信息论与编码
精品课课件信息论与编码(全套讲义)
跨学科交叉融合
信息论将与更多学科进行交叉融合,如物理学、 化学、社会学等,共同推动信息科学的发展。
编码技术的发展趋势
高效编码算法
随着计算能力的提升,更高效的编码算法将不断涌现,以提高数据 传输和存储的效率。
智能化编码
借助人工智能和机器学习技术,编码将实现智能化,自适应地调整 编码参数以优化性能。
跨平台兼容性
未来的编码技术将更加注重跨平台兼容性,以适应不同设备和网络环 境的多样性。
信息论与编码的交叉融合
理论与应用相互促进
信息论为编码技术提供理论支持, 而编码技术的发展又反过来推动 信息论的深入研究。
共同应对挑战
精品课课件信息论与编码(全套 讲义)
目
CONTENCT
录
• 信息论基础 • 编码理论 • 信道编码 • 信源编码 • 信息论与编码的应用 • 信息论与编码的发展趋势
01
信息论基础
信息论概述
信息论的研究对象
研究信息的传输、存储、处理和变换规律的科学。
信息论的发展历程
从通信领域起源,逐渐渗透到计算机科学、控制论、 统计学等多个学科。
卷积编码器将输入的信息序列按位输入到一个移位寄存器中,同时根据生成函数将移位寄存 器中的信息与编码器中的冲激响应进行卷积运算,生成输出序列。
卷积码的译码方法
卷积码的译码方法主要有代数译码和概率译码两种。代数译码方法基于最大似然译码准则, 通过寻找与接收序列汉明距离最小的合法码字进行译码。概率译码方法则基于贝叶斯准则, 通过计算每个合法码字的后验概率进行译码。
04
信息论与编码
信息论与编码
信息论是一门研究信息传输、存储和处理的学科。
它的基本概念是由克劳德·香农于20世纪40年代提出的。
信息论涉及了许多重要的概念和原理,其中之一是编码。
编码是将信息从一种形式转换为另一种形式的过程。
在信息论中,主要有两种编码方式:源编码和信道编码。
1. 源编码(Source Coding):源编码是将信息源中的符号序列转换为较为紧凑的编码序列的过程。
它的目标是减少信息的冗余度,实现信息的高效表示和传输。
著名的源编码算法有霍夫曼编码和算术编码等。
2. 信道编码(Channel Coding):信道编码是为了提高信息在信道传输过程中的可靠性而进行的编码处理。
信道编码可以通过添加冗余信息来使原始信息转换为冗余编码序列,以增加错误检测和纠正的能力。
常见的信道编码算法有海明码、卷积码和LDPC码等。
编码在通信中起着重要的作用,它可以实现对信息的压缩、保护和传输的控制。
通过合理地选择编码方式和算法,可以在信息传输过程中提高传输效率和可靠性。
信息论和编码理论为信息传输和存储领域的发展提供了理论基础和数学工具,广泛应用于通信系统、数据压缩、加密解密等领域。
《信息论与编码》课件第1章 绪论
1.2 通信系统的模型
信源符号
信 源 编码 信 源
(序列)
编码器 信 道 译码器
x y yˆ
重建符号 (序列)
x
❖ 无失真编码: x xˆ
重建符号与信源发送符号一致, 即编码器输出码字序列与信源 发送序列一一映射;
限失真编码: x xˆ
总是成立的
y yˆ
分别是编码输出码字和接收到的码字
重建符号与信源发送符号不 完全一致;编码器输出码字 序列与信源输出符号序列之 间不是一一映射关系,出现 符号合并,使得重建符号的 熵减少了。
限失真、无失真是由于编译 码器形成的
信道编码
增加冗余
提高
对信道干 扰的抵抗 力
信息传输 的可靠性
❖ 由于信道中存在干扰, 数据传递过程中会出现 错误,信道编码可以检 测或者纠正数据传输的 错误,从而提高数据传 输的可靠性。
1.2 通信系统的模型
调制器
作用:
➢ 将信道编码的输出变换为适合信道传输的 要求的信号 ;
消息
信息的表现形 式;
文字,图像, 声音等;
信号
信号的变化描 述消息;
信息的基本特点
1.不确定性
受信者在接收到信息之前,不知道信源发送 的内容是什么,是未知的、不确定性事件;
2.受信者接收到信息后,可以减少或者消除不确定性;
3. 可以产生、消失、存储,还可以进行加工、处理;
4. 可以度量
1.2 通信系统的模型
冗 信源符号 余 变 相关性强 化 统计冗余强
信源编码器
码序列 相关性减弱 统计冗余弱
相关冗余 统计冗余 生理冗余
模型简化
信源输出前后符号之间存在一定相关性
信源输出符号不服从等概率分布
信息论与编码(曹雪虹第三版)第一、二章
