2014年北京中考数学试卷分析

合集下载

2012年北京市中考数学试卷(解析版)

2012年北京市中考数学试卷(解析版)

2012年北京市高级中等学校招生考试数 学1. 9-的相反数是A .19-B .19C .9-D .9【解析】 D【点评】 本题考核的是相反数,难度较小,属送分题, 本题考点:相反数.难度系数为0.95.2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【解析】 C【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。

此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.93. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒ 【解析】 B【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要. 本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.754. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱 【解析】 D【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型.本题考点:立体图形的三视图 难度系数:0.8 5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A .16B .13C .12D .23【解析】 B【点评】 本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目 本题考点:求概率. 难度系数:0.96. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于A .38︒B .104︒C .142︒D .144︒ 【解析】 C【点评】 本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系本题考点:角与角平分线. 难度系数:0.857. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度) 120 140 160 180 200户数 2 3 6 7 2 则这20户家庭该月用电量的众数和中位数分别是A .180,160B .160,180C .160,160D .180,180 【解析】 A【点评】 本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。

2014年北京市中考数学试卷(含答案和解析)

2014年北京市中考数学试卷(含答案和解析)

算 2014 年该小区成年国民阅读图书的总数量约为
_________ 本.
?
21.( 5 分)( 2014?北京)如图, AB 是 eO 的直径, C 是 AB 的中点, eO 的切线 BD 交 AC 的延长线于点 D ,E 是 OB 的中点, CE 的延长线交切线 BD 于点 F,AF 交 eO 于点 H,连接 BH . ( 1)求证: AC=CD ; ( 2)若 OB=2,求 BH 的长.
AB , FE ,FD 之间的数量关系,并证明.
25.( 8 分)( 2014?北京) 对某一个函数给出如下定义: 若存在实数 M > 0,对于任意的函数值 y,都满足﹣ M <y≤M ,
则称这个函数是有界函数,在所有满足条件的
M 中,其最小值称为这个函数的边界值.例如,如图中的函数是有
界函数,其边界值是 1.
=所求情况数与总情况数之比.
4.( 4 分)(2014 ?北京)如图是几何体的三视图,该几何体是(

A .圆 锥
B.圆柱
C. 正 三棱柱
D .正 三棱锥
考点 : 由三视图判断几何体. 分析: 如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状. 解答: 解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,
五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分)
23.( 7 分)( 2014?北京)在平面直角坐标系 ( 1)求抛物线的表达式及对称轴;
2
xOy 中,抛物线 y=2x +mx+n 经过点 A (0,﹣ 2), B (3, 4).
( 2)设点 B 关于原点的对称点为 C,点 D 是抛物线对称轴上一动点,记抛物线在 A , B 之间的部分为图象 G(包

北京市中考数学知识点分布与试卷分析

北京市中考数学知识点分布与试卷分析

北京市初中数学专题知识点I、数与代数部分:一、数与式:1、实数:1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第1题,必考题4分) 2)科学记数法表示一个数(选择题第二题,必考4分)3)实数的运算法则:混合运算(解答题13题,必考4分)4)实数非负性应用:3、整式: 1)整式的概念和简单运算、化简求值(解答题5分)2)利用提公因式法、公式法进行因式分解(选择填空必考题4分)4、分式:化简求值、计算(解答题)、分式求取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题4分)二、方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)4、一元二次方程根的判别式三、函数及其图像1、平面直角坐标系与函数1)函数自变量取值范围,并会求函数值;2)坐标系内点的特征;3)能结合图像对简单实际问题中的函数关系进行分析(选择8题)2、一次函数(通常与反比例函数相结合,以解答题形式出现。

)3、反比例函数4、二次函数(必考解答题,基本在24题出现,通常是求解析式以及与特殊几何图形综合,动态探究等,有时也在选择题第八题中出现。

)II、空间与图形一、图形的认识1、立体图形、视图和展开图(不是常考题型,但是如果出现则以选择题形式出现)2、线段、射线、直线(其中垂直平分线、线段中点性质及应用常在解答题中出现,两点间线段最短常用于解决路径最短的问题)3、角与角分线(解答题)4、相交线与平行线5、三角形(三角形的内角和、外角和、三边关系常以选择题形式出现,而三角形中位线的性质应用又是解答题中常用的添加辅助线的方法,其中有关三角形全等的性质、判定是必考解答题,三角形运动、折叠、旋转、平移(全等变换)、拼接等又是探究问题中的重要考点之一)6、等腰三角形与直角三角形(该考点常与四边形与圆相结合在解答题中出现,而与函数综合形成代数几何综合题,也是必考的解答题)7、多边形:内角和公式、外角和定理(选择题)8、四边形(特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用以动点问题、面积问题及相关函数解析式问题出现,同时,梯形问题是中考中的必考解答题,而与四边形有关的图形探究题又是最后一道解答题25题的通常考察形式。

2012年中考数学试卷分析

2012年中考数学试卷分析

2012年中考数学试卷分析分值分析:选择题6题,4分/题,难度系数A级,预防粗心,共24分;填空12题,4分/题,共48分,第18题难度B+,正确率为50%;计算题19题,10分;解方程20题,10分;21题解直角三角形,10分;22题一次函数的实际应用10分,23题简单的几何证明和计算10分;24题函数和平面直角坐标系的混合运用,难度系数C,12分;25题第一问较简单,难度系数A,第2问难度系数C,第3问难度系数C+,共14分。

知识点分析:1、单项式和多项式,初一上册内容;2、概率和统计,中位数、众数和平均数;3、解不等式,解集的确定;4、二次根式、分母有理化、化简和求值;5、轴对称图形和中心对称图形;6圆与圆的位置关系;7、计算,求绝对值;8、因式分解-提取公因式法;9、函数的增减性;10、解根式方程;11、一元二次方程根的情况;12、函数的平移;13、概率的计算;14、频率分布和统计;15、向量的计算-三角形法则和平行四边形法则;16、相似三角形性质的运用;17、正三角形多心合一的问题及应用;18、平移和翻折的运用(画图能力);19、计算,细心,难度系数A-;20、解方程,难度系数A;21题解直角三角形的运用,建立直角三角形,难度系数A+;22、应用题或一次函数的运用,难度系数A+;23、三角形一边平行线、比例线段的运用和平心四边形,几何部分,难度系数B;24、函数。

平面直角坐标系和锐角三角比的综合运用,难度系数不是很大,但是因涉及知识点和计算较多,故定为B+或C,25、圆的综合运用,往往会和相似三角形混合运用,但是今年没有涉及到,圆的比重增加;分数占比:初一上118分,初一下20分,初二上20分,初二下30分,初三上32分,初三下30分;难易比例为:2:8做试卷要求:1-6必须全部正确;12-17全部正确,18题正确率50%,19-23全部正确,24,前两问,25题第一问,只要准确率保证,学员基本能考到130分。

