上海中考数学试卷分析
中考数学试卷分析及反思

中考数学试卷分析及反思
中考数学试卷分析应该从多个方面进行,包括试卷难度、试题类型、试题覆盖范围、学生表现等方面进行分析。
试卷难度: 试卷难度应该与中考的考查目的和学生的学习水平相适应。
如果试卷难度过大,学生很难取得高分,如果试卷难度过低,学生就不能发挥出自己的潜能。
试题类型: 试题类型应该涵盖中考试题的各类型,如填空题、解答题、和选择题等。
试题覆盖范围: 试题应该覆盖高中数学教育大纲中所要求的知识点和技能。
学生表现: 通过对学生的成绩分析, 可以发现学生的优劣势, 为下一步的教学设计提供参考.
在分析完中考数学试卷后, 应该对教学进行反思, 总结经验, 改进教学方法, 为学生提供更好的学习条件. 教师应该根据学生的学习特点和需要, 制定有针对性的教学计划, 使学生能够顺利通过中考.
反思还应该包括对教师本身的自我反省,如是否能够恰当地指导学生进行学习,是否能够有效地调整教学策略等。
此外,经过中考数学试卷的分析, 教师还应该对试卷的命题、设计等方面进行深入研究, 总结出经验教训, 为下一次的试卷设计和教学提供参考。
反思不仅仅是让教师对教学进行总结, 更应该借鉴评估结果, 进行教学改进. 这样才能使学生得到更好的教育, 提高学生的学习能力.。
中考数学试卷分析

掌握和理解。同时,数学也是一门应用学科,需要学生具备一定的解题能力 和应用能力,因此教师也应该注重对学生基本技能的训练。
2、加强对学生思维能力的培养。数学是一门需要思考的学科,思维能力是 学生学好数学的关键。因此,教师在教学中应该注重对学生思维能力的培养,通 过多种方式引导学生积极思考、主动探索,培养学生的创新意识和解决问题的能 力。
参考内容
一、试题评价
本次数学中考试卷,覆盖面广,重点突出,难度适中,无偏题怪题,题型和 易中档题占比均合理。试题按照学生的认知规律和课标要求,注重基础知识的考 查和基本技能的训练。从考试情况看,大部分学生能够较好地掌握所学的概念、 公式及其基本计算方法,并能运用所学知识解决一些实际问题。
二、学生答题情况分析
一、考试概述
本试卷旨在模拟中考数学考试,提供学生在备考阶段进行自我评估和查漏补 缺的机会。试卷内容涵盖了初中数学的核心知识点和常见题型,难度适中,有利 于学生全面而准确地测试自己的数学水平。
二、试卷结构
本试卷分为选择题和解答题两部分,总分为100分。选择题每题4分,共20题; 解答题每题8分,共6题。考试时间为120分钟。
3、解题习惯不好。表现在:解题不规范,思考问题不周密,计算马虎等。
三、教学建议
1、要重视基础知识的落实。基础知识是数学的最基本的知识,是数学解题 的基础。离开了基础知识,数学解题就无从谈起。因此,基础知识一定要抓落实。 在数学教学中,对数学概念、图象、性质、公理、定理等一定要讲透,而且要讲 到位,
四、书写工整,保持卷面整洁
ቤተ መጻሕፍቲ ባይዱ
2024年上海市中考真题数学试卷含答案解析

