减震橡胶知识及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减震橡胶知识及应用
一.绪论
现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的,人们一直致力于振动的产生,控制和消除的研究,所有的物体的振动都会产生声音,如果没有振动就不会有音乐,人类也无法进行语言交流了.但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏,噪音会影响人类的生活环境等.怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向.
减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,早在橡胶应用于工业之初,人们就使用了橡胶隔离来进行减震,但当时还没有有效的橡胶粘接技术,橡胶在减震领域的应用没有获得成功,随着橡胶粘接技术的的发展和运用,于1932年出现了最早的橡胶减震制品,使得减少底盘和引擎系统产生的振动成为可能,随后越来越多的金属和橡胶粘接的零件应用于差速器、后轴等汽车驱动系统,20世纪50年代起越来越多的发动机悬置得以应用,早在1979年德国大众成功地将液压悬置应用到发动机悬置系统,使得减震技术得到很大的发展,现在人们正在研究可转换装置和主动装置在工程上的实际应用.
二.减震橡胶基础理论
1.减震基础
当沿重心轴方向对橡胶装置进行碰撞会产生一定频率的振动,如果系统内没有外力作用,激发振动将逐步衰减,衰减的速度取决于橡胶材料的减幅,根据牛顿定律将得到下面公式: 质量+阻力+弹力=0
若忽略减幅不计,可以得到橡胶的固有频率如下:
f0=1/2πc/m
f0 :固有频率; c:弹簧刚度; m:质量
当碰撞力远离重心橡胶装置系统会在三个轴中产生扭转振动,各自的角频率为:
ωD = c v /J
ωD:角频率; c v:扭转刚度; J:惯量
机悬置有三个直移和三个转动的自由度,六个固有频率需抵制共振使激振力减少到一定程度,该装置系统主要是减少重心处的振动使之趋向于零,使不同方向的激振不再相互影响.
该装置系统的设计目标是根据客户的开发设想决定悬置布置的位置和悬置的刚度,使得所有的固有频率远不等于干扰频率,最初的装置主要是决定临时的位置和刚度,最后安装到车上时要考虑到发动机装置子系统的相互作用,现在人们已能通过有限元分析软件系统建立汽车整车模型,并通过计算机模拟进行悬置的优化设计,设计时需考虑找到使舒适性和减少噪音的最好的折中方法,使得零件可以抵挡所有外力并使力的传递达到袄最小化,同时还需满足零件的最大运动和外界环境的要求.
3.减震橡胶概要
3.1减震橡胶的作用:代替金属弹簧起到消振,吸振作用.其主要的性能要求在静刚度、动刚度、耐久性能上.
3.2减震橡胶的特点:(与金属弹簧相比胶)
①橡胶是由多种材料相组合而成,同一种形状通过材料调整可以拥有不同的性能.
②橡胶内部分子之间的摩擦使它拥有一定的阻尼性能,即运动的滞后性(受力过程中橡胶的变形滞后于橡胶的应力).
③橡胶在压缩、剪切、拉伸过程中都会产生不同的弹性系数.
3.3减震橡胶的工作原理:
①吸收振动: 此类减震橡胶件主要是用于发动机与车身之间的连接,此状态下发动机是振动源, 减震橡胶的作用是吸收发动机产生的振动,避免传递到车身上,同时也减轻发动机自身的振动.
②消减振动: 此类减震橡胶件主要是用于底盘与车身之间的连接,此状态下底盘车轮是振动源, 减震橡胶的作用是将路面与车轮产生的振动通过高阻尼作用迅速消减,防止振动通过底盘传递到车身.
4.减震橡胶的性能特征
4.1静刚度
围不同所得到的静刚度值是不同的,即(F2-F1)/(X2-X1)≠(F3-F2)/(X3-X2)
而金属弹簧在任意位移范围内其所受载荷变化量与其位移变化量的比值是一定的,即(F2-F1)/(X2-X1)=(F3-F2)/(X3-X2)
将金属弹簧和减震橡胶同时压缩到极限后,金属弹簧的压力会一直保持不变,而减震橡胶的压力会随着时间的推移出现压力松弛的现象,如图5所示,减震橡胶的这种压力松弛的特性使它具有比金属弹簧更好的消振作用.