2023年数学中考模拟试卷与解析

2023年数学中考模拟试卷与解析

2023年数学中考模拟试卷及解析一、单选题1.在“自主互助学习型课堂竞赛”中,为奖励表现突出的同学,初一(7)班利用班费100元钱,购买钢笔、相册、笔记本三种奖品,其中钢笔至多买2支,若钢笔每支20元,相册每本10元,笔记本每本5元,在把钱都用尽的条件下,买法共有()A .9种B .10种C .11种D .12种2.已知a b <,下列结论中成立的是()A .11a b -+<-+B .33a b-<-C .112222a b -+>-+D .如果0c <,那么a b c c<3.学校课后延时服务项目为同学们提供了丰富多彩的课程,欢欢从国际象棋、玩转发明、美术欣赏、艺术体操四个社团中任选一个参加,则恰好选到艺术体操社团的概率为()A .1B .12C .13D .144.如图中几何体的正视图是()A .B .C .D .5.如图,是某几何体的三视图,则该几何体是()A .长方体B .正方体C .三棱柱D .圆柱6.下列说法正确的是()A .全等的两个图形成中心对称B .成中心对称的两个图形必须能完全重合C .旋转后能重合的两个图形成中心对称D .成中心对称的两个图形不一定全等7.下列说法正确的是()A .一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是35B .某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C .射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12D .小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,则小李获胜的可能性较大8.若二次函数()2141y k x x =-++的图象与x 轴有一个交点,则k 的取值范围是()A .5k =B .0k =C .5k ≠且0k ≠D .5k =或0k =二、填空题9.a 、b 、c 为同一平面内的三条直线,已知a ⊥b ,a ∥c ,则直线b 与c 的位置关系为_____.10.已知菱形ABCD 的两条对角线AC 、BD 的长分别是8cm 和6cm .则菱形的面积为_____2cm .11.已知一次函数y =kx +b 图像不经过第二象限,那么b 的取值范围是_________.12.“如果a b =,那么a b =”的逆命题是___________.13.请你写出一个函数,使它的图象经过点A (1,2),这个函数的表达式可以是_________.14.如图,在ABC ∆中,用直尺和圆规作图,若BC 10cm =,则DE =____cm .15.将抛物线2(3)2y x =--向右平移________个单位长度后经过点(2,2)A .16.抛物线2y ax bx c =++(0a ≠)的对称轴为=1x -,经过点(1,n ),顶点为P ,下列四个结论:①若a<0,则c n >;②若c 与n 异号,则抛物线与x 轴有两个不同的交点;③方程2()0ax b n x c +-+=一定有两个不相等的实数解;④设抛物线交y 轴于点C ,不论a 为何值,直线PC 始终过定点(3,n ).其中正确的是_________(填写序号).三、解答题17.如图,菱形ABCD 中,E 是对角线BD 上的一点,连接EA 、EC ,求证:∠BAE =∠BCE .18.如图,△ABC .(1)用尺规作图作出A 点关于BC 的对称点D (保留作图痕迹);(2)在(1)的情况下,连接CD 、AD ,若AB=5,AC=AD=8,求BC 的长.19.如图,在ABC 和AEF △中,AE AB =,AC AF =,CAF BAE ∠=∠.求证:BC EF =.20.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?21.已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试问:DE 和DF 相等吗?说明理由.22.如图,AD ⊥CD ,BC ⊥CD ,AD =CE ,,AED EBC ∠=∠求证:AE =EB .23.如图所示,已知点E ,F 在ABCD Y 的对角线BD 上,且BE DF .连接AF ,CE ,求证:四边形AECF 是平行四边形.24.某学校准备购买A 、B 两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两所学校购买A 、B 两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)AB 甲38622乙54402(1)求A 、B 两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A 种型号的篮球最少能采购多少个?25.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球试验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出1个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次摸球试验汇总后统计的数据:摸球的次数15020050090010001200摸到白球的频数5164156275303361摸到白球的频率0.3200.3120.3060.3030.3020.301(1)请估计:当摸球的次数很大时,摸到白球的频率将会接近______;假如你去摸一次,你摸到红球..的概率是______;(精确到0.1)(2)试估计口袋中红球有多少个.参考答案与解析1.D【分析】根据题意设未知数,列出方程,然后分类讨论即可.【详解】解:设购买钢笔x 支,相册y 本,笔记本z 本,根据题意得20x+10y+5z=100,化简,得4x+2y+z=20,∵钢笔最多买2支,∴x 可以取1、2,当x=1时,4+2y+z=20,即2y+z=16,y 可以取的值有1、2、3、4、5、6、7,有7种;当x=2时,8+2y+z=20,即2y+z=12,y 可以取的值有1、2、3、4、5,有5种;∴一共有买法7+5=12(种),故选:D .【点睛】本题考查了三元一次方程组的应用,根据题意列出方程,分类讨论是解题关键.2.C【分析】根据不等式的基本性质对各选项分析进行分析即可.【详解】因为a<b ,A 选项:-a>-b,-a+1>-b+1,故错误;B 选项:-3a>-3b ,故错误;C 选项:1122a b ->-,112222a -+>-+,故正确;D 选项:如果0c <,那么a bc c>,故错误;故选:C.【点睛】考查了不等式的基本性质,解题关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向要改变.3.D【分析】直接利用简单事件的概率公式即可得.【详解】解:欢欢从国际象棋、玩转发明、美术欣赏、艺术体操四个社团中任选一个参加共有4种等可能的结果,其中,恰好选到艺术体操社团的结果只有1种,则恰好选到艺术体操社团的概率为14P=,故选:D.【点睛】本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键.4.C【分析】根据主视图的画法进行判断.【详解】解:此几何体的主视图由四个正方形组成,下面一层三个正方形,且左边有两层.故选C.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.5.A【分析】该几何体的主视图为正方形,俯视图与左视图均为矩形,易得出该几何体的形状.【详解】解:该几何体的主视图为正方形,左视图为矩形,俯视图是一个矩形,则可得出该几何体是长方体.故选:A.【点睛】主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.6.B【分析】根据中心对称图形的概念,即可求解.【详解】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选B.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.7.D【分析】根据概率的意义及计算,逐项分析即可.【详解】A、一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是33 538=+,而不是35,故错误;B 、某彩票的中奖概率是5%,只能说明中奖的可能性大小为5%,买100张彩票并不是一定有5张中奖,故错误;C 、射击运动员射击一次,中靶与不中靶的可能性不相等,所以中靶的概率不是12,故错误;D 、小李与小陈出拳的手指数都有5种可能:分别为1,2,3,4,5,两人总共有25种出拳情况,两人出奇数时,手指数和为偶数共有9种情况;两人出偶数时,手指数和为偶数共有4种情况,总共有9+4=13种情况,所以小李获胜的概率为:1325,则小陈获取的概率为131212525-=,显然小李获胜的可能性大,故正确;故选:D.【点睛】本题考查了概率的意义及概率的计算,理解概率的意义并正确计算概率是关键.8.A【分析】根据二次函数的定义和判别式的意义得到10k -≠且240b ac =-= ,即可求解.【详解】根据题意得10k -≠,且()2244410b ac k =-=--= ,解得k=5.故选:A .【点睛】本题考查了抛物线与x 轴的交点,解题的关键是将抛物线与x 轴的交点问题转化为解关于x 的一元二次方程.9.垂直【详解】∵a 、b 、c 为同一平面内的三条直线,且a ⊥b ,a ∥c ,∴b ⊥c.∴b 与c 的位置关系是互相垂直.10.24【分析】根据菱形的面积公式进行计算即可;【详解】解:由菱形的面积公式:对角线乘积的一半得:11862422S AC BD =⨯=⨯⨯=2cm ;故答案为:24.【点睛】本题考查菱形的面积.熟记菱形的面积公式是解题的关键.11.b≤0【分析】根据一次函数的性质即可求解.