费方式应收费0.1x+6=56元,把x=500代入乙种收费方式应收费0.12x=60元, 因为56<60,所以选甲种印刷方式合算; (3)根据题意可得:0.1x+6=0.12x , 解得:x=300.答:印刷300份时,两种收费方式一样多.22.解:(1)由图可知, 甲先出发,先出发2-1=1小时;(2)由图可知,乙先到达B 地,先到5-3=2小时;(3)乙摩托车的速度为:50÷(3-2)=50千米/小时,甲骑自行车在全程的平均速度是:50÷(5-1)=12.5千米/小时;(4)设乙出发大约x 小时就追上甲,甲在PQ 段速度为10252050=--千米/小时, ∴20+10x=50x ,x=0.5答:乙出发大约0.5小时就追上甲.23.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻; ∴折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的路程为1500米; 故答案为:兔子、1500;(2)结合图象得出:兔子在起初每分钟跑700米. 1500÷30=50(米)∴乌龟每分钟爬50米. (3)700÷50=14(分钟)∴乌龟用了14分钟追上了正在睡觉的兔子.(4)乌龟跑完用时30分钟,兔子晚0.5分钟,即兔子跑完用时30.5分钟 其中前700米用1分钟,后800米用时2400800=即2分钟,中途休息a 分钟时有1+2+a=30.5 ∴a=27.5(分钟),∴兔子中间停下睡觉用了27.5分钟.24、解:(1)y=(220-x )×x=(10-x )×x=10x-2x ;x 是自变量,0<x <10; (2)当x 从1变到9时(每次增加1),y 的相应值列表如下:(3)从上面的表格中,可以看出的规律:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来,y的值在由大变小的过程中,变小的速度越来快;③当x取距5等距离的两数时,得到的两个y值相等;(4)当长方形的长与宽相等即x为5时,y的值最大,最大值为25c2m;(5)由表格可知,当围成的长方形面积是22c2m时,x的值应在3~4之间或6~7之间.25.解:(1)这个变化过程中,自变量是时间t、因变量NP的长度,故答案为:t,NP;(2)由图2知,当t=0时,NP=8,即PQ未移动前NP长度为8cm,从图2可看出每增加1秒时NP增长2cm,即移动速度为2cm/s,故t秒时NP长度应为2t+8(cm),关系式为NP=2t+8(0≤t≤5),∴故答案为8;关系式为NP=2t+8(0≤t≤5)(3)由图2知,8至14秒间每增加1秒,NP长度减少3cm,从而可得当t=11时NP=9故答案为9.。

