2016-2017学年八年级下册数学期末考试试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年八年级下册数学期末考试试卷〔解析版〕
一、选择题
1.以下式子没有意义的是〔〕
A. B. C. D.
2.以下计算中,正确的选项是〔〕
A. ÷ =
B. 〔4 〕2=8
C. =2
D. 2 ×2 =2
3.刻画一组数据波动大小的统计量是〔〕
A. 平均数
B. 方差
C. 众数
D. 中位数
4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是〔〕
A. 方差
B. 平均数
C. 中位数
D. 众数
5.关于正比例函数y=﹣2x,以下结论中正确的选项是〔〕
A. 函数图象经过点〔﹣2,1〕
B. y随x的增大而减小
C. 函数图象经过第一、三象限
D. 不管x取何值,总有y<0
6.以以下各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是〔〕
A. 2,3,4
B. ,,
C. 1,,2
D. 7,8,9
7.假设一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为〔〕cm.
A. 10
B. 11
C. 12
D. 13
8.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是〔〕
A. 24
B. 26
C. 30
D. 48
9.在以下命题中,是假命题的是〔〕
A. 有一个角是直角的平行四边形是矩形
B. 一组邻边相等的矩形是正方形
C. 一组对边平行且相等的四边形是平行四边形
D. 有两组邻边相等的四边形是菱形
10.已知平面上四点A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为〔〕
A. B. ﹣1 C. 2 D.
二、填空题
11.已知a= +2,b= ﹣2,则ab=________.
12.一次函数y=kx+b〔k≠0〕中,x与y的部分对应值如下表:
x ﹣2 ﹣1 0 1 2
y ﹣6 ﹣4 ﹣2 0 2
那么,一元一次方程kx+b=0的解是x=________.
13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.
14.一组数据:2017、2017、2017、2017、2017,它的方差是________.
15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.
16.如下图,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于以下结论:①∠GFI=90°;②GH=GI;③GI= 〔BC﹣DE〕;④四边形FGHI 是正方形.其中正确的选项是________〔请写出所有正确结论的序号〕.
三、解答题
17.计算:〔+ ﹣〕× .
18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .
〔1〕求AD的长.
〔2〕求△ABC的周长.
19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.
20.下表是某校八年级〔1〕班43名学生右眼视力的检查结果.
视力
人数 1 2 5 4 3 5 1 1 5 10 6
〔1〕该班学生右眼视力的平均数是________〔结果保留1位小数〕.
〔2〕该班学生右眼视力的中位数是________.
〔3〕该班小鸣同学右眼视力是,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.
〔1〕求OF的长.
〔2〕求CF的长.
22.如图,在平面直角坐标系中,直线y=kx+b经过点A〔﹣30,0〕和点B〔0,15〕,直线y=x+5与直线y=kx+b 相交于点P,与y轴交于点C.
〔1〕求直线y=kx+b的解析式.
〔2〕求△PBC的面积.
年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价元/半小时,骑行单价最低可降至元/半小时〔比方,某用户邀请了3位好友,则骑行单价为元/半小时〕.B品牌共享单车计费方式为:元/半小时,不足半小时按半小时计算.
〔1〕某用户准备选择A品牌共享单车使用,设该用户邀请好友x名〔x为整数,x≥0〕,该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.
〔2〕假设有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.
24.下面我们做一次折叠活动:
第一步,在一张宽为2的矩形纸片的一端,利用图〔1〕的方法折出一个正方形,然后把纸片展平,折痕为MC;
第二步,如图〔2〕,把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;
第三步,折出内侧矩形FACB的对角线AB,并将AB折到图〔3〕中所示的AD处,折痕为AQ.
根据以上的操作过程,完成以下问题:
〔1〕求CD的长.
〔2〕请判断四边形ABQD的形状,并说明你的理由.
25.如图,正方形ABCD中,AB=4,P是CD边上的动点〔P点不与C、D重合〕,过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE 的面积为S2.
〔1〕求证:BP⊥DE.
〔2〕求S1﹣S2关于x的函数解析式,并写出x的取值范围.
〔3〕分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.
答案解析部分
一、<b >选择题</b>
1.【答案】B
【考点】二次根式有意义的条件
【解析】【解答】A、有意义,A不合题意;
B、没有意义,B符合题意;
C、有意义,C不合题意;
D、有意义,D不合题意;
故答案为:B.
【分析】依据二次根式被开放数为非负数求解即可.
2.【答案】C
【考点】二次根式的性质与化简,二次根式的乘除法
【解析】【解答】解:A、原式= = =3,A不符合题意;
B、原式=32,B不符合题意;
C、原式=|﹣2|=2,C符合题意;
D、原式=4 ,D不符合题意;
故答案为:C.
【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.
3.【答案】B
【考点】统计量的选择
【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.
故答案为:B.
【分析】方差是反应一组数据波动大小的量.
4.【答案】D
【考点】统计量的选择
【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.
故答案为:D.
【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.