2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
中考数学试卷质量分析报告三篇

中考数学试卷质量分析报告三篇为了让学生尽快进行自我调整,明确奋斗目标,进入最佳的学习状态。
因此,编辑老师为各位老师准备了这篇初三数学期中考试质量分析,希望可以帮助到您!一、试卷有如下特点:(1)单独考查基础的、重要的知识技能本卷考查基础知识和基本技能试题的比重都较大,注重考查通性通法,淡化考查特殊技巧,较为有效地确保了试卷的内容效度.如选择题,学生得分率高。
(2)重点考查核心内容初中数学的核心内容是学生今后进一步学习的基础,本次试卷在注意内容覆盖的基础上,突出了对“特殊的平行四边形”、“一元二次方程”、“图形的变换”等核心知识内容的考查.其中第6、9、10、17、20、22、24、25题失分率高。
(3)突出考查主要的数学思想和方法数学思想和方法是数学知识在更高层次上的抽象与概括,它不仅蕴涵在数学知识形成、发展和应用的过程中,而且也渗透在数学教与学的过程中.本次考试突出了对数形结合、分类讨论、函数与方程等数学思想和方法的考查.其中6、9、10、17、20、22、24、25题学生因为对知识不能灵活运用、计算能力不强,耗时多,失分率高。
(4)突出考查以生活、劳动和学习为背景的问题本次试卷注意体现数学的工具性的理念,强调考试问题的真实性、情景性和开放性,以达到加强考查数学应用意识的目的。
从试题的呈现方式来看,带有实际背景,需要数学建模才能解决的新问题题型正在成为中考追逐的热点。
如10、24题。
二、得失分统计与原因分析(1)选择题部分第3、4、6、9、10小题失分率高,其余题目正确率高。
错误原因:从学的角度分析,部分学生对基础知识掌握不牢、对规律不能灵活运用;从教的原因分析,教学过程中忽视了简单知识的生成,起点过高。
今后措施:在教学过程中回归书本,重视基本知识点的建构与运用。
(2)填空题部分第13、15、17、20、21、22题失分较高,其余题目正确率高。
错误原因:从学的角度分析,学生对题目意思理解不清,对所学知识含糊不清,在加上题目灵活性较大,造成本题失分率很高;从教的原因分析,在教学过程中缺少题目的变式训练,缺少数学思想方法的有效渗透。
上海市中考数学试卷(含答案解析)

2021年上海市中考数学试卷一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+34.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=.8.〔4分〕函数y=的定义域是.9.〔4分〕方程=2的解是.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为.11.〔4分〕不等式组的解集是.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.〔精确到1米,参考数据:≈1.73〕18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.20.〔10分〕解方程:﹣=1.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2021年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,应选:D.【点评】此题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.应选A.【点评】此题考查了同类项的知识,解答此题的关键是掌握同类项中相同字母的指数相同的概念.3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.应选C.【点评】此题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次【分析】加权平均数:假设n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,那么〔x1w1+x2w2+…+x n w n〕÷〔w1+w2+…+w n〕叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:〔2×2+3×2+4×10+5×6〕÷20=〔4+6+40+30〕÷20=80÷20=4〔次〕.答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】此题考查的是加权平均数的求法.此题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法那么,求得答案.【解答】解:如下列图:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.应选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法那么的应用是解题关键.6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,应选B.【点评】此题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,那么当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=a2.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】此题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.〔4分〕函数y=的定义域是x≠2.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.〔4分〕方程=2的解是x=5.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,那么x=5是原方程的解,故答案为:x=5.【点评】此题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法那么是解此题的关键.11.〔4分〕不等式组的解集是x<1.【分析】首先解每个不等式,两个不等式的解集的公共局部就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,那么不等式组的解集是x<1.故答案是:x<1.【点评】此题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共局部,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=〔﹣3〕2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】此题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.此题属于根底题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程〔不等式或不等式组〕是关键.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】此题考查了概率公式:随机事件A的概率P〔A〕=事件A可能出现的结果数除以所有可能出现的结果数.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=〔〕2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=〔〕2=,故答案为.【点评】此题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】此题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.〔精确到1米,参考数据:≈1.73〕【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208〔m〕,故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,那么CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1〔舍去〕,∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】此题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】此题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法那么,难度不大.20.〔10分〕解方程:﹣=1.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】此题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.【分析】〔1〕由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;〔2〕过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:〔1〕∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;〔2〕过点E作EH⊥BC,垂足为点H,如下列图:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】此题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题〔2〕的关键.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【分析】〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕,将点〔1,0〕、〔3,180〕代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;〔2〕设y A关于x的解析式为y A=k1x.将〔3,180〕代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕.将点〔1,0〕、〔3,180〕代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90〔1≤x≤6〕.〔2〕设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300〔千克〕;x=6时,y B=90×6﹣90=450〔千克〕.450﹣300=150〔千克〕.答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】此题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.【分析】〔1〕根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;〔2〕连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:〔1〕在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE〔SAS〕,∴AD=CE;〔2〕连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】此题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【分析】〔1〕先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;〔2〕分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;〔3〕由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是的,从而利用tan∠BEO=tan ∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:〔1〕∵抛物线y=ax 2+bx ﹣5与y 轴交于点C ,∴C 〔0,﹣5〕,∴OC=5.∵OC=5OB ,∴OB=1,又点B 在x 轴的负半轴上,∴B 〔﹣1,0〕.∵抛物线经过点A 〔4,﹣5〕和点B 〔﹣1,0〕, ∴,解得,∴这条抛物线的表达式为y=x 2﹣4x ﹣5.〔2〕由y=x 2﹣4x ﹣5,得顶点D 的坐标为〔2,﹣9〕.连接AC ,∵点A 的坐标是〔4,﹣5〕,点C 的坐标是〔0,﹣5〕,又S △ABC =×4×5=10,S △ACD =×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18.〔3〕过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =×AB ×CH=10,AB==5, ∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3, ∴tan ∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为〔0,〕.【点评】此题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第〔3〕问,将角度相等转化为对应的正切函数值相等是解答关键.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,那么DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;〔2〕分类讨论:当EA=EG时,那么∠AGE=∠GAE,那么判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,通过证明Rt△AME ∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,那么∠AGE=∠AEG,可证明AE=AD=15,〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,那么利用相似比可表示出EG=,那么可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;〔2〕①EA=EG时,那么∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;②GA=GE时,那么∠GAE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=〔﹣〕:,∴y=〔0<x<〕.【点评】此题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.。
上海市中考数学考点分析及分值分布