4.1.2静刚度的计算方法:减震橡胶的静刚度是与产品的形状和橡胶的自身特性有关,静刚度
方柱的形状系数为:S=AL/AF=(a*b)/(2(a+b)*h)
圆柱的形状系数为:S=AL/AF=π(d/2)2/π*d*h=d/4h
中空圆柱的形状系数为:S=AL/AF=(π(d1/2)2-π(d2/2)2)/( π*d1*h+π*d2*h)= (d1 -d2)/4h
b.计算表征弹性率(微小变形):
方柱的表征弹性率:
1/3≤a/b≤3时: Eap/G=3+6.58S2
Gap/G=1/((3+6.580S2)(1+1/48 S2)
1/3≥a/b或a/b≥3时: Eap/G=4+3.29 S2
Gap/G=1/((4+3.29 S2)(1+1/36 S2)
圆柱和中空圆柱的表征弹性率: Eap/G=3+4.935 S2
Gap/G=1/((3+4.935 S2)(1+1/36 S2)
Eap:表征纵向弹性率; Gap:表征剪切弹性率; G:静态剪切弹性率; S:形状系数;
c. 计算静刚度:
形状a: 径向静刚度:Kc= Eap(AL/h)=1.36(Eap+G)*L/ log(r2/r1)
轴向静刚度:Ks=Gap(AL/h)=2.73 Gap*L/ log(r2/r1)
形状b: 径向静刚度:Kc= Eap(AL/h)=1.36(Eap+G)*((L1*r2-L2*r1)/(r2-r1))/ log(L1r2/L2r1) 轴向静刚度:Ks=Gap(AL/h)=2.73 Gap*((L1*r2-L2*r1)/(r2-r1))/ log(L1r2/L2r1)
c.计算25%时的定拉伸应力σε=Fε/A
σε: 25%定拉伸应力; Fε:25%的定拉伸时的负荷; A:试验片的截面积;
d.静态剪切弹性率G的计算:
Gε=σε/(α-1/α2) ε=25%时
Gε: 25%定拉伸的静态剪切弹性率; α=1+ε=1.25
计算时取4个数据的平均值,有效数值保留小数点后两位.
σ(t)=σ0*sin(wt+δ)= σ0(cosδ*coswt-sinδ* coswt)= σ0cosδ*coswt-σ0 sinδ* coswt σ0cosδ*coswt是与变形同相位的应力分量
σ0 sinδ* coswt是与变形相位差为90°的应力分量
求两个方向应力分量与变形量峰值的比值为:
G1=σ0cosδ*coswt/ r0
G2=σ0sinδ* coswt/ r0
G1:存储弹性模量或动态弹性模量
G2:损耗弹性模量
在振动学中通常将损耗弹性模量G2与存储弹性模量G1的比值称之为损耗系数
τ=G2/G1=(σ0sinδ* coswt/ r0)/(σ0cosδ*coswt/ r0)=tgδ
因损耗弹性模量G2=c(阻尼系数)*2π*f(振动频率),因此得出:
τ=c*2π*f/G1 或G1= c*2π*f/ tgδ
从上式可以看出:
a.减震橡胶的损耗系数与橡胶自身的阻尼系数成正比,与振动频率成正比.
b.减震橡胶的动刚度是橡胶自身特性,当橡胶自身的阻尼系数确定时,动刚度与振动频率成正比.
c. 当橡胶自身的阻尼系数确定时,随着振动频率的增减, 损耗系数和动刚度同时增减但增减的幅度并不一致.
4.3动倍率:
4.3.1动倍率的定义指减震橡胶在一定的位移范围内所测定的动刚度与静刚度的比值,即:Kd/Ks
因Kd∽G1*S2 ,Ks∽G*S2 因此: Kd/Ks∽G1/G
G1:存储弹性模量; G:静态剪切弹性模量
从上式可以看出:动倍率与产品形状无关,是橡胶材料自身的特性.
对于发动机用减震橡胶而言,减震机理是吸收振动,要求动倍率越小越好,从动倍率的定义可以看出,若想减小动倍率需从两个方面入手:①增大静刚度②减小动刚度.如增大静刚度可
以使减震橡胶在静态时的支承作用增强,而减小动刚度可以减小振动的传递率,防止将发动机
倍率才具有可比性和实际意义.