2020-2021学年新教材数学北师大版(2019)必修第一册练测评:4.2.2换底公式含解析

2020-2021学年新教材数学北师大版(2019)必修第一册练测评:4.2.2换底公式含解析

必备知识基础练进阶训练第一层知识点一 利用换底公式求值1.若a b c abc A .1 B .2 C .3 D .5 2.若log 34·log 48·log 8m =log 416,则m =________.3.设3x =4y=36,求2x +1y 的值.知识点二 利用换底公式计算 4.(log 134)·(log 227)等于( )A .23B .32C .6D .-6 5.计算: (1)log 927;(2)log 21125×log 3132×log 513; (3)(log 43+log 83)(log 32+log 92)知识点三 利用换底公式证明6.证明:log an b m =mn log a b(a>0,且a ≠1;m ≠0).7.已知2x =3y =6z≠1,求证:1x +1y =1z .关键能力综合练 进阶训练第1.log 29log 23=( )A .12 B .2 C .32 D .922.已知log 23=a ,log 37=b ,则log 27=( ) A .a +b B .a -bC .abD .ab3.设2a =5b=m ,且1a +1b =2,则m =( ) A .10 B .10 C .20 D .1004.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C .1lg 3D .-1lg 3 5.计算:1+lg 2·lg 5-lg 2·lg 50-log 35·log 259·lg 5=( ) A .1 B .0 C .2 D .46.(探究题)若实数a ,b ,c 满足25a =404b =2 020c =2 019,则下列式子正确的是( )A .1a +2b =2cB .2a +2b =1cC .1a +1b =2cD .2a +1b =2c 7.若log a b·log 3a =4,则b 的值为________.8.已知log 32=m ,则log 3218=________.(用m 表示) 9.(易错题)计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).10.计算:(1)(log 43+log 83)×lg 2lg 3;(2)log 52×log 79log 513×log 734+log 4(3+5-3-5)2.学科素养升级练进阶训练第三层 1a 等的是( )A .1log ba B .lg a lg bC .log b aD .log an b n2.已知x ,y ,z 都是大于1的实数,m>0且log x m =24,log y m =40,log xyz m =12,则log z m 的值为________.3.(学科素养—逻辑推理)已知a ,b ,c 是不等于1的正数,且a x=b y =c z,1x +1y +1z =0,求abc 的值.2.2 换底公式 必备知识基础练1.解析:∵log a x =1log xa =2,∴log x a =12.同理log x c =16,log x b =13.∴log abc x =1log x abc =1log x a +log x b +log x c =1.答案:A2.解析:由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg mlg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.答案:93.解析:∵3x =36,4y =36,∴x =log 336,y =log 436,由换底公式,得x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364=log 36(32×4) =log 3636=1.4.解析:(log 134)·(log 227)=(log 1322)·⎝ ⎛⎭⎪⎫log 2⎝ ⎛⎭⎪⎫13-3=(2log 132)·⎝⎛⎭⎪⎫-3log 213=-6·lg 2lg 13·lg 13lg 2=-6.答案:D5.解析:(1)log 927=log 327log 39=log 333log 332=3log 332log 33=32.(2)log 21125×log 3132×log 513 =log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15.(3)原式=⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9=⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.6.解析:证明:log an b m=lg b m lg a n =m lg b n lg a =m n log a b . 7.解析:证明:设2x =3y =6z =k (k ≠1), ∴x =log 2k ,y =log 3k ,z =log 6k , ∴1x =log k 2,1y =log k 3,1z =log k 6=log k 2+log k 3, ∴1z =1x +1y . 关键能力综合练1.解析:由换底公式得log 39=log 29log 23,又∵log 39=2,∴log 29log 23=2.答案:B2.解析:log 27=log 23×log 37=ab . 答案:C3.解析:∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又m >0,∴m =10,选A. 答案:A4.解析:原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C.答案:C5.解析:原式=1+lg 2·lg 5-lg 2(1+lg 5)-lg 5lg 3·2lg 32lg 5·lg 5=1+lg 2·lg 5-lg 2-lg 2·lg 5-lg 5=1-(lg 2+lg 5)=1-lg 10=1-1=0. 答案:B6.解析:由已知,得52a =404b =2 020c =2 019,得2a =log 5 2 019,b =log 4042 019,c =log 2 0202 019,所以12a =log 2 0195,1b =log 2 019404,1c =log 2 0192 020,而5×404=2 020,所以12a +1b =1c ,即1a +2b =2c ,故选A.答案:A7.解析:log a b ·log 3a =lg b lg a ·lg a lg 3=lg b lg 3=4,所以lg b =4lg 3=lg 34,所以b =34=81. 答案:818.解析:log 23=1log 32=1m ,log 3218=lg 18lg 32=lg 2+2lg 35lg 2=15+25log 23=15+25m =m +25m .答案:m +25m9.解析:解法一:原式=⎝ ⎛⎭⎪⎫log 253+log 225log 24+log 25log 28⎝ ⎛⎭⎪⎫log 52+log 54log 525+log 58log 5125=⎝ ⎛⎭⎪⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎪⎫log 52+2log 522log 55+3log 523log 55=⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 解法二:原式=⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8⎝ ⎛⎭⎪⎫lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝ ⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝ ⎛⎭⎪⎫13lg 53lg 2·⎝ ⎛⎭⎪⎫3lg 2lg 5=13. 解法三:原式=(log 2 53+log 2252+log 2351)(log 52+log 52 22+log 53 23)=⎝⎛⎭⎪⎫3log 2 5+log 25+13log 2 5(log 5 2+log 5 2+log 5 2)=⎝ ⎛⎭⎪⎫3+1+13log 2 5·3log 5 2=3×133=13.10.解析:(1)原式=⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8×lg 2lg 3=lg 32lg 2×lg 2lg 3+lg 33lg 2×lg 2lg 3 =12+13=56.(2)原式=log 52log 513×log 79log 734+log 4(3+5-3-5)2=log 132×log 349+log 4(3+5+3-5-232-5) =lg 2lg 13×lg 9lg 413+log 4(6-2×2) =12lg 2-lg 3×2lg 323lg 2+log 42 =-32+12log 22=-32+12=-1. 学科素养升级练1.解析:1log b a =log a b ,lg alg b =log b a ,log ba =logb a ,log an b n =log a b ,故选A 、D. 答案:AD2.解析:∵log x m =24,log y m =40,log xyz m =12,∴log m x =124,log m y =140,log m xyz =112,∴124+140+log m z =112,解得log m z =160,故log z m =60.答案:603.解析:解法一:设a x =b y =c z =t ,则x =log a t ,y =log b t ,z =log c t , ∴1x +1y +1z =1log a t +1log b t +1log ct =log t a +log t b +log t c =log t (abc )=0,∴abc =t 0=1,即abc =1. 解法二:设a x =b y =c z =t , ∵a ,b ,c 是不等于1的正数,∴t >0且t ≠1,∴x =lg t lg a ,y =lg t lg b ,z =lg tlg c , ∴1x +1y +1z =lg a lg t +lg b lg t +lg c lg t =lg a +lg b +lg c lg t , ∵1x +1y +1z =0,且lg t ≠0,∴lg a +lg b +lg c =lg (abc )=0,∴abc =1.。

初一新生入学数学摸底分班考试历年考试_1

初一新生入学数学摸底分班考试历年考试_1

初一新生入学分班数学试题(一)一、 耐心填一填(每小题2分,共20分)1. 1.75小时=()分 1吨80千克=()吨2.三个质数地最小公倍数是70,这三个数是()、()和().3.一个三角形三个内角地度数是1︰2︰1,这个三角形按角分类是()三角形,按边分是()三角形.4.天平一端放着2块薄荷糖,另一端放着12块薄荷糖和30克地砝码,这时天平正好平衡,则1块水果糖重()克.b5E2R 。