根据传输介质的不同,信道可分为有线信道和无线信道两大类。有线信道包括 双绞线、同轴电缆、光纤等;无线信道包括微波、卫星、移动通信等。
信道容量的定义与计算
信道容量的定义
信道容量是指在给定条件下,信道能 够传输的最大信息量,通常用比特率 (bit rate)来衡量。
信道容量的计算
信道容量的计算涉及到信道的带宽、 信噪比、调制方式等多个因素。在加 性高斯白噪声(AWGN)信道下,香农 公式给出了信道容量的理论上限。
信道编码分类
根据编码方式的不同,信道编码可分为线性分组码和卷积码 两大类。
线性分组码
线性分组码定义
线性分组码是一种将信息 序列划分为等长的组,然 后对每个组独立进行编码 的信道编码方式。
线性分组码特点
编码和解码过程相对简单 ,适用于各种信道条件, 且易于实现硬件化。
常见的线性分组码
汉明码、BCH码、RS码等 。
将信源消息通过某种数学变换转换到另一个域中,然后对变换 系数进行编码。
将连续的信源消息映射为离散的数字值,然后对数字值进行编 码。这种方法会导致量化噪声,是一种有损的编码方式。
信道编码的定义与分类
信道编码定义
信道编码是为了提高信息传输的可靠性、增加通信系统的抗 干扰能力而在发送端对原始信息进行的一种变换。
信息熵总是非负的,因 为自信息量总是非负的 。
当随机变量为确定值时 ,其信息熵为0。
对于独立随机变量,其 联合信息熵等于各自信 息熵之和。
当随机变量服从均匀分 布时,其信息熵达到最 大值。
03
信道与信道容量
信道的定义与分类
信道的定义
信道是信息传输的媒介,它提供了信号传输的通路,是通信系统中的重要组成 部分。
《信息论与编码》课件第6章 信道编码理论
信源编码
Y
差错控制 编码
Z
调制
信息错误
数据错 误一定
物理信道
条件:实
信宿
重建 符号
Xˆ
信源译码
Yˆ 差错控制 Zˆ
接收 信息
译码
接收 数据
解调
注
际信息传 输速率不 大于信道
容量,
意 1.信道一定,数据出现差错的概率一定,这是无
法改变的,与差错控制编码/译码方式无关
2.数据出现差错的概率不可改变,但是可以通过引 入差错控制编码/译码,降低信息传递中的错误
即如何选择 译码规则和 编码方法
减少信道传 输中的信息 差错
由于信道噪声或者干扰的存在, 会产生数据传输错误。
信道编码定理,也 称为香农第二定理
通信原理告诉我们,信噪声为例, 介绍虚警概率、漏报概率,以及 计算错误概率的过程和方法
原始
数
符号
信息
据
信源
(4) 纠正t个随机错误, ρ个删除,则要求码的最小距离满足 d0 ≥ ρ +2t+1
分组码的最小汉明距离满足下列关系
d0 n k 1
奇偶校验码是只有一个检验元的分组码 最小汉明距离为2,只能检测一个错误, 不能纠错。
是不等式, 不能用于计
算d0
差错 控制 译码 已知 条件
任务
6.3 译码规则
p( y)
p( y)
﹝ ❖ 考虑y的取值 两者之间比较
P(0 | y 0)
(1 pe ) p
p(1 pe ) (1 p) pe
P(1| y 0)
(1 p) pe
p(1 pe ) (1 p) pe
﹝ 两者之间比较
信息论与编码基础12
例1
I( X;Y )
1 0.8
0.6
0.4
0.2
0 1
0.5
I (X ;Y ) H ( p p) H ( p)
✓ 当信源固定后,选择不同 的信道来传输同一信源符 号时,在信道的输出端获 得关于信源的信息量是不 同的。
✓ 对每一种信源都存在一种
✓ 当固定某信道时,选择不同 的信源与信道连接,在信道 输出端接收到每个符号后获 得的信息量是不同的。
✓ 对于每一个固定信道,一定
存在有一种信源,使输出端
00
1
0.8 0.6 0.4 0.2
获得的平均信息量最大。
平均互信息的性质
一、凸函数性
5
定理 在输入信源概率分布 P(x)给定的条件下,平均互信息
1 1
1-H(p)
0
0.5 1
平均互信息的性质
一、凸函数性
4
定理
在信道转移概率 P( y | x) 给定的条件下,平均互信息
I (X ;Y )是输入信源概率分布 P(x) 的 型凸函数。
例1
I( X;Y )
1 0.8 0.6 0.4 0.2
0 1
0.5
I (X ;Y ) H ( p p) H ( p)
平均互信息的性质
思考与探究
有两个硬币,一个 是正常的硬币(一面是 国徽,一面是面值), 另一个是不正常的硬币 (两面都是面值)。现 随机抽取一枚硬币,抛 掷2次。问出现面值的次 数对于硬币的识别提供 多少信息量?