5.【答案】B
【考点】正比例函数的图象和性质
【解析】【解答】解:A、当x=﹣2时,y=﹣2×〔﹣2〕=4,即图象经过点〔﹣2,4〕,不经过点〔﹣2,1〕,故本选项错误;
B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;
C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;
D、∵x>0时,y<0,
x<0时,y>0,
∴不管x为何值,总有y<0错误,故本选项错误.
故答案为:B.
【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.
6.【答案】C
【考点】勾股定理的逆定理
【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;
B、〔〕2+〔〕2≠〔〕2,故不是直角三角形,B不符合题意;
C、12+〔〕2=22,故是直角三角形,C符合题意;
D、72+82≠92,故不是直角三角形,D不符合题意;
故答案为:C.
【分析】依据勾股定理的逆定理进行判断即可.
7.【答案】D
【考点】勾股定理
【解析】【解答】设斜边长为xcm,则另一条直角边为〔x﹣1〕cm,
由勾股定理得,x2=52+〔x﹣1〕2,
解得,x=13,
则斜边长为13cm,
故答案为:D.
【分析】设斜边长为xcm,则另一条直角边为〔x-1〕cm,然后依据勾股定理列方程求解即可.
8.【答案】A
【考点】菱形的性质
【解析】【解答】∵四边形ABCD是菱形,
∴OA=OC=3,OB=OD,AC⊥BD,
在Rt△AOB中,∠AOB=90°,
根据勾股定理,得:OB= ,
= ,
=4,
∴BD=2OB=8,
∴S菱形ABCD= ×AC×BD= ×6×8=24.
故答案为:A.
【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.
9.【答案】D
【考点】命题与定理
【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;
B、一组邻边相等的矩形是正方形,正确,B不符合题意;;
C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;
D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.
故答案为:D.
【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.
10.【答案】B
【考点】待定系数法求一次函数解析式
【解析】【解答】解:如图,∵A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,
∴AB=10﹣0=10,CD=12﹣2=10,
又点C、D的纵坐标相同,
∴AB∥CD且AB=CD,
∴四边形ABCD是平行四边形,
∵12÷2=6,6÷2=3,
∴对角线交点P的坐标是〔6,3〕,
∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,
∴直线y=mx﹣3m+6经过点P,
∴6m﹣3m+6=3,
解得m=﹣1.
故答案为:B.
【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点〔6,3〕,最后将点〔6,3〕代入直线解析式求解即可.
二、<b >填空题</b>
11.【答案】1
【考点】分母有理化
【解析】【解答】解:∵a= +2,b= ﹣2,
∴ab=〔+2〕〔﹣2〕=5﹣4=1,
故答案为:1
【分析】依据平方差公式和二次根式的性质进行计算即可.
12.【答案】1
【考点】一次函数与一元一次方程
【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,
即一元一次方程kx+b=0的解是x=1.
故答案是:1.
【分析】依据表格找出当y=0时,对应的x的取值即可.
13.【答案】x>0
【考点】一次函数与一元一次不等式
【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点〔0,2〕,且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.
故答案为:x>0.
【分析】不等式的解集为当y>2时,函数自变量的取值范围.
14.【答案】0
【考点】方差
【解析】【解答】解:该组数据一样,没有波动,方差为0,
故答案为:0.
【分析】方差的意义或利用方差公式进行解答即可.
15.【答案】18
【考点】勾股定理的应用
【解析】【解答】解:∵PC=AB=30,PA=6,
∴AC=24,
∴BC= = =18,
∴下端离开墙角18个单位.
故答案为:18.
【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.
16.【答案】①③
【考点】中点四边形
【解析】【解答】解:延长IF交AB于K,
∵DF=EF,BG=GE,
∴FG= BD,GF∥AB,
同理IF∥AC,HI= BD,HI∥BD,
∴∠BKI=∠A=90°,
∴∠GFI=∠BKI=90°,
∴GF⊥FI,故①正确,
∴FG=HI,FG∥HI,
∴四边形FGHI是平行四边形,
∵∠GFI=90°,
∴四边形FGHI是矩形,故②④错误,
延长EI交BC于N,则△DEI≌△CNI,
∴DE=CN,EJ=JN,
∵EG=GB,EI=IN,
∴GI= BHN= 〔BC﹣DE〕,故③正确,
故答案为①③.
【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=〔BC-DE〕.
三、<b >解答题</b>
17.【答案】解:原式=〔6 + ﹣3 〕×
= ×
=7.
【考点】二次根式的混合运算
【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.
18.【答案】〔1〕解:在Rt△ABD中,AD= =3
〔2〕解:在Rt△ACD中,AC= =2 ,
则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3
【考点】勾股定理
【解析】【分析】〔1〕在Rt△ABD中,依据勾股定理可求得AD的长;
〔2〕在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.
19.【答案】证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
∵AE⊥BD,CF⊥BD,
∴AE∥CF,∠AEB=∠CFD=90°,
在△AEB和△CFD中,
∵,
∴△AEB≌△CFD〔AAS〕,
∴AE=CF,
∴四边形AECF是平行四边形.
