2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习课件8

合集下载

2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习课件1

2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习课件1
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)
第三章 概率的进一步认识
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,

∴P(A处买到最低价格礼物)= .

合作探究
(2)作出树状图如下:

2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习教学设计2

2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习教学设计2

生日相同的概率一、教学内容及分析本节课学习的主要内容是能用试验的方法估计一些复杂的随机事件发生的概率;指的是通过解决生活中一些常见的概率问题来使学生学会设计概率实验模型,其核心是设计概率实验来代替调查统计,理解他关键熟练掌握古典概型类实验如摸球实验;学生在上节《投针试验》的基础上,对通过试验估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”本节课内容就是上节课内容的延伸;教学重点是利用实验的方法估计复杂事件发生的概率,解决重点的关键是通过具体例子让学生知道怎么样去设计一个估计实验。

(1)本节是用实验频率来估计一些复杂事件的概率.而实验频率稳定于理论概率是本节的教学重点和难点,是用实验的方法估计随机事件发生的概率基础,但对于义务教育阶段的学生而言,又难以给出一个理论的解释.因而只能借助于大量的重复试验去感悟.因此,在教学过程中,务必引导学生积极参与实验.学生通过实验还会发现,实验频率并不一定等于理论概率。

虽然多次试验的频率逐渐稳定于理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说偏差的存在是正常的,经常的。

(2)其次,随着现代社会的迅猛发展,更多的事务要求人们合作交流.在本节中,用实验频率稳定于理论概率来认识“生日相同的概率”,必须收集、整理大量的数据,必须综合多个学生甚至全班学生的试验数据.因此在教学过程中,务必注重学生的合作和交流活动.同时鼓励学生使用计算器等现代信息技术手段进行概率学习活动.二、教学目标及分析教学目标:(1)能利用计算器或计算机等模拟试验,估计一些复杂的随机事件发生的概率。

(2)能用实验的方法估计一些复杂的随机事件的概率.目标分析:(1)能利用计算器或计算机等模拟试验,估计一些复杂的随机事件发生的概率是指在用各种方法设计估计实验时,利用计算器去设计是最简单有效地方法,所以要求学生学会利用计算器模拟实验;(2)用实验的方法估计一些复杂的随机事件的概率是指在上节课的基础上,能用摸球试验或者计算器的方法去估计一些复杂的随机事件发生的概率。

新北师大版九年级数学上册第三章概率的进一步认识全章教案

新北师大版九年级数学上册第三章概率的进一步认识全章教案

第三章概率的进一步认识3.1 用树状图或表格求概率(1)学习目标:1. 进一步理解当试验次数较大时试验频率稳定于概率. 2.会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.学习重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率.学习难点:理解两步试验中“两步” 之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率.学习过程:一、导入新课:1、问题再现:小明和小凡一起做游戏。

在一个装有 2 个红球和3 个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。

(1)这个游戏对双方公平吗?(2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?2、提出新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。

三人决定一起做游戏,谁获胜谁就去看电影。

游戏规则如下:连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。

你认为这个游戏公平吗?(如果不公平,猜猜谁获胜的可能性更大?)二、自学指导:1、自主学习(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:(2)累计各组的试验数据,相应得到试验100 次、200 次、300次、400 次、500次时出现各种结果的频率(3)由上面的数据,请你分别估计“两枚正面朝上” “两枚反面朝上” “一枚正面朝上、一枚反面朝上”这三个事件的概率。

由此,你认为这个游戏公平吗?活动体会:从上面的试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上。

一枚反面朝上”发生的概率大于其他两个事件发生的概率。

所以,这个游戏不公平,它对小凡比较有利。

2、合作交流:小组讨论P60 页“议一议” 探究体会:由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上” 的概率相同。