平均互信息的性质
小结
13
本课小结:
• 凸函数性
• 内涵拓展 调节自己、适应环境 适合自己的才是最好的
信息论与编码教学大纲(2024)
LDPC码在无线通信中的应用研究。探讨LDPC码在无线通信系统中的 编译码算法及性能优化方法。
选题三
极化码原理及性能分析。研究极化码的编译码原理,分析其在不同信 道条件下的性能表现,并与传统信道编码方案进行比较。
选题四
5G/6G通信中的信道编码技术。调研5G/6G通信系统中采用的信道编 码技术,分析其优缺点,并提出改进方案。
Polar码应用
探讨Polar码在5G通信、物联网等领域的应用,并分 析其性能表现。
22
06 实验环节与课程 设计
2024/1/25
23
实验环节介绍
实验一
信道容量与编码定理验证。 通过搭建简单的通信系统, 验证不同信道条件下的信道 容量及编码定理的有效性。
实验二
线性分组码编译码实验。利 用计算机软件实现线性分组 码的编译码过程,并分析其 纠错性能。
LDPC码基本原理
介绍LDPC码的编码结构、译码原理以及性 能分析。
LDPC码应用
探讨LDPC码在光纤通信、数据存储等领域 的应用,并分析其性能表现。
21
Polar码原理及应用
2024/1/25
Polar码基本原理
介绍Polar码的编码结构、信道极化原理以及性能分 析。
Polar码编译码算法
详细阐述Polar码的编码算法、译码算法以及关键技 术的实现。
2024/1/25
预测编码
利用信源符号间的相关 性进行预测,并对预测 误差进行编码,如差分 脉冲编码调制(DPCM )。
变换编码
将信源信号通过某种变 换转换为另一域的信号 ,再对变换系数进行编 码,如离散余弦变换( DCT)编码。
14
04 信道编码
2024/1/25
《信息论与编码全部》课件
信息论与编码全部PPT课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 信息度量与熵
02 信息论与编码的基 本概念
04 信源编码
05 信道编码
06 加密与解密技术
07 信息安全与认证技 术
添加章节标题
信息论与编码的基本概 念
信息论的发展历程
1948年,香农提出信 息论,奠定了信息论
提高安全性
优点:安全性 高,速度快,
易于实现
应用:广泛应 用于电子商务、 网络通信等领
域
发展趋势:随 着技术的发展, 混合加密技术 将更加成熟和
完善
信息安全与认证技术
数字签名技术
数字签名:一种用于验证信息来源和完整性的技术 数字签名算法:RSA、DSA、ECDSA等 数字证书:用于存储数字签名和公钥的文件 数字签名的应用:电子邮件、电子商务、网络银行等
汇报人:PPT
熵越小,表示信息量越小,不确 定性越小
熵是概率分布的函数,与概率分 布有关
信源编码
定义:无损信源编码是指在编码过 程中不丢失任何信息,保持原始信 息的完整性。
无损信源编码
应用:无损信源编码广泛应用于音 频、视频、图像等媒体数据的压缩 和传输。
添加标题
添加标题
添加标题
添加标题
特点:无损信源编码可以保证解码 后的信息与原始信息完全一致,但 编码和解码过程通常比较复杂。
古典密码学:公元前400年,古希腊人使用替换密码 近代密码学:19世纪,维吉尼亚密码和Playfair密码出现 现代密码学:20世纪,公钥密码体制和数字签名技术出现 当代密码学:21世纪,量子密码学和后量子密码学成为研究热点
《信息论与编码》课程教学大纲
《信息论与编码》课程教学大纲一、课程基本信息课程代码:16052603课程名称:信息论与编码英文名称:Information Theory and Coding课程类别:专业课学时:48学分:3适用对象:信息与计算科学考核方式:考试先修课程:数学分析、高等代数、概率论二、课程简介《信息论与编码》是信息科学类专业本科生必修的专业理论课程。
通过本课程的学习,学生将了解和掌握信息度量和信道容量的基本概念、信源和信道特性、编码理论等,为以后深入学习信息与通信类课程、为将来从事信息处理方面的实际工作打下基础。
本课程的主要内容包括:信息的度量、信源和信源熵、信道及信道容量、无失真信源编码、有噪信道编码等。
Information Theory and Coding is a compulsory professional theory course for undergraduates in information science. Through this course, students will understand and master the basic concepts of information measurement and channel capacity, source and channel characteristics, coding theory, etc., lay the foundation for the future in-depth study of information and communication courses, for the future to engage in information processing in the actual work.The main contents of this course include: information measurement, source and source entropy, channel and channel capacity, distortion-free source coding, noisy channel coding, etc。