5.丰田公司推出了一种商务车,经试验,该车型行114用汽油18L ,这辆汽车平均每行一百千米耗油( )L.p1Ean 。

6.在67、、83%和中,最大地数是( ),最小地数是( ). 7.阿瓜是个自理能力很强地孝顺地好孩子,他每天下午放学都要帮父母煮饭.具体操作时间如下:淘米(3分钟),煮饭(25分钟),洗菜(7分钟),切菜(4分钟),炒菜(10分钟).如果煮饭和炒菜用不同锅和炉子,阿瓜要把饭、菜都烧好,至少需要( )分钟.DXDiT 。

8.有5分、1角、5角、1元地硬币各一枚,一共可以组成( )种不同地币值.9.一种专为商务人士设计地高档皮鞋价格为1650元,打八折售出仍可盈利10%.那么若以1650元售出,可盈利( )元.RTCrp 。

10.一个酒精瓶,它地瓶身呈圆柱形(不包括瓶颈),如图所示.它地容积为26.4π立方厘米.当瓶子正放时,瓶内地酒精地液面高为6厘米,瓶子倒放时,空余部分地高为2厘米,则瓶内酒精体积是( )立方厘米.5PCzV 。

二、 精挑细选,择优录取(每小题2分,共20分.)1.一种代号为Hc 地细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).若这种细菌由1个分裂成16个,这个过程要经过().jLBHr 。

A .1小时 B.2小时 C.3小时 D.4小时xHAQX 。

2.两个扇形,它们地圆心角地度数相等,那么( ).A.半径长地扇形面积大B.两个扇形面积相等C.半径短地扇形面积3.如图所示,右面地水杯从正上方往下看到地图是是()(第三题图)4.一只食用油油桶装地花生油占全桶装油量地35,卖出18千克后,还剩原有花生油30厘米25厘米 20厘米 地60%,这只油桶能装多少千克油?正确..列式为( ). A 、18×(1-60%)×35B 、18×(1-60%)÷35C 、18÷(1-60%)÷35D 、18÷(1-60%)×355.一座桥长1200米,一列火车以20M/秒地速度通过这座桥,火车车身长300M ,则火车从上桥到离开桥需要( )秒.A 、50 B 、65 C 、75 D 、85LDAYt 。

北京市师范大学附属实验中学2019_2020学年高一数学上学期期中试题(含解析)

北京市师范大学附属实验中学2019_2020学年高一数学上学期期中试题(含解析)

A. 充分必要条件
B. 必要而不充分条件
C. 充分而不必要条件
D. 既不充分也不必要条件
7. 已知函数,在下列区间中,包含 f(x)的零点的区间是()
A.
B.
C.
D.
8. 地震里氏震级是地震强度大小的一种度量.地震释放的能量 E(单位:焦耳)与地
震里氏震级 M 之间的关系为 lgE=4.8+1.5M.已知两次地震的里氏震级分别为 8.0
(1)函数 g(x)=x2-2 的“不动点”为______;
(2)集合 A 与集合 B 的关系是______.
17. 若 x、y∈R+,且,则的最大值为______.
18. 已知函数 f(x)是定义在 R 上的奇函数,当 x>0 时,f(x)=x2-2ax+a,其中 a∈R
①f(-)=______
②若 f(x)的值域是 R,则 a 的取值范围是______
【解析】解:∵函数, ∴f(-)=0, ∴=f(0)=1. 故选:B. 推导出 f(-)=0,从而=f(0),由此能求出结果. 本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题. 5.【答案】A
【解析】【分析】 本题主要考查对数、指数的大小比较,这里尽量借助于整数 1 作为中间量来比较.本题 属中档题. 本题先将 a、b、c 的大小与 1 作个比较,发现 b>1,a、c 都小于 1.再对 a、c 的表达 式进行变形,判断 a、c 之间的大小。 ​ 【解答】 解:由题意,可知: a=log52<1, b=log0.50.2===log25>log24=2.
4
精品文档,欢迎下载!
c=0.50.2<1, ∴b 最大,a、c 都小于 1. ∵a=log52=,c=0.50.2===. 而 log25>log24=2>, ∴<. ∴a<c, ∴a<c<b. 故选 A.