4.4损耗系数: 在减震橡胶的受力过程中,橡胶的变形与橡胶的应力之间存在着一定的相位差,而橡胶的应力一般要超前于橡胶的变形一定的相位角δ.通常所说的损耗系数就是橡胶应力与橡胶变形的相位角δ的正切,即损耗系数τ=tgδ.
4.5扭转刚度: 指减震橡胶在一定的扭转角范围内,其扭转力矩与扭转角之间的比值.
4.6耐久性能: 指减震橡胶在一定的方向一定的预加载荷、振幅、振动频率下,经往复振动n 次后产品完好或将产品往复振动直至破坏时的振动次数, 耐久性能是衡量一个减震橡胶件的安全性能和综合性能的重要指标.
三.减震橡胶制品常用材料
1.弹性体材料
1.1减震橡胶用弹性体材料的选用:
做为减震橡胶用的弹性体材料一般主要有以下几种:NR,SBR,BR,NBR,CR,EPDM,IIR,RUP等,其选用原则为:
一般常用减震橡胶材料为: NR,SBR,BR(发动机悬置,衬套等)
有耐油性要求的减震橡胶材料为:NBR(油管支架等)
有耐候性要求的减震橡胶材料为:CR(球销衬套)
有耐热性要求的减震橡胶材料为:EPDM(排气管吊件)
阻尼性要求大的减震橡胶材料为:IIR(因其加工工艺性差,一般不采用)
RUP一般用于减震支柱中的复原缓冲块.
1.2弹性体材料对减震特性的影响
从橡胶配方上考虑,影响橡胶的减震特性的主要因素是:生胶的选用;弹黑的选用和配合量;油的种类的选用.
下面以NR/SBR/BR系为例介绍橡胶配方与减震特性的关系:
①改变静刚度:生胶选用时改变SBR和BR的并用量对静刚度没有影响;碳黑选用时粒径小的碳黑可以提高静刚度,增大碳黑的配合量可以提高静刚度;油的选用时使用芳香烃油比使用环烷烃油的配方有利于提高静刚度;
②改变动刚度:生胶选用时减少SBR的并用量有利于降低动刚度, 改变BR的并用量对动刚度没有影响,碳黑选用时粒径大的碳黑可以降低动刚度,减少碳黑的配合量有利于降低动刚
度;油的选用时选用环烷烃油比使用芳香烃油有利于降低动刚度;
③改变动倍率: 生胶选用时减少SBR的并用量有利于降低动倍率, 改变BR的并用量对动倍率没有影响,碳黑选用时粒径大的碳黑可以降低动倍率,减少碳黑的配合量有利于降低动倍率;油的选用时使用环烷烃油比使用芳香烃油有利于降低动倍率;
④改变损耗系数:生胶选用时增加SBR的并用量有利于提高损耗系数, 改变BR的并用量对动倍率没有影响,碳黑选用时粒径小的碳黑可以提高损耗系数,增加碳黑的配合量有利于提高损耗系数;;
⑤耐久性:生胶选用时增加先增后减的变化趋势; 增
加BR的并用量耐久性会出现;因此SBR和BR
当,碳黑选用时粒径小的碳黑可以提高耐久性,增加碳黑的配合量耐久性:出现
后减的变化趋势,
2.刚性骨架
实际应用时减震橡胶基本都是带有刚性骨架的零件,同时这些刚性骨架都对减震橡胶的减震性能有一定的影响,它们起到联接和支撑作用.常用的刚性骨架材料有:钢,铝合金,工程塑料等.
2.1钢因其具有高强度而被广泛用于减震橡胶中,常用的结构形式有①板材冲压(热轧板,冷轧板);②冷拔管材③铸造件④锻压件等多种形式
2.2铝合金因其有较轻的比重而在汽车上得到越来越多的应用, 常用的结构形式有①板材冲压;②冷拔管材③铸造件④锻压件等多种形式
2.3因工程塑料的聚合体具有较轻的比重但其强度硬度较低,对温度的依赖性很强,高的热膨涨和低的热传导性,在使用时一般需对原材料进行处理,加入填料和加固物,减震橡胶中常用的塑料PA66加20%-40%的玻璃纤维,一般常用于衬套和副车架支承的外套管.