信息论与编码
信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。
2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。
信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。
单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。
(3) =0时, = , =0说明该事件是不可能事件。
(4)是的单调递减函数。
3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。
)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。
(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。
4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。
(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。
(3)信源熵H(X)反映了变量X 的随机性。
6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。
当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。
两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。
当且仅当p(z/x,y)=p(z/y)时取等号。
联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。
信息论与编码实验报告
信息论与编码实验报告一、实验目的1.了解信息论与编码的基本概念和原理。
2.学习如何通过信息论与编码方法实现对数据的压缩和传输。
3.掌握信息论与编码实验的实验方法和实验技能。
4.提高实验设计、数据分析和报告撰写的能力。
二、实验内容1.通过对输入信源进行编码,实现对数据的压缩。
2. 比较不同编码方法的压缩效果,包括Shannon-Fano编码和霍夫曼编码。
3.通过传输信道对编码后的数据进行解码,还原原始信源。
4.分析并比较不同编码方法的传输效果,包括码率和传输质量。
三、实验原理1.信息论:熵是信息论中衡量信源不确定性的指标,熵越小表示信源的可预测性越高,在编码过程中可以压缩数据。
2. 编码方法:Shannon-Fano编码通过分治的方法将输入信源划分为不同的子集,分别进行编码;霍夫曼编码则通过构建最佳二叉树的方式,将较常出现的信源符号编码为较短的二进制码,较少出现的信源符号编码为较长的二进制码。
3.传输信道:信道可能存在误码和噪声,通过差错控制编码可以在一定程度上保障传输数据的正确性和完整性。
四、实验步骤1. 对给定的输入信源进行Shannon-Fano编码和霍夫曼编码。
2.计算编码后的码率,分析不同编码方法的压缩效果。
3.将编码后的数据传输到信道,模拟信道中的误码和噪声。
4.对传输后的数据进行解码,还原原始信源。
5.比较不同编码方法的传输质量,计算误码率和信噪比。
五、实验结果与分析1. 编码结果:通过对输入信源进行编码,得到了Shannon-Fano编码和霍夫曼编码的码表。
2.压缩效果:计算了不同编码方法的码率,比较了压缩效果。
3.传输结果:模拟信道传输后的数据,对数据进行解码,还原原始信源。
4.传输质量:计算了误码率和信噪比,分析了不同编码方法的传输质量。
六、实验总结通过本次实验,我深刻理解了信息论与编码的基本概念和原理,并掌握了信息论与编码实验的实验方法和实验技能。
在实验过程中,我遇到了一些困难,比如对编码方法的理解和实验数据的处理。
信息论与编码教案
教案信息论与编码课程目标:本课程旨在帮助学生理解信息论的基本原理,掌握编码技术的基本概念和方法,并能够应用这些知识解决实际问题。
教学内容:1.信息论的基本概念:信息、熵、信源、信道、编码等。
2.熵的概念及其计算方法:条件熵、联合熵、互信息等。
3.信源编码:无失真编码、有失真编码、哈夫曼编码等。
4.信道编码:分组码、卷积码、汉明码等。
5.编码技术的应用:数字通信、数据压缩、密码学等。
教学方法:1.讲授:通过讲解和示例,向学生介绍信息论与编码的基本概念和原理。
2.案例分析:通过分析实际问题,让学生了解信息论与编码的应用。
3.实践操作:通过实验和练习,让学生掌握编码技术的具体应用。
1.引入:介绍信息论与编码的基本概念和重要性,激发学生的学习兴趣。
2.讲解:详细讲解信息论的基本原理和编码技术的基本方法,包括信源编码和信道编码。
3.案例分析:通过分析实际问题,让学生了解信息论与编码的应用,如数字通信、数据压缩等。