2019-2020学年度北师大实验中学新初一入学分班考试数学试题-真题-含详细解析

2019-2020学年度北师大实验中学新初一入学分班考试数学试题-真题-含详细解析

2019-2020学年度北师大实验中学新初一入学分班考试数学试题-真题一、选择题(本大题共5小题,共20分)1.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011−2016年我国与东南亚地区和东欧地区的贸易额统计图。

(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)。

根据统计图提供的信息,下列推理不合理的是()A. 与2015年相比,2016年我国与东欧地区的贸易额有所增长B. 2011−2016年,我国与东南亚地区的贸易额逐年增长C. 2011−2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D. 2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多2.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A. 27本,7人B. 24本,6人C. 21本,5人D. 18本,4人3.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类5025B类20020C类40015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元.若一年内在该游泳馆游泳的次数介于45∼55次之间,则最省钱的方式为()A. 购买A类会员年卡B. 购买B类会员年卡C. 购买C类会员年卡D. 不购买会员年卡4.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时5.美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A. B.C. D.二、填空题(本大题共14小题,共56分)6.若下图是某几何体的表面展开图,则这个几何体是______.7.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时30≤t≤3535<t≤4040<t≤4545<t≤50合计公交车用时的频数线路A59151166124500B5050122278500C4526516723500早高峰期间,乘坐______(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.8.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了______场.9.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为______元.10.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为______.11.观察下列式子第1个式子:2×4+1=9=32第2个式子:6×8+1=49=72第3个式子:14×16+1=225=152……请写出第n个式子:______.12.下图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→⋯的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是_________(用含n的代数式表示).13.北京市2009−2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.14.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC−(S△ANF+S△FGC),S=S△ABC−(____+____).矩形EBMF易知,S△ADC=S△ABC,____=____,____=____.可得S矩形NFGD=S矩形EBMF.15.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第___________.16.如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.17.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为______元.18.在下表中,我们把第i行第j列的数记为a i,j(其中i,j都是不大于5的正整数),对于表中的每个数a i,j规定如下:当i≥j时,a i,j=1;当i<j时,a i,j=0.例如:当i=2,j=1时,a i,j=a2,1=1.按此规定,a 1,3=______;表中的25个数中,共有_____个1;计算a 1,1·a i ,1+a 1,2·a i ,2+a 1,3·a i, 3+a 1,4 ·a i,4+ a1,5·a i,5的值为_______.a1,1a1,2a1,3a1,4a1,5a2,1a2,2a2,3a2,4a2,5a3,1a3,2a3,3a3,4a3,5a4,1a4,2a4,3a4,4a4,5a5,1a5,2a5,3a5,4a5,519.百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为______.三、解答题(本大题共6小题,共24分)20.某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.5频数042410使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.4频数2684(1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)21.2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.22.京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?23.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.24.小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.25.小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.答案和解析1.【答案】B【解析】【分析】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】解:A、由折线统计图可得:与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;B、由折线统计图可得:2011−2014年,我国与东南亚地区的贸易额逐年增长,故此选项错误,符合题意;C、2011−2016年,我国与东南亚地区的贸易额的平均值为:(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,故超过4200亿美元,正确,不合题意,D、∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,正确,不合题意;故选:B.2.【答案】C【解析】解:设有x名同学,则就有(3x+6)本书,由题意,得:0≤3x+6−5(x−1)<3,解得:4<x≤5.5,∵x为非负整数,∴x=5.∴书的数量为:3×5+6=21.故选:C.设有x名同学,则就有(3x+6)本书,根据每名同学分5本,那么最后一人就分不到3本的不等关系建立不等式组求出其解即可.本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.3.【答案】C【解析】【分析】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,属中档题.设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得到y1=30x,y A=50+25x,y B= 200+20x,y C=400+15x,当x=45和x=55时,确定x的值,再根据函数的增减性即可解答.【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:当不购买会员年卡时,y1=30x,当购买A类会员年卡时,y A=50+25x,当购买B类会员年卡时,y B=200+20x,当购买C类会员年卡时,y C=400+15x,当x=45时,y1=1350,y A=1175,y B=1100,y C=1075,此时y C最小,当x=55时,y1=1650,y A=1425,y B=1300,y C=1225,此时y C最小,∵y1,y A,y B,y C均随x的增大而增大,∴购买C类会员年卡最省钱.故选C.4.【答案】B【解析】解:根据题意得:(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.5.【答案】B【解析】本题考查了正方体的展开图及由展开图围成正方体,主要考查学生的空间想象能力.由题意可得如图所示的展开图,根据正方体展开图“对面中间隔一行或列”的特点知,C 与F 为对面,A 与D 为对面,B 与E 为对面.由题意知F 为正方体的底面,所以C 为正方体的上面,D 为正方体的左面、A 为正方体的右面、E 为正方体的后面、B 为正方体的前面.这样该展开图经过D 与F 之间的折线折叠后,D 成为左面,且B 面的口向上;再经过C 与D 之间的线折叠后,C 面成为上面,且B 面的口向右;再经过A 与C 之间的线对折后,A 面成为右面,且B 面的口向下;再将E 与B 分别折成前面与后面,这时B 面在前,且口向下,即为B .6.【答案】圆柱【解析】本题考查了由几何体的表面展开图确定几何体.解题关键是熟悉简单几何体表面展开图.观察此几何体的表面展开图,可知此几何体为圆柱.7.【答案】C【解析】 【分析】本题主要考查可能性的大小,解题的关键是掌握频率估计概率思想的运用. 