【详解】不经过第二象限,可以只经过一,三象限或经过一,三,四象限故b≤0故填:b≤0.【点睛】此题主要考查一次函数的图像,解题的关键是熟知b的性质.12.如果a b=,那么a b=【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b=,那么a b=”的逆命题是:“如果a b=,那么a b=”,故答案为:如果a b=,那么a b=.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义.13.y=2x【分析】设该函数表达式为y=kx(k≠0),根据待定系数法即可求出k值,此题得解.【详解】解:设该函数表达式为y=kx(k≠0),代入点A(1,2)得:2=k,∴该函数表达式为y=2x.故答案为y=2x.【点睛】本题考查了待定系数法求一次函数解析式,根据点A的坐标利用待定系数法求出函数解析式是解题的关键.14.5【分析】由图可得DE是△ABC的中位线,进而得出答案.【详解】解:由图可知,作的是AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=12BC=5cm.故答案为:5.【点睛】此题主要考查了基本作图、线段垂直平分线的性质以及三角形中位线的性质,正确得出DE是△ABC的中位线是解题关键.15.1【分析】直接利用二次函数平移规律结合二次函数图象上点的坐标特点得出答案.【详解】解:∵将抛物线y =(x ﹣3)2﹣2向右平移后经过点A (2,2),∴设向右平移a 个单位,故y =(x ﹣3-a )2﹣2,则2=(2﹣3-a )2﹣2,解得:a 1=1,a 2=﹣3,(不合题意舍去)即将抛物线y =(x ﹣3)2﹣2向右平移1个单位后经过点A (2,2).故答案为:1.【点睛】此题主要考查了二次函数平移规律以及二次函数图象上点的坐标特点,正确掌握平移规律是解题关键.16.①②④【分析】利用抛物线的对称轴为=1x -顶点b =2a ,将(1,n )代入解析式得到a +b +c =n ,即3a +c =n ,n -c =3a ,3n ca -=,由此判断①正确;利用∆判断②正确;求出∆,根据a =c ,a ≠c 判断③错误;求出点P ,点C 坐标,得到直线PC 的解析式,计算当x =3时y =n -c +c =n ,判断④正确.【详解】解:∵抛物线2y ax bx c =++(0a ≠)的对称轴为=1x -,∴12bx a=-=-,即b =2a ,∵抛物线过点(1,n ),∴a +b +c =n ,即3a +c =n ,∴n -c =3a ,3n ca -=,若a <0,则n -c <0,即n <c ,故①正确;∆=24b ac -=244a ac -=4a (a -c )=()433n c n c c -⎛⎫--⎪⎝⎭=()224549n nc c -+,∵c 、n 异号,∴∆>0,则抛物线与x 轴有2个交点,故②正确;方程()20ax b n x c +-+=,∆=()()224b n ac a c --=-,当a =c 时,∆=0,方程只有一个实数根;当a ≠c 时∆>0,方程有2个实数根,故③错误;∵P 为抛物线2y ax bx c =++顶点,∴P 坐标为(-1,-a +c ),∵点C 坐标为(0,c ),直线PC 的解析式为y =ax +c ,又3n c a -=,则y =()3n c -x +c ,点(3,n ),当x =3时y =n -c +c =n ,∴直线PC 始终过(3,n ),故④正确.故答案为①②④.【点睛】此题考查了抛物线的对称轴公式,抛物线与x 轴交点情况,利用一元二次方程根的判别式确定方程的根的情况,二次函数的性质,熟练掌握各知识点是解题的关键.17.详见解析【分析】先根据四边形ABCD 是菱形证出BA =BC ,∠ABE =∠CBE ,又因为BE=BE ,所以△ABE ≌△CBE ,最后全等三角形对应角相等求出∠BAE =∠BCE.【详解】证明:∵四边形ABCD 是菱形,∴BA =BC ,∠ABE =∠CBE ,∵BE =BE ,∴△ABE ≌△CBE (SAS ),∴∠BAE =∠BCE .【点睛】本题考查菱形的性质(1)对角线互相平分对角;(2)菱形四条边都相等.全等三角形的性质:全等三角形对应角相等.18.(1)作图见解析;(2)3+【详解】试题分析:(1)略;(2)由BC 垂直平分AD 可得:ABO ∆、AOC ∆是直角三角形,在Rt AOC ∆中,由AC=8,AO=4得OC =Rt ABO ∆中,由AB=5,AO =4得OB =3,即求BC =OB+OC =3+试题解析:(1)如图所示:(2)如图所示:∵OA =OB ,BC 垂直平分AD ,AD =AC =8,∴AO =3,OC==又∵在Rt ABO ∆中,AB =5,∴OB3=,又∵BC =BO+OC∴BC =3+19.证明见解析.【分析】先根据角的和差可得EAF BAC ∠=∠,再根据三角形全等的判定定理与性质即可得证.【详解】证明:CAF BAE ∠=∠ ,CAF CAE BAE CAE ∴∠+∠=∠+∠,即EAF BAC ∠=∠,在ABC 和AEF △中,AB AE BAC EAF AC AF =⎧⎪∠=∠⎨⎪=⎩,()ABC AEF SAS ∴≅V V ,BC EF ∴=.【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.20.每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元【分析】根据题意列出二元一次方程组解出即可.【详解】解:设每盒羊角春牌绿茶x 元,每盒九孔牌藕粉y 元,依题意可列方程组:649603300x y x y +=⎧⎨+=⎩解得:12060x y =⎧⎨=⎩答:每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元.【点睛】本题考查二元一次方程组的应用,关键在于理解题意找出等量关系.21.相等,理由见解析【分析】连接AD ,证明ACD ≌△ABD ,可得DAE DAF ∠=∠,进而根据角平分线的性质即可证明DE 和DF 相等.【详解】连接AD,如图,在△ACD 和△ABD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴ACD ≌△ABD (SSS ),DAB DAC∴∠=∠即DAE DAF∠=∠∵DE ⊥AE ,DF ⊥AF ,∴DE =DF .【点睛】本题考查了角平分线的性质,三角形全等的性质与判定,掌握角平分线的性质是解题的关键.22.见解析【分析】由“AAS ”可证△ADE ≌△ECB ,可得AE =BE .【详解】证明:∵AD ⊥CD ,BC ⊥CD ,∴∠C =∠D =90°,在△ADE 和△ECB 中,90D C AED EBC AD CE ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADE ≌△ECB (AAS ),∴AE =BE .【点睛】本题考查的是三角形全等的判定与性质,掌握利用角角边定理判断三角形全等是解题的关键.23.证明见解析.【分析】根据四边形ABCD 是平行四边形,可得ABE CDF ∠=∠,可证得△ABE ≌△CDF ;从而得到∠AEB =∠DFC ,AE =CF ,继而得到∠AED =∠BFC ,可得到AE ∥CF ,即可求证.【详解】证明:∵四边形ABCD 是平行四边形,∴AB DC ∥,AB CD =,∴ABE CDF ∠=∠,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF (SAS );∴∠AEB =∠DFC ,AE =CF ,∵∠AEB +∠AED =∠DFC +∠BFC =180°,∴∠AED =∠BFC ,∴AE ∥CF ,∴四边形AECF 是平行四边形.【点睛】本题主要考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质,全等三角形的判定和性质是解题的关键.24.(1)A 种型号的篮球销售单价为26元,B 种型号的篮球销售单价为68元;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A 种型号的篮球最少能采购9个.【分析】(1)设A 型号篮球的价格为x 元、B 型号的篮球的价格为y 元,就有3x+8y=622和5x+4y=402,由这两个方程构成方程组求出其解即可;(2)设最少买A 型号篮球m 个,则买B 型号篮球球(20﹣m )个,根据总费用不超过1000元,建立不等式求出其解即可.【详解】(1)设A 型号篮球的价格为x 元、B 型号的篮球的价格为y 元,由题意得,3862254402x y x y +=⎧⎨+=⎩,解得:2668x y =⎧⎨=⎩.答:A 种型号的篮球销售单价为26元,B 种型号的篮球销售单价为68元.(2)设最少买A 型号篮球m 个,则买B 型号篮球球(20﹣m )个,由题意得,26m+68(20﹣m )≤1000,解得:m≥81221,∵m 为整数,∴m 最小取9.∴最少购买9个A 型号篮球.答:若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A 种型号的篮球最少能采购9个.【点睛】本题考查了1、一元一次不等式的应用,2、二元一次方程组的应用25.(1)0.3,0.7;(2)70【分析】(1)当事件的实验次数越来越多时事件的频率都接近同一个数值,可以根据频数表示概率,由此计算得到红球的概率;(2)设口袋中有红球x 个,根据题意列方程解答即可得到答案.【详解】(1)∵摸球的次数很大,摸到白球的频率都接近0.3,∴摸到白球的概率是0.3,∴摸到红球的概率是1-0.3=0.7,故答案为:0.3,0.7;(2)设口袋中有红球x个,由题意得:300.3 30x=+,解得x=70,经检验,x=70是原方程的解且符合题意,答:口袋中有红球70个.【点睛】此题考查利用事件的频率估计事件的概率,列分式方程解决实际问题,正确理解事件的实验次数越多时得到事件的概率是解题的关键.。