四汽车常用减震橡胶制品介绍:
1.发动机悬置类:发动机悬置是用于发动机与车身的联接,对发动机起到支承作用,在这个系统中发动机是产生振动的振动源,而车身防振对象,这就要求发动机悬置能够有效地吸收振动,避免将振动传递到车身,提高乘车的舒适性,为满足这一性能就要求发动机悬置具有足够的静刚度的同时应尽量减小动刚度.
2.驱动系统用减震件:驱动系统是指将发动机的动力传递到车轮的机构总成,主要有离合器变速器传动轴减速器差速器驱动桥和车轮组成,该系统主要的振动形式是扭振,该系统用减震件主要有用于传动轴的中心轴承,该产品的使用可避免传动轴过长造成固有频率降低而导致传动轴断裂,一般要求该产品的径向静刚度尽量小;
3.操纵系统用减震件:操纵系统是指将方向盘的角变位传递到车轮的机构总成,该系统主要的振动形式是扭转,最常用的减震件是各类衬套,其主要受到径向冲击力和轴向的扭转和偏摆一般要求该类产品的耐久性能好;
4.悬挂系统用减震件:悬挂系统主要作用是承受车体重量, 防止车轮的上下振动传递到车身,提高汽车的乘坐舒适性,同时能传递动力制动力和操纵时的侧向力,该系统使用的减震件特别多,如:前减上支架,后桥后弹性联接件,橡胶座分组件,防压垫,减震垫,弹簧垫,防撞垫,温定杆衬套,拉杆轴套,各类板簧衬套,各类摆臂衬套及各类缓冲块,现减震部生产的大部分产品是属于该系统的.
五.汽车用典型减震橡胶制品结构设计基础
1.发动机悬置
1.1普通标准结构
发动机悬置的工作状况如下:发动机是通过发动机悬置与车身相连接,发动机与车身之间发动机是振动源车身是防振对象,这就要求发动机悬置的性能为:能够有效地吸收振动,降低振动的传导率,避免将发动机的振动传递到车身,发动机工作时振动频率与振幅有如下关系,在低频振动时振幅较大,高频振动时振幅较小,因此对发动机悬置则要求在发动机低频振动区域
有较大的损耗系数,以便能够迅速将大的振幅消减下来,而在发动机高频振动区域有较小的动刚度, 以便能够更好地吸收发动机的振动降低振动的传导率.
通过近几十年的研究开发,一些形状结构被确定为基础设计,实际使用的发动机悬置大部分是在这些结构基础上的改型和调整.如图13-1所示,发动机的前悬置大多采用这种压缩/剪切结构,一般情况三点支撑的发动机都是采用前端两点后端一点的支撑形式,且两发动机前悬置采用倾斜一定的角度对装,在工作中同时受到压缩和剪切载荷的作用.而发动机的后悬置大多采用如图13-2所示这种楔形座结构,这种楔形对称结构的悬置在工作中易受到压缩和剪切变形,同时当弹性体部分设计成平行四边形结构还可以消除悬置所受的弯曲应力,这种楔形悬置的三个方向的刚度可以由空间尺寸和角度来决定,为各方向的刚度调整提供了方便. 图13-3所示的是一种衬套式的发动机悬置,这种结构都是由内外金属套管和橡胶硫化成型在一
图13 发动机悬置常用标准结构型式
以上这些发动机悬置都是属于常规的普通结构形式,对于在发动机的减震性能上都存在一定的局限性,对发动机悬置要求的性能是:高频时低的动刚度,低频时高的阻尼系数,实际上这是一对相互的矛盾体,因为悬置的动刚度和损耗系数都是橡胶自身的固有特性且都是随振动频率的增大而增大,在提高其损耗系数时动刚度也会随之增大,因此作为一般的减震橡胶已无法满足发动机悬置的这一特殊要求.