4.实践操作:通过实验和练习,让学生亲自动手实现编码过程,加深对知识点的理解。
5.总结:回顾本课程的内容,强调重点和难点,提供进一步学习的建议。
教学评估:1.课堂参与度:观察学生在课堂上的表现,包括提问、回答问题、参与讨论等。
2.作业完成情况:评估学生对作业的完成情况,包括正确性、规范性和创新性。
3.实验报告:评估学生的实验报告,包括实验结果的正确性、实验分析的深度和实验报告的写作质量。
1.教材:选用一本适合初学者的教材,如《信息论与编码》。
2.参考文献:提供一些参考文献,如《信息论基础》、《编码理论》等。
3.在线资源:提供一些在线资源,如教学视频、学术论文等。
教学建议:1.鼓励学生积极参与课堂讨论和提问,提高他们的学习兴趣和主动性。
2.在讲解过程中,尽量使用简单的语言和生动的例子,帮助学生更好地理解复杂的概念。
3.鼓励学生进行实践操作,通过实验和练习,加深对知识点的理解。
4.提供一些实际问题,让学生运用所学知识解决,培养他们的应用能力。
信息论与编码第6章信道编码
素(既约)多项式
若 p( x) f ( x), deg( p( x)) 1且p( x)在F[ x] 中只有因式 c和cp( x) 则称 p( x) 为域F上的不可约多项式。
的集合
余类环
多项式剩余类环 n n1 f ( x) an x an1x ... a1x a ai Fq 用 Fq [ x] 或者 GF (q)[ x] 表示所有这样多项式
纠错码的分类
根据监督码元与信息组之间的关系 系统码 信息码元是否发生变化 非系统码 代数码 几何码 算术码 线性码 非线性码 分组码 卷积码
构造编码的数学方法
根据监督码元和信息码元的关系
根据码的功能
按纠误的类型
检错码 纠错码 纠删码 纠随机差错码 纠突发差错码 纠混合差错码 二元码 多元码 等保护纠错码 不等保护纠错码
3 3 2 2 3 2 3 2
x x , x x, x x 1, x 1, x ,
3 3 3 3
x x 1, x x, x 1, x , x 1, x,1, 0
2 2 2 2
4.有限域的性质和代数结构
1)有限域 Fq 的结构 对 a Fq , a 0, 满足 na 0, 的最小正整 数 n ,称为元素 a 的周期。 定理6-6:在有限域 Fq中 (1) ( Fq , ) 是循环加群,它的非零元素的周期等于其 域的特征; (2) ( Fq* , ) 是循环乘群,共有 (q 1) 个乘群的生成 元。 a 乘群 ( Fq* , ) 的生成元 a 称有限域 Fq 的本原元, 的阶为 q 1 ,即 a q 1 e ,且 F * a
q
本原元性质定理6-7
* F (1) q
的元素的阶都是 q 1 的因子, Fq* 的所 q 1 x e 0 的根。 有元恰是 (2) 若 a 是 Fq 的本原元,则当且仅当(k , q 1) 1 k k a 时, 也是本原元。非本原元 a 的阶是
信息论与编码第4章无失真信源编码
THANKS
感谢观看
编码性能的评价指标
压缩比
压缩比是指编码后数据量与原始数据量之比,是衡量 编码效率的重要指标。
编码复杂度
编码复杂度是指实现编码算法所需的计算量和存储量 ,是衡量编码性能的重要指标。
重建精度
重建精度是指解码后数据的准确度,是衡量编码性能 的重要指标。
编码效率与性能的关系
01
编码效率与压缩比成正比,压缩比越高,编码效率越高。
游程编码
对连续出现的相同符号进 行编码,如哈夫曼编码等 。
算术编码
将输入信号映射到一个实 数轴上的区间,通过该区 间的起始和长度表示码字 ,如格雷码等。
编码的数学模型
信源
产生随机变量的集合 ,表示各种可能的信 息符号。
编码器
将输入信号映射到码 字的转换设备,其输 出为码字序列。
解码器
将接收到的码字还原 成原始信号的设备。
拓展应用领域
无失真信源编码技术的应用领域正在不断拓 展,未来研究将致力于将其应用于更多领域 ,如多媒体处理、物联网、云计算等。
融合其他技术
将无失真信源编码技术与其他相关技术进行 融合,以实现更高效、更实用的信息处理系 统。例如,将无失真信源编码与图像处理、 语音处理等技术相结合,提高信息传输和处
理的效率和质量。
03
行程编码的缺点包 括
压缩比有限、对于离散无记忆信 源效果不佳。
03
CATALOGUE
无失真信源编码的效率与性能
编码效率的定义与计算
定义
编码效率是指编码后信息量与原始信 息量之比,通常用比特率(bit per symbol)或比特率(bit per source symbol)来表示。
计算
信息论与编码第1章
第一章绪论(第一讲)(2课时)主要内容:(1)教学目标(2)教学计划(3)参考书(4)考试问题(5)信息论的基本概念(6)信息论发展简史和现状(7)通信系统的基本模型重点:通信系统的基本模型难点:通信系统的基本模型特别提示:运用说明:本堂课作为整本书的开篇,要交待清楚课程开设的目的,研究的内容,对学习的要求;在讲解过程中要注意结合一些具体的应用实例,避免空洞地叙述,以此激发同学的学习兴趣,适当地加入课堂提问,加强同学的学习主动性。
信息论与编码(Informatic s & Coding)开场白教学目标:本课程主要讲解香农信息论的基本理论、基本概念和基本方法,以及编码的理论和实现原理。