上海市中考数学考点分析及分值分布一、试卷的总体情况无论是上海市的数学中考,还是外地的中考数学,都是严格按照中考数学考试纲要制定的。
大体上都是从知识与技能、数学与思考、解决问题、情感态度与价值观等四个方面对学生加以考查。
试卷的知识点覆盖面广,基础知识多,很能体现出适合不同层面的学生来完成,这一点,上海市与外地没有太大的其别。
二、试卷的内容与结构1、代数和几何的比例试卷的题型分为:选择题、填空题和解答题(包括:计算题、证明题、应用题以及探索、开放性试题等)。
外地试卷的内容分布:数与代数约占48.7%;空间与几何占42%;统计与概率约占9.3%。
上海市《考纲》要求:数与代数的内容约占50%,空间与图形的约占35%,通过对近几年上海市各个区的中考试卷分析,我们可以看出,中考试卷150分内代数约占90分,几何约占60分,比例在6∶4。
2、各章节分值情况1、上海市中考方程(28分左右)和函数(32分左右)占较大的比重,函数部分(包括一次函数、二次函数、反比例函数)所涵盖的知识点基本考查到位,但是难度降低,这与外地的考点有比较大的区别,外地二次函数是中考重点考察的内容,且难度很大,属于综合类的大题。
2、统计的分值约占10% ,这与外地没有太大的区别。
3、锐角三角比板块分值与统计类似,约占10% ;4、二次根式、因式分解、不等式分值统计;-1/6-因式分解3分左右,不等式分值大于二次根式,同学们在复习的过程中要关注不等式知识点复习的有效性。
三、考点分析1、方程:(1)解方程(组):主要是解分式方程、无理方程及二元二次方程组;无理方程与二元二次方程组在外地没有出现过,这些内容是上海市自己独立命题的。
(2)换元(化为整式方程),外地中考没有这一考点。
(3)一元二次方程根与系数关系的应用,主要是求方程中的系数;(4)列方程解应用题;“方程与不等式”的考法一般可分为如下的三大类:①技能层面上的题目——多以考方程与不等式的解法为主;②能力层面上的题目(“列方程或不等式”解应用题)——多以情境化的形式出现;③“方程思想”层面上的应用——一是以“横向”联系、“知识综合”、“解决实际问题或变化过程的即时性(阶段性)问题”为主。
2022年上海市中考数学试卷及答案解析