北师大版九年级上册第三章概率的进一步认识课程设计

北师大版九年级上册第三章概率的进一步认识课程设计

北师大版九年级上册第三章概率的进一步认识课程设计一、背景本课程设计是针对北师大版九年级上册数学教材中第三章概率的进一步认识这一章节的学习内容进行的。

通过该课程设计的实施,旨在帮助学生深入理解概率的基本概念、性质和应用,掌握概率计算的方法,培养学生的逻辑思维和分析问题的能力。

二、学习目标1.了解事件、样本空间、概率等基本概念;2.掌握基本概率计算方法;3.能够应用概率计算在生活中的实际问题;4.培养学生的逻辑思维和创新能力。

三、教学内容与方法1. 教学内容本次课程设计将围绕以下几个方面的内容展开:1.概率的基本概念及性质;2.条件概率;3.事件的独立性;4.全概率公式及贝叶斯公式;5.应用题分析。

2. 教学方法本次课程设计采用多种教学方法,如讲授、讨论、演示、练习等。

从思维培养角度出发,我们会通过一些具有启发性的问题引导学生思考和讨论,鼓励他们发言和提出不同的见解。

在课堂上也会针对一些典型例题进行演示讲解,并结合实际应用场景进行讲解,让学生更好地理解和应用所学知识。

在课程结束后,还将布置相关的课后作业,以巩固学生所学内容和培养自主学习的能力。

四、教学安排本次课程设计共计计划安排6节课的时间,具体安排如下:第一节课•教学内容:概率的基本概念及性质;•教学方法:讲授、讨论、练习;•预习内容:预习纸质教材第三章节。

第二节课•教学内容:条件概率;•教学方法:讲授、讨论、练习;•预习内容:预习纸质教材第三章节。

第三节课•教学内容:事件的独立性;•教学方法:讲授、讨论、练习;•预习内容:预习纸质教材第三章节。

第四节课•教学内容:全概率公式及贝叶斯公式;•教学方法:讲授、讨论、练习;•预习内容:预习纸质教材第三章节。

第五节课•教学内容:应用题分析;•教学方法:讲授、演示、讨论、练习;•预习内容:预习纸质教材第三章节。

第六节课•教学内容:综合试题练习;•教学方法:讲授、讨论、练习;•预习内容:预习纸质教材第三章节。

北师大版数学九年级上册第三章《概率的进一步认识》单元复习课件

北师大版数学九年级上册第三章《概率的进一步认识》单元复习课件
14. 假设鸟卵孵化后,雏鸟为雌与为雄的概率相同,如
果3枚鸟卵全部成功孵化,则3只雏鸟都为雄鸟的概
1
率为____8___.
课后作业
1.(2023·禅城区校级月考)将分别标有“最”“美”“中 ”“国”四个汉字的小球装在一个不透明的口袋中,
这些小球除汉字以外其他完全相同,每次摸球前先搅
匀,随机摸出一球,不放回,再随机摸出一球,两次
1
是乡村公路A的概率为____2___;
(2)用列表或画树状图的方法,求小华两段路程都选 省级公路的概率.
解:(2)画树状图如图:
共有6种等可能的结果,其中小华两段路程都选省级 公路的结果有1种,
∴小华两段路程都选省级公路的概率为
1 6
.
9. 甲、乙、丙三位好朋友随机站成一排拍合影,甲没有
2
站在中间的概率为____3___.
发展历程和文化价值.
1
(1)小明选择“B.雨花石彩绘”项目的概率是___4__;
(2)用画树状图或列表的方法,求小明和小刚恰好选
择同一项目采访的概率. 解:(2)依题意,列表如下:
共有16种等可能的结果,其中小明和小刚恰好选择同
一项目采访的结果有4种, ∴小明和小刚恰好选择同一项目采访的概率为
4 =1 16 4
摸出的球上的汉字组成“中国”的概率是
()
A
A. 1 B.1
6
8
C.1 4
D.5 16
2.(2023·电白区期中)学校组织学生外出集体劳动时,
为九年级学生安排了三辆车,九年级的小明与小亮都
可以从这三辆车中任选一辆搭乘,则他俩搭乘同一辆
车的概率为
A.
1 3
B.
2 3