分别计算出A ,B ,C 三个线路的公交车用时不超过45分钟的可能性大小即可得. 【解答】解:∵A 线路公交车用时不超过45分钟的可能性为59+151+166500=0.752,B 线路公交车用时不超过45分钟的可能性为50+50+122500=0.444, C 线路公交车用时不超过45分钟的可能性为45+265+167500=0.954,∴C 线路上公交车用时不超过45分钟的可能性最大, 故答案为:C .8.【答案】9【解析】解:设该队胜了x 场,负了y 场,依题意有 {x +y =142x +y =23, 解得{x =9y =5.故该队胜了9场.故答案为:9.设该队胜了x场,负了y场,根据:①某队14场比赛;②得到23分;列方程组即可求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.9.【答案】70【解析】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.10.【答案】6【解析】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:{a>bb>4 a<8,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b的取值范围,再取其中最大的整数值即可得出结论.本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.11.【答案】(2n+1−2)×2n+1+1=(2n+1−1)2【解析】解:∵第1个式子:2×4+1=9=32,即(22−2)×22+1=(22−1)2,第2个式子:6×8+1=49=72,即(23−2)×23+1=(23−1)2,第3个式子:14×16+1=225=152,即(24−2)×24+1=(24−1)2,……∴第n个等式为:(2n+1−2)×2n+1+1=(2n+1−1)2.故答案为:(2n+1−2)×2n+1+1=(2n+1−1)2.由题意可知:①等号左边是两个连续偶数的积(其中第二个因数比第一个因数大2)与1的和;右边是比左边第一个因数大1的数的平方;②第1个式子的第一个因数是22−2,第2个式子的第一个因数是23−2,第3个式子的第一个因数是24−2,以此类推,得出第n个式子的第一个因数是2n+1−2,从而能写出第n个式子.此题主要考查了规律型:数字的变化类,根据已知得出等式左边第一个因数的规律是解题关键.12.【答案】B603 6n+3【解析】本题为规律探索型题,考查了学生的分析综合能力.观察图形,可得出规律:13.【答案】980;因为2012∼2013年发生数据突变,故参照2013∼2014年的增长量进行估算【解析】【分析】本题考查折线统计图,考查用样本估计总体,关键是根据统计图分析其上升规律.根据统计图进行用样本估计总体来预估即可.【解答】解:折线图反映了日均客运量的具体数据和增长趋势,每年都在增加,幅度在50∼210之间.答案不唯一,只要有支撑预估的数据即可.例如:980;因为2012∼2013年发生数据突变,故参照2013∼2014年的增长量进行估算.14.【答案】S△AEF;S△FCM;S△ANF;S△AEF;S△FGC;S△FMC【解析】【分析】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【解答】证明:S矩形NFGD=S△ADC−(S△ANF+S△FGC),=S△ABC−(S△ANF+S△FCM).S矩形EBMF易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分别为S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.15.【答案】3【解析】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3两个排名表相互结合即可得到答案.本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.16.【答案】丙、丁、甲、乙【解析】解:根据题意,丙第一个购票,只能购买3,1,2,4号票,此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排,①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买,即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12)或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8)、甲(10,12);②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票,此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11)或丙(3,1,2,4)、乙(5,7)、丁(6,8,10,12,14)、甲(9,11),因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,故答案为:丙、丁、甲、乙.先判断出丙购买票之后,剩余3号左边有6个座位,4号右边有5个座位,进而得出甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排,即可得出结论.此题主要考查了推理与论证,判断出甲、乙购买的票在丙的同侧是解本题的关键.17.【答案】380【解析】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用150×2+90=390元当租1艘四人船,1艘六人船,1艘八人船,100+130+150=380元∵810>490>390>380,∴当租1艘四人船,1艘六人船,1艘八人船费用最低是380元,故答案为:380.分四类情况,分别计算即可得出结论.此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.18.【答案】0 15 1【解析】本题属阅读理解题,难度较大.当i≥j时,a i,j=1,当i<j时,a i,j=0,所以a1,1=1,而i≥1,所以a i, 1=1;a1=0,所以a1,2·a i, 2=0;...,所以a1,1·a i, 1+a 1 , 2·a i, 2+a 1 , 3·a i, 3+a 1 , 4·a i, 4+a 1 , 5·a i, 5=,21+0+0+0+0=1.19.【答案】505=5050,【解析】解:1~100的总和为:(1+100)×1002一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.本题考查了数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.×(0×0.05+4×0.15+2×0.25+4×0.35+ 20.【答案】解:(1)未使用节水龙头20天的日平均用水量为:12010×0.45)=0.35(m3),×(2×0.05+6×0.15+8×0.25+4×0.35)=0.22(m3);使用了节水龙头20天的日平均用水量为:120(2)365×(0.35−0.22)=365×0.13=47.45(m3),答:估计该家庭使用节水龙头后,一年能节省47.45m3水.【解析】(1)取组中值,运用加权平均数分别计算出未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量即可;(2)先计算平均一天节水量,再乘以365即可得到结果.此题主要考查节水量的估计值的求法,考查加权平均数等基础知识,考查运算求解能力,是基础题.21.【答案】解法一:设生产运营用水x亿立方米,则居民家庭用水(5.8−x)亿立方米.依题意,得5.8−x=3x+0.6.解得x=1.3.5.8−x=5.8−1.3=4.5.答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.解法二:设生产运营用水x亿立方米,居民家庭用水y亿立方米.依题意,得解这个方程组,得答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.【解析】略22.【答案】解:设小王用自驾车方式上班平均每小时行驶x千米.依题意,得.解得x=27.经检验,x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.【解析】本题考查了运用一元一次方程或二元一次方程组解决实际问题,找出题中的等量关系是解决问题的关键.23.【答案】解:设一片国槐树叶一年的平均滞尘量为x毫克.由题意,得解得x=22.经检验,x=22是原方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量是22毫克.【解析】本题考查分式方程在实际生活中的应用,难度中等.考生在解出分式方程时应注意检验.24.【答案】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+ 0.54)元,由题意得108 x+0.54=27x,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.【解析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.25.【答案】解:(1)(2)依题意可知{4≤x1+x3+x4≤144≤x2+x4≤144≤x4≤14,若x1=4,x2=3,x3=4,∴4≤x4≤6,又x4是整数,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+2③+④得,3(x1+x2+x3+x4)≤70,∴x1+x2+x3+x4≤231,3∴7天后,小云背诵的诗词最多为23首,此时x1=5,x2=9,x3=5,x4=4满足题意,故答案为:23.【解析】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.。