2014中考二模数学试卷分析

2014中考二模数学试卷分析

2014中考二模数学试卷分析一、试卷分析试题立足基础,面向全体学生,大部分的试题在考查了学生的基础知识和基本技能的同时还具有以下特点:1、紧密联系实际生活。

如4题;9题;12题;13题;20题;22题;以生活中的实际问题为载体,考查学生利用数学知识解决实际问题的能力,体现了数学来源于生活服务于生活。

2、对课堂教学改革具有一定的指导性。

如23题,呈现了课堂教学中小组合作的学习模式。

3、试卷的阅读量较大,给学生解题造成了不少的困难。

如20题;22题;23题;24题。

学生读题,理清题中的关系就是难点,很多同学被长长的题意就吓住了。

4、整体试卷难度不大,适合大部分同学做,也有少量题目较难,体现了试卷的选拔功能,如23、24等。

二、答题情况分析1、全年级100分以上的5人,及格人数44人,最高分108分,考的不好2、学生对时间和精力分配不合理导致后面的题没有时间做。

3、选择填空较简单,学生得分情况良好。

4、19题,学生做惯了用树形图,列表法求概率,出现用频率估计概率学生感到突然,说明这个是学生的弱点。

5、20题学生做的不错,难点在题目较长,从中找出有用的数据。

6、22题学生解完分式方程后不检验。

不少同学把简单的问题想的比较复杂。

题目要求提出一个问题,可是学生提的问题比较复杂,导致自己也不会解。

7、8、23题阅读量比较大,题目对于我们学生来说也比较难,几乎没有学生做出来,在接下来的复习时间,应针对少数比较好的学生加强这样类型试题的训练。

9、24题大部分同学能够完成第一问,其实后面两道也不难,如果给学生多点时间应该有不少同学可以做出来,需要训练学生的一些应试技巧。

三、对以后教学的几点建议:针对学生出现的错误以及问题,制定了以下整改建议:1、注重培养学生发现问题和提出问题,从而解决问题的能力。

2、加强优生攻克难题的解题技巧的训练。

3、注意数学与实际生活的联系。

4、在扎实基础的同时要对题目深挖,多变,激发学生兴趣,提高学生的解题技巧。

人教版数学八年级上册 全册全套试卷中考真题汇编[解析版]

人教版数学八年级上册 全册全套试卷中考真题汇编[解析版]

人教版数学八年级上册全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.2.如图,1BA和1CA分别是ABC∆的内角平分线和外角平分线,2BA是1A BD∠的角平分线,2CA是1A CD∠的角平分线,3BA是2A BD∠的角平分线,3CA是2A CD∠的角平分线,若1Aα∠=,则2018A∠=_____________【答案】20172α【解析】【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.4.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.5.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.6.如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了__米.【答案】600【解析】【分析】【详解】解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.二、八年级数学三角形选择题(难)7.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理8.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2aC.4D.-4【答案】C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

试卷分析报告(通用15篇)

试卷分析报告(通用15篇)

试卷分析报告(通用15篇)在我们平凡的日常里,报告十分的重要,其在写作上具有一定的窍门。

一听到写报告马上头昏脑涨?以下是小编为大家整理的试卷分析报告,仅供参考,大家一起来看看吧。

试卷分析报告篇1一年级总人数23人,考试总分1787分,均分为77.7分,及格人19人,及格率82.6,合格率为82.6%,优生率为40%。

本次考试内容的分为十一项内容,每项内容都是本册教材的基础中重点。

本次测验取得成绩得主要原因:内容符合年级学生的特点,内容的范围比较的广,从字到词,从词到句始终紧扣教材与生活实际。

从学生的总体成绩和上学期期末成绩相比只保持平稳考试阶段,没有上升,也没有下降,但和同年级比,我认为分相差不大,总体成绩还是落后的。

通过本次的测查,可以看出教师在平时教与学中存在不少的问题:1.教师的经验不足,对新的教材理解不透。

2.对学生的书写抓得不实,造成个别同学书写差胳膊少腿。

3.答题粗心大意,有易漏的现象。

4.题型训练花样少,死板。

5.抓两头学生不够扎实,中间学生和特差生距离太大。

改进措施:1.教师深钻年纪教材,熟悉年纪特点,正确把握教材的重难点。

2.多看,多听适合年纪教学资料,经验,不断改进教学方法。

3.在教育教学中,注重学生学习习惯的培养,能力的培养,尤其是写字必须要求正确,规范。

4.在平时的作业,师尽量做到面批面改,发现问题及时改正。

5.阅读教学做到以“读”字当头,多读,精讲,多练填空,重视朗读背诵的指导及言语积累。

6.多于家长配合,狠抓学生的书写。

7.重视单元测试,让学生多熟悉不同题型。

8.在班内形成以好带差,促进“互学互帮互进步”的新风尚。

奋斗目标:在后半学期师要认真熟悉吃透本年级教材的重点与难点,要狠抓差生,特别是王海娟,马佳丽,力争期末考试成绩排列在平行年级中或者是中上。

试卷分析报告篇2一、总体分析这一份期末考卷,可以说是命题者花了一定心思,出的非常成功。

考卷突出了检查学生一个学期所掌握的知识和所具有的语文能力,重视语文基础知识的考查,突出对学生语文素养的考查,对今后的中考复习具有较强的指导性。

2014安徽中考数学试卷分析(含word版)