BS北师版 初三九年级数学 上册第一学期秋 第三章 概率的进一步认识(全章教案教学设计 分课时 含反思)

BS北师版 初三九年级数学 上册第一学期秋  第三章 概率的进一步认识(全章教案教学设计 分课时 含反思)

第三章概率的进一步认识3.1用树状图或表格求概率第1课时用树状图或表格求概率1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率【类型一】两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来.解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为16;解法2:将可能出现的结果列表如下:由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为16.方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】 两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为127.方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】 有无放回试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同. (1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.解:(1)列表如下:由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P (两次摸出的球都是白球)=26=13;4种,所以P (两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率⎩⎨⎧画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.3.2用频率估计概率1.知道通过大量的重复试验,可以用频率来估计概率;(重点)2.了解替代模拟试验的可行性.一、情景导入我们知道,任意抛一枚均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作探究探究点:用频率估计概率小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下表:(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现‘5点朝上’的概率大”;小红说:“如果掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么?解:(1)“3点朝上”的频率为660=110,“5点朝上”的频率为2060=13;(2)小颖的说法是错误的,因为“5点朝上”的频率大并不能说明“5点朝上”这一事件发生的概率大,因为当试验的次数非常多时,随机事件发生的频率才会稳定在事件发生的概率附近.小红的说法也是错误的,因为掷骰子时“6点朝上”这个事件的发生具有随机性,故如果掷600次,“6点朝上”的次数不一定是100次.易错提醒:频率与概率的联系与区别:(1)联系:当试验次数很多时,事件发生的频率会稳定在一个常数附近,人们常把这个常数作为概率的近似值.(2)区别:事件发生的频率不能简单地等同于其概率.概率从数量上反映了一个随机事件发生的可能性大小,是理论值,是由事件本质决定的,只能取唯一值,它能精确地反映事件发生的可能性大小;而频率只有在大量重复试验的前提下才可近似地作为这个事件的概率,即概率是频率的稳定值,而频率是概率的近似值.在“抛掷一枚均匀硬币”的试验中,如果手边现在没有硬币,则下列各个试验中哪个不能代替()A.两张扑克,“黑桃”代替“正面”,“红桃”代替“反面”B.两个形状大小完全相同,但颜色为一红一白的两个乒乓球C.扔一枚图钉D.人数均等的男生、女生,以抽签的方式随机抽取一人解析:“抛一枚均匀硬币”的试验中,出现正面和反面的可能性相同,因此所选的替代物的试验结果只能有两个,且出现的可能性相同,因此A项、B项、D项都符合要求,故选C.方法总结:用替代物进行试验时,首先要求替代物与原试验物所产生的所有可能均等的结果数相同,且所有结果中的每一对应事件的概率相等;其次所选择的替代物不能比实物进行试验时更困难.替代物通常选用:扑克、卡片、转盘、相同的乒乓球、计算器等.某篮球队教练记录了该队一名主力前锋练习罚篮的结果如下:(1)填表:求该前锋罚篮命中的频率(精确到0.001);(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?解:(1)表中的频率依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802;(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.方法总结:利用频率估计概率时,不能以某一次练习的结果作为估计的概率.试验的次数越多,用频率估计概率也越准确,因此用多次试验后的频率的稳定值估计概率.在一个不透明的盒子里装有颜色不同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.1); (2)假如你摸一次,估计你摸到白球的概率P (白球)=; (3)试估算盒子里黑球有多少个. 解:(1)0.6 (2)0.6 (3)设黑球有x 个,则2424+x=0.6,解得x =16.经检验,x =16是方程的解且符合题意. 所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率⎩⎪⎨⎪⎧用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.第2课时 概率与游戏的综合运用1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.二、合作探究探究点一:用表格或树状图求“配紫色”概率用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A 转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B 转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A 转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B 转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.解:将A 转盘中“红”区域2等分,B 转盘“蓝”区域2等分后列表如下:从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P(紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)这个游戏规则对两个球队是否公平?为什么?解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正;两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正.所以P(王铮去足球队)=P(王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小.三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.。