介绍信息的统计度量,离散信源,离散信道和信道容量;然后介绍无失真信源编码、有噪信道编码,以及限失真信源编码等,然后介绍信道编码理论,最后也简单介绍了密码学的一些知识。
教学重点:信息度量、无失真信源编码、限失真信源编码、信道编码的基本理论及实现原理。
教学计划:信息论:约20学时信道编码:约19学时*密码学:约8学时参考书:1.信息论与编码,曹雪虹张宗橙编,北京邮电大学出版社,20012.信息论—基础理论与应用,傅祖芸编著,电子工业出版社,20013.信息理论与编码,姜丹钱玉美编著4.信息论与编码,吴伯修归绍升祝宗泰俞槐铨编著,1987考试问题:第一章绪论信息论的基本概念信息论发展简史和现状通信系统的基本模型§1.1 信息论的基本概念信息论是一门应用近代数理统计方法来研究信息的传输和处理的科学。
在涉及这门课程的具体内容之前,很有必要在引言中,首先放宽视野,从一般意义上描述、阐明信息的基本含意。
然后,再把眼光收缩到信息论的特定的研究范围中,指明信息论的假设前提,和解决问题的基本思路。
这样,就有可能帮助读者,在学习、研究这门课程之前,建立起一个正确的思维方式,有一个正确的思路,以便深刻理解、准确把握以下各章节的具体内容。
信息论与编码
信息论与编码《信息论与编码》复习提纲第1章绪论1、信息的概念,通俗、⼴义、狭义的概念2、信息、消息、信号3、通信系统模型4、通信系统的技术指标,有效性、可靠性第2章信源与信息熵1、信源的分类2、信源的数学模型3、马尔克夫信源4、离散信源的⾃信息、信息熵5、条件熵和联合熵6、互信息及其性质7、条件熵之间的关系,维拉图8、信息熵的性质9、信息熵的计算,各种概率的计算、各种熵的计算(例2-9, p.21)10、连续信源的熵,绝对熵和相对熵11、最⼤熵定理,峰值功率受限、平均功率受限12、离散序列信源的熵,平均符号熵、条件熵、极限熵13、信源冗余度及产⽣的原因第3章信道与信道容量1、信道模型,转移矩阵、2、信道种类:BSC、DMC、离散时间⽆记忆信道、波形信道3、信道容量的定义4、⼏种特殊信道的信道容量、BSC信道C~ε曲线5、离散序列信道及其容量(BSC⼆次扩展信道)6、连续信道及其容量,Shannon公式7、信源与信道的匹配,信道冗余度第4章信息率失真函数1、失真函数、失真矩阵、平均失真2、信息率失真函数,定义、物理意义,保真度准则3、信息率失真函数的性质,信息率失真函数曲线4、信息率失真函数与信道容量的⽐较5、某些特殊情况下R(D) 的表⽰式第5章信源编码1、信源编码的基本概念(主要任务、基本途径)2、码的基本概念、分类3、唯⼀可译码的含义,充要条件4、码树图及即时码的判别5、定长编码定理,编码信息率,编码效率6、变长编码定理(Shannon第⼀定理),编码剩余度,紧致码7、Shannon编码,⾃信息与码长的联系8、Fano编码,与码树图的联系、是否是紧致码9、Huffman编码,计算平均码长、信息传输率、编码效率(例5-7, p.96)10、Shannon第三定理(限失真编码定理)及逆定理11、游程编码,基本原理、特性、主要应⽤12、算术编码,基本思想第6章信道编码1、差错,差错符号,差错⽐特,差错图样类型2、纠错码分类,差错控制系统分类3、随机编码,Shannon第⼆定理(信道编码定理),差错概率、译码规则、平均差错概率4、可靠性函数曲线5、差错控制途径、措施,噪声均化、交错(交织)6、码距与纠、检错能⼒7、最优译码、最⼤似然译码、最⼩汉明距离译码8、线性分组码,基本概念,码重9、⽣成矩阵和校验矩阵,系统形式(例6-2, p.137)10、伴随式与标准阵列译码11、循环码及其特征,⼏种常⽤循环码12、卷积码,基本概念、编码原理、编码器结构、卷积码描述⽅法、Viterbi译码第7章加密编码1、加密编码中的基本概念2、安全性,保密性,真实性3、对称(单密钥)体制与⾮对称(双密钥)体制1.信息论研究的⽬的是提⾼信息系统的___可靠性___,____有效性____,____安全性___,以便达到系统的最优化。
信息论与编码基础
信息论
通信技术 概率论 随机过程 数理统计
相结合逐步发展而形成
的一门新兴科学
奠基人:美国数学家香农(C.E.Shannon) 1948年“通信的数学理论”
对信息论的研究内容一般有以下三种理解。
狭义信息论(经典信息论):主要研究信息的测度、
信道容量以及信源和信道编码理论等问题。这部分内 容是信息论的基础理论,又称为香农信息论。
和近代代数的方法,来研究广义的信息传输、提 取和处理系统中一般规律的学科。
它的主要目的是提高信息系统的可靠性、有效性、
保密性和认证性,以便达到系统最优化;
它的主要内容(或分支)包括香农理论、编码理论、
维纳理论、检测和估计理论、信号设计和处理理 论、调制理论、随机噪声理论和密码学理论等。
本课程讨论香农信息理论及编码理论
选择的方式。 即使考虑选择的方法,但没有考虑各种可能选 择方法的统计特性。
1948年,维纳(N.Wiener)
在《控制论--动物和机器中通信与控制问题》 一书中,指出:“信息是信息,不是物质,也 不是能量”。将“信息”上升到“最基本概念” 的位置。 后来,维纳在《人有人的用处》一书中提出: “信息是人们适应外部世界并且使这种适应反 作用于外部世界的过程中,同外部世界进行互 相交换的内容的名称。”