2014安徽中考数学试卷分析(含word版)

2014安徽中考数学试卷分析一、试卷结构和难度较前两年有所变化试卷对于一些知识点的考查方式和分值较前两年有所变化,比如:对于圆的考查以往一般以选择或填空呈现,今年将圆与三角形结合起来,以10分的解答题出现,综合性较以往有所提高;统计问题前几年一直作为解答题,占据10或12分的分值,今年把统计以选择题的形式进行简单的考查,把概率作为12分的问题进行考查,且不仅考查了学生联系实际的想象能力,而且题目摒弃常规的解答和思考方式,具有一定的新颖性;另外,往年一直把对于三角形和四边形的综合考查作为压轴问题,今年将它们与正多边形结合起来,以14分的问题分步考查,对学生的综合能力有了更高的要求。

二、试卷考查重点分析1、试题注重学生数学实际应用能力的考查。

全卷考查学生数学实际应用的有六道试题(第5 、11 、12 、18 、20、21题),约占总分的1/3 。

这些题目涉及工农业、信息产业、交通、环境保护、正确决策等方面,具有时代气息。

这些问题都要求学生能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。

2、试题具有一定创新性与操作性,全面考查学生的探究能力。

试卷第8、14、18、21、22、23题等都具有探究性,需要学生通过“观察、思考、猜测、推理”等思维活动分析并解决问题。

其中第22题是一个“新概念题”,题目定义了一个“同簇二次函数”的概念,然后以这个概念展开两个问题,题目很新颖,其中第(2)问学生感觉有些难度,需要较好的计算能力和丰富的解题经验。

第23题(压轴题)要求学生能将多边形问题转化为三角形问题进行研究,体现了“化归”的数学思想;同时要求学生能够合理运用图形变换,正确添加辅助线,体现出学生的创新思维。

启示:1、关注学生思考方法的培养,提高学生思维水平。

今年试卷第9、10、14、21、23题都对学生的思维广度和思维深度有一定的要求,所以平常在练习过程中一定要关注思考方法,切忌缺乏思考只追求答案的题海练习。

北京市海淀区2014年中考二模数学试题分析(含二模试卷及答案)

北京市海淀区2014年中考二模数学试题分析(含二模试卷及答案)

2014年海淀区中考二模数学试卷分析二模结束后,孙老师对海淀区中考二模数学试卷的整体趋势、考察内容在中考考纲中的落点分布、能力板块分布进行详细分析,进而给予针对性的备考建议,以帮助考生进行备考冲刺。

一、整体趋势1、通过二模与一模考试相比较,在第8、22、24题难度上比一模略有下降,但是22、24题考察图形变换能力较为突出,特别是相似的应用在题中起到了关键的作用,学生们要熟练掌握相似的相关性质。

2、整体难度上还是比较接近去年的中考难度,基础题及中等题难度不大,分值在87左右,中等偏上及难题还是比较有区分度,在这方面体现了考试分级的特点。

3、在试卷的结构上依旧一模形式20题与21题互换位置,避免学生在圆的题上浪费时间,影响后面的答题,也给我们学生一个启示,考试要由简入难,循序渐进去答题,不要只盯住一点,要有全局观。

二、考察内容在中考考纲中的落点分布2014海淀区二模考试知识点分类汇总三、能力版块分布四、复习建议1、针对二模考试中出现成绩一般的要在中考前这不到20天的时间里进行重点突击;(1)基础不牢固的:重点练习不清楚的知识点的相关习题,达到熟练的目的;(2)总马虎出错的:认真弄清楚自己想题、答题的每一个步骤,并且在答题的过程中不要跳步,尽量按部就班完成习题,这样练习下去可以降低出现马虎的概率;(3)速度慢的:对于速度慢的,首先巩固知识点,把知识点熟记于心之后开始用套题计时进行练习,每次都要有时间规划,掌握答题的节奏,这样才能提高速度。

2、针对成绩较好的同学千万不要放松警惕,在最后时间里要坚持到最后一刻,把考试中还是失分的地方进行重点练习,并且也要至少2天完成一套试题,规划时间,保持状态,迎接考试。

3、通过海淀一、二模,西城一、二模以及其他各城区的考试,最后一题以新定义的形式出现的居多,并且有些题与圆的相关性质都一定联系,所以我们的同学要首先把圆的相关的知识进行巩固加深。

并且解决此类问题时要认真、仔细阅读习题材料,明确材料的内容才能找到解决此类问题的关键钥匙,因此同学们要不急不燥,认真考虑,综合运用。

2010年北京市中考数学试卷(含答案)

2010年北京市中考数学试卷(含答案)