新北师大版初中数学九年级上册第3章 概率的进一步认识《3.1用树状图或表格求概率》优质课件

新北师大版初中数学九年级上册第3章 概率的进一步认识《3.1用树状图或表格求概率》优质课件

回顾与思考
必然事件
不可能事件
不确定事件
可能性 人们通常用1(或100%)来表示必然事件发生
的可能性,用0表示不可能事件发生的可能性.
1
0
2 (50%)
1(100%)
不可能 发生
可能 发生
必然 发生
回顾与思考
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
第二枚硬币 正


第一枚硬币


(正,正) (正,反)

(反,正) (反,反)
由表可知:总共有 4 种等可能结果.
小明获胜的结果有 1 种:(正,正),P(小明获胜)=
1
;
4
小颖获胜的结果有 1 种:(反,反),P(小颖获胜)=
1; 4
小凡获胜的结果有
2
种:(正,反)(反,正),P(小凡获胜)=
1 2
C、1 D、1
6
4
如何画树状图或列表,需注意什么?
注意:拿第2个球时第1个球并没有放回,两次拿的球不可 能是同一个球,列表时要注意“对角线”上的表格就划去。 类似这种“不放回”求概率的尽量画树状图
数学理解
3.小明从一定高度随机掷一枚质地均匀的硬币,他已经 掷了两次硬币,结果都是“正面朝上”.那么,你认为 小明第三次掷硬币时,“正面朝上”与“反面朝上”的 可能性相同吗?如果不同,哪种可能性大?说说你的理 由,并与同伴交流.
93
小明胜小颖的结果有三种:(石头,剪刀)(剪刀,)(布, 石头),所以小明获胜的概率为 3 1
93
小颖胜小明的结果也有三种:(剪刀,石头)(布,剪
刀)(石头,布),所以小颖获胜的概率为 3 1

北师大版九年级数学上册第三章概率的进一步认识复习课件

北师大版九年级数学上册第三章概率的进一步认识复习课件
蓝 红120°
变式:若将B盘换成右图,结果又会怎样?
布置作业
1、 某文具商店,在“六一节”当天举办了有奖酬宾活动,凡 购物满88元,就可获得一次摸奖机会.商店在不透明的盒子内装有2 个红球和2个白球,除颜色外其他都相同,摸奖者必须从盒子内一 次拿出两个球,根据球的颜色决定送礼金券的多少(如表).

《概年份 题号
2020 17
2019 17
2018 17
2017 17
2016
10 17
题型 分数 解答题 6 解答题 6 解答题 6 解答题 6
填空题 3 解答题 6
考点 概率的计算及应用 概率的计算及应用 概率的计算及应用
概率的计算及应用 频率估计概率的应用 概率的计算及应用
A 2、某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可 能的是( )
袋子里有多少个黄球? (2)为了估计袋中黄球的个数,小明设计了如下实验:每次将球充分搅匀后从中随机摸出一个球,并记下颜色放回,这样不断重复摸 球通1过0本0次节(,课其的2中复)有习4,0为次你摸有了到什红么估球收,获计根?据袋这个中结果黄估计球袋中的有__个__个数黄球,。 小明设计了如下实验:每次将
世界上没有白费的努力,更没有碰巧的成功! 生命中的一切无心插柳,其实都是水到渠成!
3 能用实验频率估计一些随机事件发生的概率。
2020年中考阅卷老师在概率题阅卷过程中发现的问题
2020年中考阅卷老师对概率题的学习建议
典型例题
一个不透明的袋子里装有除颜色外其他完全相同的4 3、在一个不透明的口袋里装有分别标有数字-3、-1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档