2019北师版初一新生入学数学试卷.doc

2019北师版初一新生入学数学试卷.doc

北师版初一新生入学数学试卷亲爱的同学, 北师大附属泉州中学欢迎你的到来! 你一定掌握了许多知识和本领,这儿将为你提供了一个展示自我的舞台,并成为你成才的摇篮!相信你一定能发挥出自己最好的水平!第一部分:加深理解,打好基础一.认真思考,对号入座:(20%)1.把( )改写成以“万”作单位的数是9567.8万,省略“亿”后面的尾数约是( )。

2.把5米长的钢筋,锯成每段一样长的小段,共锯6次,每段占全长的( )( ) ,每段长( )米。

如果锯成两段需2分钟,锯成6段共需( )分钟。

3.观察与思考: (1)算式中的 □和△各代表一个数。

已知:(△+□)×0.3=4.2, □÷0.4=12。

那么,△ =( ), □ =( )。

(2)前面面积( ) = 上面面积( ) 4.右图是甲、乙、丙三个人单独完成某项工程所需天数 统计图。

请看图填空。

① 甲、乙合作这项工程,( )天可以完成。

② 先由甲做3天,剩下的工程由丙做,还需要( )天完成。

5.a =2×3×m ,b =3×5×m (m 是自然数且m ≠0),如果a 和b 的最大公约数是21, 则m 是( ),a 和b 的最小公倍数是 ( ) 。

6.把一条绳子分别等分折成5股和6股,如果折成5股比折成6股长20厘米,那么这根绳子的长度是( )米。

7.甲乙丙三个数的平均数是70,甲:乙=2:3,乙:丙=4:5,乙数( )。

8.一个数的小数点,先向右移动一位,再向左移动三位,所得到的新数比原数少34.65,原数是( )。

9.以“万”为单位,准确数5万与近似数5万比较最多相差( )。

10.小明新买一瓶净量45立方厘米的牙膏,牙膏的圆形出口的直径是6毫米。

他早晚各刷一次牙,每次挤出的牙膏长约20毫米。

这瓶牙膏a 姓名: 毕业学校: 联系电话: 成绩:密 封 线 内 不 得 答 题估计能用( )天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年度北师大实验中学新初一入学分班考试数学试题-真题一、选择题(本大题共5小题,共20分)1.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011−2016年我国与东南亚地区和东欧地区的贸易额统计图。