2010年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个‧‧是符合题意的.1.2-的倒数是 A .12- B .12C .2-D .22.2010年6月3日,人类首次模拟火星载人航天飞行试验“火星 — 500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12 480小时的“火星之旅”. 将12 480用科学记数法表示应为 A .312.4810⨯ B .50.124810⨯ C .41.24810⨯ D .31.24810⨯ 3.如图,在△ABC 中,点D E 、分别在边上,DE ∥BC ,若:3:4AD AB =,6AE =,则AC 等于AB AC 、A. 3B. 4C. 6D. 8 4.若菱形两条对角线的长分别为6和8,则这个菱形的周长为A .20B .16C .12D .105.从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是A .15B .310C .13 D .126.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为A .2(1)4y x =++B .2(1)4y x =-+C .2(1)2y x =++D .2(1)2y x =-+ 7.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 队员5 甲队 177 176 175 172 175 乙队170175173174183设两队队员身高的平均数依次为x 甲,x乙,身高的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是 A .x x =甲乙,22S S>乙甲B .x x =甲乙,22S S<乙甲 C.x x >甲乙,22S S >乙甲D .x x <甲乙,22S S<乙甲8.美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个‧‧‧‧符合上述要求,那么这个示意图是A BC D 二、填空题(本题共16分,每小题4分)9.若二次根式21x -有意义,则x 的取值范围是 . 10.分解因式:34m m -= .11.如图,AB 为⊙O 的直径,弦CD AB ⊥,垂足为点E ,连结OC ,若5OC =,8CD =,则AE = .12.右图为手的示意图,在各个手指间标记字母 A ,B ,C ,D.请你按图中箭头所指方向(即 A →B →C →D →C→B →A →B →C → … 的方式)从 A 开始数连续的正整数 1,2,3,4,…,当数到 12 时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:101201043tan 603-⎛⎫-+--︒ ⎪⎝⎭.14.解分式方程 312422x x x -=--.15.已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =. 求证:ACE DBF ∠=∠.16.已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.17.列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18.如图,直线23y x =+与x 轴交于点A ,与y 轴交于点B .(1) 求A ,B 两点的坐标;(2) 过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求△ABP 的面积.四、解答题(本题共20分,每小题5分)19.已知:如图,在梯形ABCD 中,AD ∥BC ,2AB DC AD ===,4BC =.求B ∠的度数及AC 的长.20.已知:如图,在△ABC 中,D 是AB 边上一点,⊙O 过D B C 、、三点,290DOC ACD ∠=∠=︒.(1)求证:直线AC 是⊙O 的切线;(2)如果75ACB ∠=︒,⊙O 的半径为2,求BD 的长.21.根据北京市统计局公布的2006—2009年空气质量的相关数据,绘制统计图如下: 2006—2009年北京全年市区空气质量达到二级和好于二级的天数统计图由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是 年,增加了 天;(2) 表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表城 市北京上海天津昆明 杭州广州南京成都沈阳西宁百分比91% 84% 100% 89% 95% 86% 86% 90% 77%(3) 根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市 数量在这十个城市中所占的百分比为 %;请你补全右边的 扇形统计图.22.阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,8AD =cm ,6AB =cm . 现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种 方式不停地运动,即当P 点碰到BC 边,沿与BC 边夹角为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45︒的方向作直线运动,…,如图1所示.问P 点第一次与D 点重合前‧‧‧与边相碰几次,P 点第一次与D 点重‧合时‧‧所经过的路径的总长是多少.小贝的思考是这样开始的 : 如图2,将矩形ABCD 沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A PE =. 请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前‧‧‧与边相碰 次;P 点从A 点出发到第一次与D 点重合时‧‧‧所经过的路径的总长是 cm ; (2) 进一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD AB >.动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上. 若P 点第一次与B 点重合前‧‧‧与边相碰7次,则:A B A D 的值为 .2009年十个城市空气质量达到 二级和好于二级的天数占全年天数百分比分组统计图图1图2五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知反比例函数ky x=的图象经过点(31)A -,. (1) 试确定此反比例函数的解析式;(2) 点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由;(3) 已知点(36)P m m +, 也在此反比例函数的图象上(其中 0m <),过P 点作x 轴的垂线,交x 轴于点M . 若线段PM 上存在一点Q ,使得△OQM 的面积是12,设Q 点的纵坐标为n ,求2239n n -+的值.24.在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点(2,)B n 在这条抛物线上.(1) 求B 点的坐标;(2) 点P 在线段 OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线 OB 交于点E ,延长PE 到点D ,使得ED PE =,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形 PCD 的顶点 C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM QF =,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到 t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.25.问题:已知△ABC 中,2B A C A C B ∠=∠,点D 是△ABC 内的一点,且AD CD =,BD BA =.探究DBC∠与ABC ∠度数的比值. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当90BAC ∠=︒时,依问题中的条件补全右图.观察图形,AB 与AC 的数量关系为 ;当推出15DAC ∠=︒时,可进一步可推出DBC ∠的度数为 ;可得到DBC ∠与ABC ∠度数的比值为 .(2) 当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC ∠度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.2010年北京市高级中等学校招生考试数学试卷答案一、选择题 1.A , 2.C , 3.D , 4.A , 5.B , 6.D , 7.B , 8.B , 二、填空题 9. x ≥21, 10. m (m +2)(m -2), 11. 2, 12. B 、603、6n +3; 三、解答题13. 解:原式=3-1+43-3=2+33。

初三数学试卷分析及反思

初三数学试卷分析及反思

九年级数学第一学期期中考试分析及反思成伟荣本次试题题量较大,题目偏难,简单题较少,难度与中考题相当。

同时与能力考查紧密相结,每一个题仅仅是考察了学生必学必会,也就是应知应会的知识,不偏不怪,至于学生得分低,成绩差,关键是平时的知识落实不到位,这给我们提出了警示,下面就本次考试作简单分析:一、从代数方面看,一元二次方程、二次根式考察的题目比较多,也是本学期学习中的重点难点。

这就要求同学们在平时学习的时候,对相应的基本概念,基本技能多加练习。

并注意归纳总结,努力发现它们之间的联系。

二、从几何方面看,主要侧重考察相似三角形有关的一些问题。

是学习中的重点和难点。

这要求同学们对基本概念熟练掌握,对基本技能熟练运用。

在学习过程中多动动手,发挥空间想象。

三、从试卷学生得分情况看1.选择题:学生出错较多的是4、7、9、10第4、9题是关于三角函数的计算,属于超范围题目,正确率为零。

第7题考察学生对相似三角形的性质和判定的综合应用,大部分学生掌握不好。

第10题考察了学生对相似矩形的判定的应用,由于刚学过,对知识的理解不透彻,。

2.填空题:得分率低,每个题的分量都不轻,考察了学生直角坐标的确定(11题)、三角形中位线(14题)、数形结合的思想规律题(15题)。

13题属于超范围题目。

3.解答题:题目覆盖面较广,知识点较全,既有动手操作、又有动脑思考,既有形象思维(19、22),又有抽象理解(23)函数问题。

最后的综合性问题,要求同学们对学过的知识能够融会贯通,具备发散思维的习惯,数形结合的去考虑问题,解决问题。

四、对自己平时工作的反思。

反思一学期的教学总感到有许多的不足与思考。

从多次考试中发现一个严重的问题,许多学生对于比较基本的题目的掌握具有很大的问题,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,看来还需要在平时的教学中进一步落实学生练习的反馈与矫正。

2014年北京中考数学试卷分析

2014年北京中考数学试卷分析

..
;. 2014年北京中考数学试卷分析
一、试卷结构:
近几年数学试卷结构比较固定,并未发生改变,依然是选择题1--8题,填空题9--12题,解答题13--25题。