就狭义而言,在通信中对信息的表达分为三个层次:信 号、消息、信息。 信号:是信息的物理表达层,是三个层次中最具体的 层次。它是一个物理量,是一个载荷信息的实体,可测 量、可描述、可显示。 消息:(或称为符号)是信息的数学表达层,它虽不是 一个物理量,但是可以定量地加以描述,它是具体物理 信号的进一步数学抽象,可将具体物理信号抽象为两大 类型: 离散(数字)消息,一组未知量,可用随机序列来描述: X=(X1…Xi…Xn) 连续(模拟)消息,未知量,它可用随机过程来描述: X( t, ω) 信息:它是更高层次哲学上的抽象,是信号与消息的 更高表达层次。
信息论与编码技术朱春华
信息论与编码技术简介信息论与编码技术是计算机科学与通信工程领域中非常重要的研究方向,对于数字通信、数据压缩、错误检测与纠正等问题具有重要意义。
信息论是研究信息传输、存储和处理的数学理论,而编码技术则是利用信息论的基本原理设计和实现高效的编码方案。
本文将对信息论和编码技术进行介绍,并介绍其中的一位杰出研究者朱春华的贡献。
信息论信息论是由克劳德·香农于1948年提出的,他在论文《通信的数学原理》中系统地提出了信息论的基本概念和理论框架。
信息论主要研究信息传输的性质和限制,以及如何通过编码和解码来实现有效地信息传输。
在信息论中,最基本的概念是信息量。
信息量的单位是比特(bit),表示一条信息所携带的信息量。
信息量与信息的概率分布有关,对于概率为p的事件,其信息量为-log(p)。
这意味着,概率越小的事件所携带的信息量越大。
除了信息量,信息论还研究了其他重要概念,如熵、条件熵、互信息等。
熵是用来描述信息源的不确定性的度量,而条件熵是在已知一些先验信息的情况下,对信息源的不确定性进行度量的。
信息论的理论框架不仅可以用于描述信息的传输和存储,还可以用于优化通信系统的设计。
通过研究信道容量和编码理论,我们可以设计出高效的数字通信系统,以尽可能地提高通信速率和可靠性。
编码技术编码技术是利用信息论的基本原理设计和实现高效的编码方案。
编码技术在数字通信、数据压缩、错误检测与纠正等领域具有重要应用。
在数字通信中,编码技术用于将消息转化为数字信号,并通过信道进行传输。
常用的编码技术有霍夫曼编码、香农-法诺编码等。
这些编码技术通过将常用的消息用较短的码字表示,来提高信息传输的效率。
在数据压缩中,编码技术可以将冗余的信息进行压缩,以减少数据的存储和传输量。
编码技术可以通过去除冗余信息和利用统计特性来实现数据的高效压缩。
错误检测与纠正是编码技术的另一个重要应用领域。
在数据传输过程中,由于信道噪声或其他原因,可能会导致传输数据中出现错误。
答案~信息论与编码练习
1、有一个二元对称信道,其信道矩阵如下图所示。
设该信道以1500个二元符号/秒的速度传输输入符号。
现有一消息序列共有14000个二元符号,并设在这消息中P(0)=P(1)=1/2。
问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传送完?解答:消息是一个二元序列,且为等概率分布,即P(0)=P(1)=1/2,故信源的熵为H(X)=1(bit/symbol)。
则该消息序列含有的信息量=14000(bit/symbol)。
下面计算该二元对称信道能传输的最大的信息传输速率: 信道传递矩阵为:信道容量(最大信息传输率)为:C=1-H(P)=1-H(0.98)≈0.8586bit/symbol得最大信息传输速率为:Rt ≈1500符号/秒× 0.8586比特/符号 ≈1287.9比特/秒 ≈1.288×103比特/秒此信道10秒钟内能无失真传输得最大信息量=10× Rt ≈ 1.288×104比特 可见,此信道10秒内能无失真传输得最大信息量小于这消息序列所含有的信息量,故从信息传输的角度来考虑,不可能在10秒钟内将这消息无失真的传送完。
2、若已知信道输入分布为等概率分布,且有如下两个信道,其转移概率矩阵分别为:试求这两个信道的信道容量,并问这两个信道是否有噪声?1100.980.020.020.98P ⎡⎤=⎢⎥⎣⎦111122221111222212111122221111222200000000000000000000000000000000P P ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11222211122222log 4(00)1/()log 42/log 8(000000)2/(),H bit symbol H X bit symbol C C H bit symbol H X C =-===>=-==1解答:(1)由信道1的信道矩阵可知为对称信道故C 有熵损失,有噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信息论与编码》(第二版)
曹雪虹张宗橙编著
清华大学出版社
第一章绪论
1、信息论的地位及其主要研究内容:
2、信息论的理论基础:
3、1948年,香农(Shannon)发表“A Mathematical Theory of Communication”(通信的
数学原理)的主要内容:
4、通信系统的性能指标:
第二章信源与信息熵
1、无记忆信源可分为两类:
2、有记忆信源:m阶马尔可夫信源的定义。
马尔可夫链阶数与记忆信源记忆长度、马尔可夫链长度的关系