(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)。

根据统计图提供的信息,下列推理不合理的是()A. 与2015年相比,2016年我国与东欧地区的贸易额有所增长B. 2011−2016年,我国与东南亚地区的贸易额逐年增长C. 2011−2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D. 2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多2.把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A. 27本,7人B. 24本,6人C. 21本,5人D. 18本,4人3.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类5025B类20020C类40015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元.若一年内在该游泳馆游泳的次数介于45∼55次之间,则最省钱的方式为()A. 购买A类会员年卡B. 购买B类会员年卡C. 购买C类会员年卡D. 不购买会员年卡4.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时5.美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A. B.C. D.二、填空题(本大题共14小题,共56分)6.若下图是某几何体的表面展开图,则这个几何体是______.7.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时30≤t≤3535<t≤4040<t≤4545<t≤50合计公交车用时的频数线路A59151166124500B5050122278500C4526516723500早高峰期间,乘坐______(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.8.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了______场.9.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为______元.10.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为______.11.观察下列式子第1个式子:2×4+1=9=32第2个式子:6×8+1=49=72第3个式子:14×16+1=225=152……请写出第n个式子:______.12.下图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→⋯的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是_________(用含n的代数式表示).13.北京市2009−2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.14.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC−(S△ANF+S△FGC),S=S△ABC−(____+____).矩形EBMF易知,S△ADC=S△ABC,____=____,____=____.可得S矩形NFGD=S矩形EBMF.15.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第___________.16.如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.17.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为______元.18.在下表中,我们把第i行第j列的数记为a i,j(其中i,j都是不大于5的正整数),对于表中的每个数a i,j规定如下:当i≥j时,a i,j=1;当i<j时,a i,j=0.例如:当i=2,j=1时,a i,j=a2,1=1.按此规定,a 1,3=______;表中的25个数中,共有_____个1;计算a 1,1·a i ,1+a 1,2·a i ,2+a 1,3·a i, 3+a 1,4 ·a i,4+ a1,5·a i,5的值为_______.a1,1a1,2a1,3a1,4a1,5a2,1a2,2a2,3a2,4a2,5a3,1a3,2a3,3a3,4a3,5a4,1a4,2a4,3a4,4a4,5a5,1a5,2a5,3a5,4a5,519.百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为______.三、解答题(本大题共6小题,共24分)20.某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.5频数042410使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.4频数2684(1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)21.2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.22.京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?23.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.24.小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.25.小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.答案和解析1.【答案】B【解析】【分析】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】解:A、由折线统计图可得:与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;B、由折线统计图可得:2011−2014年,我国与东南亚地区的贸易额逐年增长,故此选项错误,符合题意;C、2011−2016年,我国与东南亚地区的贸易额的平均值为:(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,故超过4200亿美元,正确,不合题意,D、∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,正确,不合题意;故选:B.2.【答案】C【解析】解:设有x名同学,则就有(3x+6)本书,由题意,得:0≤3x+6−5(x−1)<3,解得:4<x≤5.5,∵x为非负整数,∴x=5.∴书的数量为:3×5+6=21.故选:C.设有x名同学,则就有(3x+6)本书,根据每名同学分5本,那么最后一人就分不到3本的不等关系建立不等式组求出其解即可.本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.3.【答案】C【解析】【分析】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,属中档题.设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得到y1=30x,y A=50+25x,y B= 200+20x,y C=400+15x,当x=45和x=55时,确定x的值,再根据函数的增减性即可解答.【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:当不购买会员年卡时,y1=30x,当购买A类会员年卡时,y A=50+25x,当购买B类会员年卡时,y B=200+20x,当购买C类会员年卡时,y C=400+15x,当x=45时,y1=1350,y A=1175,y B=1100,y C=1075,此时y C最小,当x=55时,y1=1650,y A=1425,y B=1300,y C=1225,此时y C最小,∵y1,y A,y B,y C均随x的增大而增大,∴购买C类会员年卡最省钱.故选C.4.【答案】B【解析】解:根据题意得:(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.5.【答案】B【解析】本题考查了正方体的展开图及由展开图围成正方体,主要考查学生的空间想象能力.由题意可得如图所示的展开图,根据正方体展开图“对面中间隔一行或列”的特点知,C 与F 为对面,A 与D 为对面,B 与E 为对面.由题意知F 为正方体的底面,所以C 为正方体的上面,D 为正方体的左面、A 为正方体的右面、E 为正方体的后面、B 为正方体的前面.这样该展开图经过D 与F 之间的折线折叠后,D 成为左面,且B 面的口向上;再经过C 与D 之间的线折叠后,C 面成为上面,且B 面的口向右;再经过A 与C 之间的线对折后,A 面成为右面,且B 面的口向下;再将E 与B 分别折成前面与后面,这时B 面在前,且口向下,即为B .6.【答案】圆柱【解析】本题考查了由几何体的表面展开图确定几何体.解题关键是熟悉简单几何体表面展开图.观察此几何体的表面展开图,可知此几何体为圆柱.7.【答案】C【解析】 【分析】本题主要考查可能性的大小,解题的关键是掌握频率估计概率思想的运用. 分别计算出A ,B ,C 三个线路的公交车用时不超过45分钟的可能性大小即可得. 