其对应题号分值如下表所示:
二、试卷难度:
相比于2013年中考,今年中考总难度略高与去年中考。

主要是因为新定义增加难度,加重对现场学习能力的考察,及理解能力的考察。

对比今年各区一二模题型,选择题第6题突然加入一次函数的考察,及20题估算的考察突出了今年中考的变化,由于题目难度较低,对学生的影响不大。

第22题的考察方向由之前的对图形变换的考察,逐步改变为现场学习一种新方法并能结合自己所学知识加以应用新方法解题,这样的题型更加突出地考察学生的阅读理解能力。

四边形的题目又回归到了以前对平行四边形的考察,但也没丢掉结合锐角三角函数的角度解决问题的趋势,难度从图形的复杂程度上有所提高,但就解题而言变化不明显。

圆的题目第一问与去年一样没有考察切线证明,而是考察了切线的性质。

第二问没有变化。

第五大题的题型及难度现在也相对固定了,23题的代数综合,24题的几何综合及25题的新定义,题型设置及难度都与去年持平。

三、命题趋势:
从今几年的中考命题来看,中考的试题难度一直在一个水平线上上下波动,在考察学生知识及能力上,更加注重对基础知识的考察及学生现场学习能力的考察。

中考数学试卷考纲考点分析

中考数学试卷考纲考点分析

中考数学试卷考纲考点分析中考数学试卷考纲考点分析基础数学的知识与运用是个人与团体生活中不可或缺的一部分。

其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。

从那时开始,其发展便持续不断地有小幅度的进展。

今天在这给大家整理了一些中考数学试卷考纲考点分析,我们一起来看看吧!中考数学试卷考纲考点分析对于任意一个实数x,都对应着的角(弧度制中等于这个实数),而这个角又对应着确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。

记作f(x)=cscxf(x)=cscx=1/sinx相信同学们看过上述的初中数学余割函数的基础公式定理内容之后,有所感悟了吧。

其实和正弦型函数的解析式差不多,余弦型函数的解析式各常数值对函数图像的影响很大。

余弦型函数余弦型函数解析式:y=Acos(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图“五点作图法”即取ωx+φ当分别取0,π/2,π,3π/2,2π时y的值.在考试当中,余弦型函数的解析式经常运用在函数的综合大题中,是拿分的关键。

在直角坐标系中定义的余弦函数图像,我们相对更容易分析其的对称性特点。

图象性质1)对称轴:关于直线x=kπ,k∈Z对称2)中心对称:关于点(π/2+kπ,0),k∈Z对称作法一、运用五点法做出图象。

二、利用正弦函数导出余弦函数。

①可以由诱导公式六:sin(π/2-α)=cosα导出y=cosx=sin(π/2+x)②因此,y=cosx的图像就相对sinx左移π/2个单位(上增下减是y值的变化,左增右减是x值的变化)初中数学余弦函数的图象的作法有上述两大要点,图像为解题提供了直观的思路。

性质(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R(3)奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心(4)周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;(5)单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。

北京市2022中考试卷分析-数学

北京市2022中考试卷分析-数学

北京市2022中考试卷分析-数学一、各个知识板块所占分值二、各个知识板块考查的难易程度三、试卷整体难度特点分析2020年北京中考数学刚刚终止, 今年试卷整体出现出“新颖”的特点,与近几年中考试题以及今年一模、二模试题有比较大的差异。

总体难度与去年持平,然而最难的题目难度并没有去年高。

考生做起来会感受不太顺手,此份试卷关于优秀学生的区分度将会比去年大,而关于中当学生的区分度将可不能有太大变化。

此份试卷出现出以下几个特点:1.题目的背景和题型都比较新颖。

例如选择题的第8题、解答题第25题,专门是25题第一次在代数题目中用到了定义新运算,题目专门新颖,知识点融合度较高。

考察的方式差不多上平常同学们专门少见到的题型。

2.填空题第12题试题结构与往年不同,考察观看能力和精确作图能力。

本试卷的填空题第12题,需要同学们在试卷上画出比较精确的线段才能专门好的发觉其中的规律,而所表达的规律本身并不复杂,是一个等差数列问题。

3.弱化了关于梯形的考察。

解答题第19题并没有像之前一样是一道题型的问题,取而代之的是一道四边形的题目。

难度并不大。

4.与圆有关的题目增多,例如选择题第8题、解答题第20题。

解答题第24题第二问也能够通过构造辅助圆来解决。

5. 考察学生关于知识点的深入明白得能力。

解答题第23题第三小问,重点考察直线与抛物线位置关系的深入明白得,难度较大。

四、试题重点题目分析(2020年北京中考第23题)23.已知二次函数23(1)2(2)2y t x t x =++++在0x =和2x =时的函数值相等。

(1) 求二次函数的解析式;(2) 若一次函数6y kx =+的图象与二次函数的图象都通过点(3)A m -,,求m 和k 的值;(3) 设二次函数的图象与x 轴交于点B C ,(点B在点C 的左侧),将二次函数的图象在点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线6y kx =+向上平移n 个单位。

北京中考数学试卷分析

北京中考数学试卷分析

北京中考数学试卷分析火红的六月,北京中正如火如荼的进行中。

针对今早新奇出炉数学试卷,高思教育第一时刻为大伙儿分析:一、试题构成①试卷知识板块构成:概率统计、平面几何、代数的分值比,这一点与往年北京中考试卷结构差不多一致。

②试卷难度构成:纵观整套试卷,难度较为平缓,易、中、难的分值比差不多上是,仅有最后两题(第28题几何综合7分题,第29题代几综合8分题)难度较大。

今年试题较往年而言,考察知识点广度变化不大:增加的考点有:1.圆内接四边形对角互补(第28题第(2)问)。

2.利用相对位置探求点的坐标(第8题,“紫禁城宫殿坐标”)。

3.尺规作图原理(第16题,给定线段中垂线的尺规作图之理论依据)。

删除的考点有:1.梯形。

2.圆和圆的位置关系。

3.频数和频率。

今年试题较往年而言,题量增加4题,难度有所下降。

要紧考察考生对差不多知识点的把握程度。

难度降了,可不代表容易得高分,试题出的专门灵活。

总体上讲,要拿115以上高分实属不易。

二、要紧试题具体分析:1.选择题第8题:此题考察利用相对位置探求点的坐标。

此题将紫禁城内各大宫殿置于正方形网格中,以此为背景建立平面直角坐标系。

但只给定x、y轴正方向,并未直截了当给定原点位置和单位长度。

而是通过给定太和门、九龙壁两点坐标间接给出以上信息,考查方式专门灵活。

2.选择题第10题:连续往年选择题最后一题的一贯作风,给定数学模型考查函数大致图像,结合图像特点通过排除法得出正确选项。

3.填空题第15题:严格上讲,此题属于线性拟合问题,考查考生的归纳能力。

此题以北京市2009~2021年轨道交通日均客运量为题材,给出一条由6个点连接而成的折线图。

假如考生注意到这6个点大致在同一条直线上,那么问题迎刃而解:2021年相关于2021年客运增长量大致是2009~2021五年间年均增长量,是108万人次,那么2021年日均客运量约为1 038万人次。

图示 6.解答题第28题:几何综合大题,此题以正方形为大环境,考察旋转、平移、四点共圆、解三角形等知识点。

北京市中考数学试卷(含答案解析)

北京市中考数学试卷(含答案解析)