【考点】平行四边形的判定与性质
【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS 证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.
20.【答案】〔1〕
〔2〕
〔3〕解:不能,
∵小鸣同学右眼视力是,小于中位数,
∴不能说小鸣同学的右眼视力处于全班同学的中上水平.
【考点】中位数、众数
【解析】【解答】解:〔1〕该班学生右眼视力的平均数是×
〔4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6〕,
故答案为:;
〔2〕由于共有43个数据,其中位数为第22个数据,即中位数为,
〔3〕不能,
∵小鸣同学右眼视力是,小于中位数,
∴不能说小鸣同学的右眼视力处于全班同学的中上水平.
故答案为:〔1〕;〔2〕;〔3〕不能.
【分析】〔1〕根据加权平均数公式求解即可;
〔2〕首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;
〔3〕根据小鸣同学右眼视力是,小于中位数,故此可得到问题的答案.
21.【答案】〔1〕解:∵四边形ABCD是正方形,
∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,
∵CE=8,
∴BE=14,
∵OB=OD,DF=FE,
∴OF= BE=7.
〔2〕解:在Rt△DCE中,DE= = =10,
∵DF=FE,
∴CF= DE=5.
【考点】正方形的性质
【解析】【分析】〔1〕由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;
〔2〕在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】〔1〕解:将点A〔﹣30,0〕、B〔0,15〕代入y=kx+b,
,解得:,
∴直线y=kx+b的解析式为y= x+15.
〔2〕解:联立两直线解析式成方程组,
,解得:,
∴点P的坐标为〔20,25〕.
当x=0时,y=x+5=5,
∴点C的坐标为〔0,5〕,
∴BC=15﹣5=10,
∴S△PBC= BC•x P= ×10×20=100.
【考点】两条直线相交或平行问题
【解析】【分析】〔1〕将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;
〔2〕联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.
23.【答案】〔1〕解:由题意可得,
当0≤x≤9且x为正整数时,y=1﹣,
当x≥10且x为正整数时,,
即y关于x的函数解析式是y=
〔2〕解:由题意可得,
当0≤x≤9时,1﹣>,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;
当0≤x≤9时,1﹣,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;
当0≤x≤9时,1﹣<,得x>5,则x>5且x为正整数,选择A品牌的共享单车;
当x≥10且x为正整数时,<,故答案为:项A品牌的共享单车.
【考点】二元一次方程组的应用,一次函数的应用
【解析】【分析】〔1〕可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;
〔2〕分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.
24.【答案】〔1〕解:∵∠M=∠N=∠MBC=90°,
∴四边形MNCB是矩形,
∵MB=MN=2,
∴矩形MNCB是正方形,
∴NC=CB=2,
由折叠得:AN=AC= NC=1,
Rt△ACB中,由勾股定理得:AB= = ,
∴AD=AB= ,
∴CD=AD﹣AC= ﹣1;
〔2〕解:四边形ABQD是菱形,理由是:
由折叠得:AB=AD,∠BAQ=∠QAD,
∵BQ∥AD,
∴∠BQA=∠QAD,
∴∠BAQ=∠BQA,
∴AB=BQ,
∴BQ=AD,BQ∥AD,
∴四边形ABQD是平行四边形,
∵AB=AD,
∴四边形ABQD是菱形.
【考点】正方形的判定与性质
【解析】【分析】〔1〕首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;
〔2〕根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.
25.【答案】〔1〕解:如图1中,延长BP交DE于M.
∵四边形ABCD是正方形,
∴CB=CD,∠BCP=∠DCE=90°,
∵CP=CE,
∴△BCP≌△DCE,
∴∠BCP=∠CDE,
∵∠CBP+∠CPB=90°,∠CPB=∠DPM,
∴∠CDE+∠DPM=90°,
∴∠DMP=90°,
∴BP⊥DE.
〔2〕解:由题意S1﹣S2= 〔4+x〕•x﹣•〔4﹣x〕•x=x2〔0<x<4〕.
〔3〕解:①如图2中,当∠PBF=30°时,
∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,
∴∠PFD=∠DPF=45°,
∴DF=DP,∵AD=CD,
∴AF=PC,∵AB=BC,∠A=∠BCP=90°,
∴△BAF≌△BCP,
∴∠ABF=∠CBP=30°,
∴x=PC=BC•tan30°= ,
∴S1﹣S2=x2= .
②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.
由①可知△ABF≌△BCP,
∴∠ABF=∠CBP,
∵∠PBF=45°,
∴∠CBP=22.5°,
∵∠CNP=∠NBP+∠NPB=45°,
∴∠NBP=∠NPB=22.5°,
∴BN=PN= x,
∴x+x=4,
∴x=4 ﹣4,
∴S1﹣S2=〔4 ﹣4〕2=48﹣32 .
【考点】正方形的性质
【解析】【分析】〔1〕首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;
〔2〕根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;
〔3〕分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用〔2〕中结论进行计算即可.。

相关文档
最新文档