2014年江苏省高考数学试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(江苏卷)
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1。

已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .
2。

已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ 。

3. 右图是一个算法流程图,则输出的n 的值是 ▲ .
4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概
率是 ▲ 。

5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标

3
π
的交点,则ϕ的值是 ▲ 。

6。

设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,
则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm 。

7。

在各项均为正数的等比数列}{n a 中,
,12=a 4682a a a +=,则6a 的值是 ▲ 。

8。

设甲、乙两个圆柱的底面分别为1S ,2S ,体积分
别为1V ,2V ,若它们的侧面积相等,且4
9
21=S S ,则2
1
V V 的值是 ▲ .
9。

在平面直角坐标系xOy 中,直线032=-+y x 被
圆4)1()2(22=++-y x 截得的弦长为 ▲ 。

10。

已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的
取值范围是 ▲ 。

11. 在平面直角坐标系xOy 中,若曲线x
b
ax y +
=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ 。

12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,
(第3题)
100 80 90 110 120 底部周长/cm
(第6题)
(第12题)
PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .
13。

已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|2
1
2|)(2+
-=x x x f 。

若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .
14。

若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ 。

二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......
内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15。

(本小题满分14分)
已知),2
(ππ
α∈,55sin =α.
(1)求)4
sin(
απ
+的值;
(2)求)26
5cos(
απ
-的值. 16。

(本小题满分14分)
如图,在三棱锥ABC P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点。

已知AC PA ⊥,,6=PA
.5,8==DF BC
求证: (1)直线//PA 平面DEF ;
(2)平面⊥BDE 平面ABC .
(第16题)P
D C
E
F B A
17。

(本小题满分14分)
如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆
)0(12
3
2
2
>>=+
b a b
y a x 的左、右焦点,
顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.
(1)若点C 的坐标为)31
,34(,且22=BF ,求椭圆的方
程;
(2)若,1AB C F ⊥求椭圆离心率e 的值.
18.(本小题满分16分)
如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区。

规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m 。

经测量,点A 位于点O
正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),3
4
tan =∠BCO .
(1)求新桥BC 的长;
(2)当OM 多长时,圆形保护区的面积最大?
19.(本小题满分16分)
已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;
(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;
(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(03
00x x a x f +-<成立。

试比较1e -a 与1
e -a 的大小,并证明你的结论。

20.(本小题满分16分)
设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列"。

(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列";
(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立。

答案:1
2
3
4
6
9
13
14
二、解答题
16
17
19
20
【解析】(1)首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,所以
12,1,2,2,n n n a n -=⎧=⎨≥⎩,所。

相关文档
最新文档