2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,是圆柱的为A.B.C.D.2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A.||4a>B.0c b->C.0ac>D.0a c+>3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.3B.23C.33D.437.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-); ②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-); ③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-). 上述结论中,所有正确结论的序号是 A .①②③B .②③④C .①④D .①②③④二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE10.若x在实数范围内有意义,则实数x的取值范围是_______.11.用一组a,b,c的值说明命题“若a b<,则ac bc<”是错误的,这组值可以是a=_____,b=______,c=_______.12.如图,点A,B,C,D在O上,CB CD∠==,30∠=︒,则ADB∠=︒,50CADACD________.13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,AD=,则CF的长为________.314.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路3035t≤≤3540t<≤4045t<≤4550t<≤合计A59151166124500 B5050122278500C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).18.计算:04sin45(π2)18|1|︒+--+-.19.解不等式组:3(1)1922x xxx+>-⎧⎪⎨+>⎪⎩.20.关于x的一元二次方程210ax bx++=.(1)当2b a=+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.23.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C .(1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值; /cm x0 1 2 3 4 5 6 1/cm y 5.624.673.762.653.184.372/cm y5.62 5.59 5.53 5.425.19 4.73 4.11(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<x<≤,5060≤,90100xx<≤≤);x<6070≤,7080x<≤,8090≤这一组是:x<b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.26.在平面直角坐标系xOy中,直线44=+与x轴、y轴分别交于点A,B,抛物线y x23=+-经过点A,将点B向右平移5个单位长度,得到点C.y ax bx a(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作⊥交DG的延长线于点H,连接BH.EH DE(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,6),B(2-,2(1)求d(点O,ABC△);(2)记函数y kx=,=(11xk≠)的图象为图形G,若d(G,ABC-≤≤,0△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.2018年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m),故选C.【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【解析】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.【考点】正多边形,多边形的内外角和.6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A .3B .23C .33D .43【答案】A【解析】原式()2222222a b a b ab aa ab a a b a a b -+--=⋅=⋅=--,∵23a b -=,∴原式3=. 【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m【答案】B【解析】设对称轴为x h =,由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-)-,7.5时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;-,④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-)”的基础上,将所有点向右平9-)时,表示左安门的点的坐标为(15,18移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE【答案】>【解析】如下图所示,△是等腰直角三角形,∴45AFG∠=∠=︒,∴BAC DAE∠>∠.FAG BAC另:此题也可直接测量得到结果.【考点】等腰直角三角形10.若x在实数范围内有意义,则实数x的取值范围是_______.【答案】0x≥【解析】被开方数为非负数,故0x≥.【考点】二次根式有意义的条件.11.用一组a,b,c的值说明命题“若a b<,则ac bc<”是错误的,这组值可以是a=_____,b=______,c=_______.【答案】答案不唯一,满足a b<,0c≤即可,例如:,2,1-【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变.【考点】不等式的基本性质12.如图,点A,B,C,D在O上,CB CD=,30CAD∠=︒,50ACD∠=︒,则ADB∠= ________.【答案】70【解析】∵CB CD=,∴30CAB CAD∠=∠=︒,∴60BAD∠=︒,∵50ABD ACD∠=∠=︒,∴18070ADB BAD ABD∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,3AD=,则CF的长为________.【答案】10 3【解析】∵四边形ABCD是矩形,∴4AB CD==,AB CD∥,90ADC∠=︒,在Rt ADC △中,90ADC ∠=︒,∴225AC AD CD =+=, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数 线路3035t ≤≤3540t <≤4045t <≤4550t <≤合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C .【考点】用频率估计概率15.某公园划船项目收费标准如下:船型两人船四人船六人船八人船(限乘两人)(限乘四人)(限乘六人)(限乘八人)每船租金90100130150(元/小时)某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元)【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从下图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin45(π2)18|1|︒+--+-.【解析】解:原式241321222=⨯+-+=-.【考点】实数的运算19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD ∥∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB △中,90AOB ∠=︒. ∴222OA AB OB =-=. ∵CE AB ⊥,在Rt AEC △中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.【解析】(1)证明:∵PC 、PD 与O ⊙相切于C 、D .∴PC PD =,OP 平分CPD ∠.在等腰PCD △中,PC PD =,PQ 平分CPD ∠. ∴PQ CD ⊥于Q ,即OP CD ⊥. (2)解:连接OC 、OD .∵OA OD =∴50OAD ODA ∠=∠=︒∴18080AOD OAD ODA ∠=︒-∠-∠=︒∴18060COD AOD BOC ∠=︒-∠-∠=︒. 在等腰COD △中,OC OD =.OQ CD ⊥ ∴1302DOQ COD ∠=∠=︒.∵PD 与O ⊙相切于D . ∴OD DP ⊥. ∴90ODP ∠=︒.在Rt ODP △中,90ODP ∠=︒,30POD ∠=︒ ∴243cos cos30332OD OA OP POD ====∠︒.【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围. 【解析】(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=,∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值; /cm x0 1 2 3 4 5 6 1/cm y 5.624.673.762.653.184.372/cm y5.62 5.59 5.53 5.425.19 4.73 4.11(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<≤,5060x<x<≤,90100≤,8090≤≤);x6070x<≤,7080x<≤这一组是:x<b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人. ∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4)∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=.2b a =-∴223y ax ax a =-- ∴对称轴为212a x a -=-=. (3)解:①当抛物线过点C 时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a <-或13a ≥或1a =-. 【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.【解析】(1)证明:连接DF .∵A ,F 关于DE 对称.∴AD FD =.AE FE =.在ADE △和FDE △中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =.(2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴EDG EDF GDF ∠=∠+∠1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME △和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =. ∴222ME AE AM AE =+= ∴2BH AE =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,6),B(2-,2(1)求d(点O,ABC△);(2)记函数y kx=,=(11k≠)的图象为图形G,若d(G,ABC-≤≤,0x△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.【解析】(1)如下图所示:∵B(2-)-,2-),C(6,2∴D(0,2-)∴d(O,ABC△)2==OD(2)10<≤kk-<≤或01(3)4t =-或0422t -≤≤或422t =+.【考点】点到直线的距离,圆的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年北京中考数学试卷分析
一、试卷结构:
近几年数学试卷结构比较固定,并未发生改变,依然是选择题1--8题,填空题9--12题,解答题13--25题。

其对应题号分值如下表所示:
相比于2013年中考,今年中考总难度略高与去年中考。

主要是因为新定义增加难度,加重对现场学习能力的考察,及理解能力的考察。

对比今年各区一二模题型,选择题第6题突然加入一次函数的考察,及20题估算的考察突出了今年中考的变化,由于题目难度较低,对学生的影响不大。

第22题的考察方向由之前的对图形变换的考察,逐步改变为现场学习一种新方法并能结合自己所学知识加以应用新方法解题,这样的题型更加突出地考察学生的阅读理解能力。

四边形的题目又回归到了以前对平行四边形的考察,但也没丢掉结合锐角三角函数的角度解决问题的趋势,难度从图形的复杂程度上有所提高,但就解题而言变化不明显。

圆的题目第一问与去年一样没有考察切线证明,而是考察了切线的性质。

第二问没有变化。

第五大题的题型及难度现在也相对固定了,23题的代数综合,24题的几何综合及25题的新定义,题型设置及难度都与去年持平。

三、命题趋势:
从今几年的中考命题来看,中考的试题难度一直在一个水平线上上下波动,在考察学生知识及能力上,更加注
重对基础知识的考察及学生现场学习能力的考察。

相关文档
最新文档