【解答】解:∵A 线路公交车用时不超过45分钟的可能性为59+151+166500=0.752,B 线路公交车用时不超过45分钟的可能性为50+50+122500=0.444, C 线路公交车用时不超过45分钟的可能性为45+265+167500=0.954,∴C 线路上公交车用时不超过45分钟的可能性最大, 故答案为:C .8.【答案】9【解析】解:设该队胜了x 场,负了y 场,依题意有 {x +y =142x +y =23, 解得{x =9y =5.故该队胜了9场.故答案为:9.设该队胜了x场,负了y场,根据:①某队14场比赛;②得到23分;列方程组即可求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.9.【答案】70【解析】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.10.【答案】6【解析】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:{a>bb>4 a<8,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b的取值范围,再取其中最大的整数值即可得出结论.本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.11.【答案】(2n+1−2)×2n+1+1=(2n+1−1)2【解析】解:∵第1个式子:2×4+1=9=32,即(22−2)×22+1=(22−1)2,第2个式子:6×8+1=49=72,即(23−2)×23+1=(23−1)2,第3个式子:14×16+1=225=152,即(24−2)×24+1=(24−1)2,……∴第n个等式为:(2n+1−2)×2n+1+1=(2n+1−1)2.故答案为:(2n+1−2)×2n+1+1=(2n+1−1)2.由题意可知:①等号左边是两个连续偶数的积(其中第二个因数比第一个因数大2)与1的和;右边是比左边第一个因数大1的数的平方;②第1个式子的第一个因数是22−2,第2个式子的第一个因数是23−2,第3个式子的第一个因数是24−2,以此类推,得出第n个式子的第一个因数是2n+1−2,从而能写出第n个式子.此题主要考查了规律型:数字的变化类,根据已知得出等式左边第一个因数的规律是解题关键.12.【答案】B603 6n+3【解析】本题为规律探索型题,考查了学生的分析综合能力.观察图形,可得出规律:13.【答案】980;因为2012∼2013年发生数据突变,故参照2013∼2014年的增长量进行估算【解析】【分析】本题考查折线统计图,考查用样本估计总体,关键是根据统计图分析其上升规律.根据统计图进行用样本估计总体来预估即可.【解答】解:折线图反映了日均客运量的具体数据和增长趋势,每年都在增加,幅度在50∼210之间.答案不唯一,只要有支撑预估的数据即可.例如:980;因为2012∼2013年发生数据突变,故参照2013∼2014年的增长量进行估算.14.【答案】S△AEF;S△FCM;S△ANF;S△AEF;S△FGC;S△FMC【解析】【分析】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【解答】证明:S矩形NFGD=S△ADC−(S△ANF+S△FGC),=S△ABC−(S△ANF+S△FCM).S矩形EBMF易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分别为S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.15.【答案】3【解析】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3两个排名表相互结合即可得到答案.本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.16.【答案】丙、丁、甲、乙【解析】解:根据题意,丙第一个购票,只能购买3,1,2,4号票,此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排,①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买,即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12)或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8)、甲(10,12);②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票,此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11)或丙(3,1,2,4)、乙(5,7)、丁(6,8,10,12,14)、甲(9,11),因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,故答案为:丙、丁、甲、乙.先判断出丙购买票之后,剩余3号左边有6个座位,4号右边有5个座位,进而得出甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排,即可得出结论.此题主要考查了推理与论证,判断出甲、乙购买的票在丙的同侧是解本题的关键.17.【答案】380【解析】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用150×2+90=390元当租1艘四人船,1艘六人船,1艘八人船,100+130+150=380元∵810>490>390>380,∴当租1艘四人船,1艘六人船,1艘八人船费用最低是380元,故答案为:380.分四类情况,分别计算即可得出结论.此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.18.【答案】0 15 1【解析】本题属阅读理解题,难度较大.当i≥j时,a i,j=1,当i<j时,a i,j=0,所以a1,1=1,而i≥1,所以a i, 1=1;a1=0,所以a1,2·a i, 2=0;...,所以a1,1·a i, 1+a 1 , 2·a i, 2+a 1 , 3·a i, 3+a 1 , 4·a i, 4+a 1 , 5·a i, 5=,21+0+0+0+0=1.19.【答案】505=5050,【解析】解:1~100的总和为:(1+100)×1002一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.本题考查了数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.×(0×0.05+4×0.15+2×0.25+4×0.35+ 20.【答案】解:(1)未使用节水龙头20天的日平均用水量为:12010×0.45)=0.35(m3),×(2×0.05+6×0.15+8×0.25+4×0.35)=0.22(m3);使用了节水龙头20天的日平均用水量为:120(2)365×(0.35−0.22)=365×0.13=47.45(m3),答:估计该家庭使用节水龙头后,一年能节省47.45m3水.【解析】(1)取组中值,运用加权平均数分别计算出未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量即可;(2)先计算平均一天节水量,再乘以365即可得到结果.此题主要考查节水量的估计值的求法,考查加权平均数等基础知识,考查运算求解能力,是基础题.21.【答案】解法一:设生产运营用水x亿立方米,则居民家庭用水(5.8−x)亿立方米.依题意,得5.8−x=3x+0.6.解得x=1.3.5.8−x=5.8−1.3=4.5.答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.解法二:设生产运营用水x亿立方米,居民家庭用水y亿立方米.依题意,得解这个方程组,得答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.【解析】略22.【答案】解:设小王用自驾车方式上班平均每小时行驶x千米.依题意,得.解得x=27.经检验,x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.【解析】本题考查了运用一元一次方程或二元一次方程组解决实际问题,找出题中的等量关系是解决问题的关键.23.【答案】解:设一片国槐树叶一年的平均滞尘量为x毫克.由题意,得解得x=22.经检验,x=22是原方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量是22毫克.【解析】本题考查分式方程在实际生活中的应用,难度中等.考生在解出分式方程时应注意检验.24.【答案】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+ 0.54)元,由题意得108 x+0.54=27x,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.【解析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.25.【答案】解:(1)(2)依题意可知{4≤x1+x3+x4≤144≤x2+x4≤144≤x4≤14,若x1=4,x2=3,x3=4,∴4≤x4≤6,又x4是整数,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+2③+④得,3(x1+x2+x3+x4)≤70,∴x1+x2+x3+x4≤231,3∴7天后,小云背诵的诗词最多为23首,此时x1=5,x2=9,x3=5,x4=4满足题意,故答案为:23.【解析】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.。

相关文档
最新文档