3、香农提出马尔可夫状态图,也叫香农线图。
4、画状态图,先求概率转移矩阵。
状态转移概率矩阵与符号条件概率有关。
5、遍历性直观意义:稳定的状态概率分布和稳定的符号概率分布的区别
6、自信息量仅与其发生的概率有关;
自信息量的单位只与对数的底数有关。
7、信源符号的自信息量与信源符号不确定度的含义:
8、信源符号的平均信息量与信源符号的平均不确定度的含义:
9、信源熵:用H(X)表示信源X的不确定度
10、条件熵H(X|Y)的含义:已知Y后,X的不确定度
11、条件熵的展开式:
12、联合熵H(X,Y)的含义:
13、联合熵展开式:
14、联合熵H(X,Y)、熵H(X)及条件熵H(X|Y)之间的关系:
15、X与Y的互信息量I(X;Y)的意义:接收者接收到Y后,Y中包含了X的信息量。
16、互信息量I(X;Y)的展开式:
17、互信息量的取值范围:
18、另一种看法:将互信息量I(X;Y)看作是在有扰离散信道上传输的平均信息量。
此时,我们将条件熵看做是信道上存在干扰和噪声而损失了的平均信息量。
19、条件熵H(X|Y)看做是由于信道干扰和噪声的缘故,接收端收到Y后,还剩下对信源X 的平均不确定度,称为疑义度。
那么H(Y|X)可以看做是唯一确定信道噪声所需的平均信息量,称为噪声熵。
20、三维联合集(X,Y,Z)上的平均互信息量的定义
X与(Y,Z)之间的互信息量:I(X;Y,Z)
(Y,Z)与X之间的互信息量:I(Y,Z;X)
21、熵的性质:
第三章信道与信道容量
1、信道是通信系统中重要的部分,它是传输信息的载体,其任务:
2、输出信号与输入信号没有固定的函数关系的原因:
输出与输入只有统计依赖关系。
3、
第四章信息率失真函数
1、一般可以对信源输出的信息进行失真处理。
失真处理的优点:
2、失真的大小用失真函数d(xi,yj)表示,
失真函数的意义:
3、一般失真函数定义为d(xi,yj):
4、将所有的失真函数d(xi,yj)排列成m*n的矩阵形式,这样的矩阵d称为:
5、用yj代替xi导致的失真是人为决定的。
最常用的失真函数有:
均方失真:
绝对失真:
相对失真:
误码失真:
6、将失真函数的定义推广到序列编码情况,dL(Xi,Yj)=
7、平均失真的表达式:
8、连续随机变量定义平均失真:
9、对L长序列编码的平均失真:
10、信源X经过有失真的信源编码器输出Y,将这样的信源编码器看做是存在干扰的假想信道,Y当做是接收端的符号。
信源编码器的目的:
11、失真是有限度的。
假设失真限制值为D,失真编码器必须满足条件:
12、信息率R就是所需输出的有关X的信息量。
对应于信道,信息率R就是:
同时,符号转移概率就对应信道转移概率。
13、平均失真有三要素决定:
14、若信源分布与失真函数已给定,D允许试验信道:
15、在D的允许试验信道中,可以找到一种信道Pij,使互信息量最小。
这个最小的互信息量就是:信息率失真函数R(D),即:
16、
第五章信源编码
1、编码分为:
信源编码有分为:
2、第一极限定理:
3、第二极限定理:
4、第三极限定理:
5、信源编码的主要任务:
具体的是:
6、信源编码的基本途径有两个:
7、将信源消息分为若干组,即符号序列xi,序列中的每一个符号取自符号集A。
每一个符号序列依照固定的码表映射为一个码字yi,这样的码称为分组码(也叫块码)。
8、只有分组码才有对应的码表,而非分组码没有码表。
9、最常用的一种信道是二元信道,它的信道基本符号集为:
10、将各个信源符号(或序列)变换成由0、1符号组成的码符号序列,这个过程就叫信源编码。
11、一般情况下,码可以分为两类:
12、非奇异码的定义:
13、唯一可译码的定义:
14、唯一可译码有分为:
15、非即时码的定义:
16、通常用码树来表示各码字的组成。
对于m进制的码树,码字的起点对应:
码的进制数对应:
码字或码字的一部分对应:
码字对应是:
码长对应:
变长码对应:
等长码对应:
17、唯一可译码存在的和必要条件:
各码字的长度Ki符合克劳夫特不等式:
其中,m是:
n是:
18、克劳夫特不等式只是用来说明唯一可译码是否存在,不能判断作为唯一可译码的判据。
19、假设信源输出序列X的长度L大于等于1,变换成由K L个符号组成的码序列Y(有时又称为码字)
变换要求是:能够无失真或无差错的从Y恢复到X,同时传送Y时的信息率最小。
20、序列Y中的每一个符号有m种取值,平均每个符号输出的最大信息量为:
K L长的码字的最大信息量为:
用该码字表示L长的信源序列,则送出一个信源符号所需要的信息率平均值为:
式中,M=
它表示:
21、信息率最小的含义就是:
22、在定长编码中,K是定值,且K=K L。
编码的目的:
23、要实现无失真信源编码要求:
24、由L个符号组成的,每个符号的熵为H L(X)的无记忆平稳信源序列:
可以用K L个符号:
(其中每个符号有m种可能值)进行定长编码。
结论:
25、
第六章信道编码
1、信息是一种抽象的内涵,必须依赖于某种有形的载体才能传输,这种载体就是信号。
2、信道编码就是以信息在信道的正确传输为目标的编码。
可分为两个层次:
如何正确的接收载有信息的信号;如何避免少量的差错信号对信息内容的影响。
3、前者,我们称为线路编码,后者,称为差错控制编码。
4、
第七章加密编码。