1.2 液压悬置
阻尼系数的这一特殊要求,采用了液体封入的结构形式,最早的液压悬置是德国大众于1979年开发的奥迪车用发动机液压悬置,现在这种液体封入技术已广范应用于汽车发动机悬置上. 发动机液压悬置从开始应用到汽车上至今主要经过了以下几个发展阶段.
1.2.1单通道结构液压悬置
发动机液压悬置发展的最初形式是如图14所示的单通道结构液压悬置,在液体封入前前,
其性能与一般减震橡胶相似,当液体封入后, 液压悬置在低频振动区受到外力作用时,主体受压变形,压力传递到液体上,迫使液体从主液室向从液室流动,液体在通过通道时受到流动阻力,从而产生很大的损耗系数,使液压悬置在低频时具有较好的减震效果,当外加的振动频率等于液体的自身固有频率时,产生的损耗系数达到最大值.液体的自身固有频率与液封的结构及液体的性能有关:
ωn: 液体的固有频率
S0: 流道的截面积
K1: 主体的动刚度
K2: 液室部的动刚度
ρ: 液体密度
L0: 流道的长度
液压悬置设计时应考虑到使液体的固有频率调整到与防震对象的频率一致,使得液封具有最佳的防振效果.
1.2.2双通道结构液压悬置
当外界施加的振动频率超过液体的固有频率后,液压悬置的动刚度有增大的趋势,这时动刚度就不能满足使用的要求,需要对液压悬置的结构进行改良,改良方法如图15所示,在开设低频通道的同时增设可动板结构(或叫解偶膜).发动机在各个不同的工作状态其振动频率与振幅情况分布如下:
汽车行驶时: 振动频率在10HZ左右,振幅在±0.5mm至±1mm;
发动机空转时: 振动频率在20HZ至40HZ,振幅在±0.1mm左右;
发动机产生噪音时: 振动频率在50—200HZ,振幅在0.1mm以下;
当汽车在正常行驶时振动频率低振幅较大,可动板的移动量大,能够把可动板附近的高频通道封住,此时液体只在低频通道中产生流动,由于通道的阻力产生较大的阻尼系数,有利于阻止发动机的振动传递到车身,提高减震效果.
的滞后性,致使液体无法跟随外加振动而流动,在低频通道中不会产生液体的流动,此时因振幅较小,可动板的移动量小,不能将可动板附近的高频通道封住,可动板运动时带动周围的液体运动,使得液压悬置的动刚度降低,从而改善液压悬置在高频时的减震性能.
1.2.3双通道带翼板结构液压悬置
当外界施加的频率超过50HZ时,可动板振动的滞后性也使它无法跟随外界的振动而振动时,可动板的结构效应达到极限,动刚度又会有增大的趋势,此时如图16所示,在主体上增加翼板使液压悬置在可动板的结构效应达到极限后,翼板能始终跟随主体振动而振动,能对液室中
1.3.1可转换装置
随着人们对汽车乘坐舒适性的的要求的不断提高,开始出现了可转换装置的悬置,实现动刚度和阻尼的要求可以转换,图17就介绍了一种可转化装置的悬置,在传统的液压悬置的主体
和主液室间增加了一个附加膜,当发动机处在怠速空转时,附加膜和主体间的空气对降低小振幅的动刚度有一定的效果,当汽车行驶时,真空泵将空气全部吸出,附加膜直接和主体连在一起,整个装置就成了一个传统结构的液压悬置,实现在低频下的高阻尼作用.这样就可以随着发动机的信号,通过真空泵的开关,实现降低动刚度和增大阻尼间的随意切换.
图17 可转换装置液压悬置结构图
1.3.2主动装置
人们在新开发的产品中,有一种叫主动装置的悬置,这就意味着在运动中的零件可以对相关参数如阻尼和动刚度进行控制,以适合实际的行驶状态,主动意味着在短时间内这些参数可以调整. 图18就介绍了一种主动装置的悬置,在该结构中将通道壁设计成电极装置,通过对电极施加高电压,使得通道内的粘度增强,从而实现悬置从高弹性低阻尼的装态转变到高阻尼的装态,在这种主动装置中使用的液体主要是可导电硅油树脂,硅酸盐的悬浮液,但这些液体的长期稳定性不佳,在静置装态会出现沉定,这些沉定物不能在振动状态下分散,导致了液体不能
5.1.1橡胶的角部及橡胶与金属连接处应有R过渡,在所有影响耐久性的位置都应考虑R过渡,避免应力集中提高产品的耐久性;
5.1.2结构上不能有模具难以加工的以及生产困难的部位;
5.1.3在骨架与橡胶的过渡处应考虑有适当的强制飞边,可以提高粘接性能避免粘合剂流出而污染模具;
5.1.4骨架与橡胶模具的配合性是否良好,骨架的尺寸精度应合理;
5.1.5形状上能否保证橡胶在成型时的压力,避免橡胶流出而造成粘接不良;
5.1.6保证模具内部最小厚度尺寸在2mm 以上,以免模具因强度不足而变形;
5.1.7产品的必要尺寸是否标注清楚;
5.1.8衬套类产品的后道加工方法是否明确;
5.2材料上:
5.2.1骨架的材料及热处理方法是否明确;骨架的强度要求是否明确;
5.2.2橡胶材料是否明确;
5.3性能特性上:
5.3.1相关部件的使用场合,尺寸及安装条件是否明确㈩
5.3.2动静刚度的测定条件范围是否明确;
5.3.3动静刚度的公差范围是否合理,减震橡胶一般为:±15%;
5.3.4在各方向上都有刚度要求时应明确主方向,主方向的刚度应明确公差,其他方向刚度公差应放宽;
5.3.5耐久试验条件是否明确(方向,载荷/位移,频率,耐久次数等)
5.3.6现有试验设备的能力是否满足;
六.减震橡胶制品生产技术
1.橡胶混炼
为提高产品使用性能,改进工艺和降低成本,常在生胶中加各种配合剂,在炼胶机上将各种配合剂加入生胶制成混炼胶的过程称为混炼。

混炼又分为粉碎、混入、分散、混合、塑化等几个阶段。

粉碎是将较大块状配合剂粉碎成大小适当的细微颗粒,以便混入橡胶。

混入是指在开炼机上包辊或密炼机有效区内将配合剂混入橡胶中。

分散是混入橡胶后填料在机械力作用下被逐渐打碎成小颗粒的过程。

混合是填料与其它配合剂均匀分布的过程。

塑化是橡胶分子受机械化学作用而断链导致胶料粘度下降的过程。

1.1 配合体系:
1.1.1生胶:减震橡胶常用的生胶有:NR,SBR,BR,CR,EPDM,等
1.1.2硫化剂:减震橡胶一般常用的硫化剂为硫黄S(但CR除外一般采用过氧化物做为硫化剂),硫化剂的用量对橡胶的性能有很大影响,若硫化剂的配合量太少时,在橡胶硫化成型过程中,橡胶与粘接剂发生反应时,会使粘接剂中的硫化剂反渗到橡胶中,而造成橡胶与粘合剂发生反应产生的化学键不足,使粘接强度下降,若若硫化剂的配合量太多时,会造成硫化速度过快,T10过短,生产时胶料的安全性下降,一般情况下的减震橡胶硫化剂S的配合量在1.5—2份,这种配合量不会对生产造成太大的影响.
1.1.3促进剂:减震橡胶一般常用的促进剂为:CZ,NOBS,D,DM,M等,促进剂的选用原则是根据T10的长短,橡胶的硬度以及模具流道的长短,有时需根据生产的综合情况进行并用
1.1.4防老剂:在减震橡胶中应控制防老剂的配合量,因为防老剂会从橡胶中析出,而游离在橡胶的表面,将橡胶与粘合剂隔离开,造成粘接破坏或粘接强度下降,常用的防老剂有4010A,防老剂RD,防老剂A等.
1.1.5碳黑:减震橡胶中的碳黑选用主要考虑产品的耐久性和动倍率的平衡,一般情况碳黑的粒径越细其耐久性越好,但分散性差,动倍率高;碳黑的粒径越大其动倍率低,分散性好,但耐久性一般.
1.1.6油:减震橡胶中常用的油分为芳香烃油和环烷烃油,油的选用时主要考虑对动倍率和粘。

相关文档
最新文档