2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数为()A.8B.﹣8C.D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC =13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB 的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).ⅰ.如果S△OBP=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.【分析】根据相反数的定义解答即可,只有符号不同的两个数是相反数.【解答】解:8的相反数﹣8.故选:B.【点评】本题考查了相反数的定义,若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数.2.【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===.当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC+S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,∴S△OPB=×3|m|=3,∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2,∴n=﹣3=3,∴P点的坐标为(2,3)或(﹣2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.【分析】(1)i.证明:如图,连接AC交BD于点O,证明△AOE≌△COE(SSS),由全等三角形的性质得出∠AOE=∠COE,证出AC⊥BD,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x的值,则可得出答案;(2)由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.。
上海市普陀区重点中学2024届中考联考数学试卷含解析

上海市普陀区重点中学2024届中考联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.sin60°的值为()A.3B.32C.22D.122.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm3.浙江省陆域面积为101800平方千米。
数据101800用科学记数法表示为()A.1.018×104B.1.018×105C.10.18×105D.0.1018×1064.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形5.下列实数中,在2和3之间的是()A.πB.2π-C325D3286.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°7.下列立体图形中,主视图是三角形的是()A.B.C.D.8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)10.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.32二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______12.若式子x2-在实数范围内有意义,则x的取值范围是.13.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.14.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.15.(2017四川省攀枝花市)若关于x的分式方程7311mxx x+=--无解,则实数m=_______.16.如图,△ABC中,AB=AC,D是AB上的一点,且AD=23AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.三、解答题(共8题,共72分)17.(8分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.18.(8分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.19.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.20.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(8分)如图,曲线BC 是反比例函数y =k x(4≤x ≤6)的一部分,其中B (4,1﹣m ),C (6,﹣m ),抛物线y =﹣x 2+2bx 的顶点记作A .(1)求k 的值. (2)判断点A 是否可与点B 重合; (3)若抛物线与BC 有交点,求b 的取值范围.22.(10分)如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF 是⊙O 的切线;若,且,求⊙O 的半径与线段的长.23.(12分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .24.解不等式组3(2)41213x x x x --≤⎧⎪+⎨-⎪⎩,并写出其所有的整数解.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】解:sin60°B . 2、B【解题分析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【题目详解】∵原正方形的周长为acm , ∴原正方形的边长为4a cm , ∵将它按图的方式向外等距扩1cm , ∴新正方形的边长为(4a +2)cm , 则新正方形的周长为4(4a +2)=a+8(cm ), 因此需要增加的长度为a+8﹣a=8cm ,故选B .【题目点拨】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.3、B【解题分析】5101800 1.01810=⨯.故选B.点睛:在把一个绝对值较大的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ).4、C【解题分析】根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【题目详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【题目点拨】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.5、C【解题分析】分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;B、1<π−2<2,故本选项不符合题意;C、<3,故本选项符合题意;D、<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.6、C【解题分析】首先求得AB与正东方向的夹角的度数,即可求解.【题目详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【题目点拨】本题考查了方向角,正确理解方向角的定义是关键.7、A【解题分析】考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图【题目详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选A.【题目点拨】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看8、D【解题分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【题目详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【题目点拨】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.9、A【解题分析】直接利用平移的性质结合轴对称变换得出对应点位置.【题目详解】如图所示:顶点A2的坐标是(4,-3).故选A.【题目点拨】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.10、A【解题分析】分析:由S △ABC =9、S △A′EF =1且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DEABD S A D AD S ''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =1,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.≥.12、x2【解题分析】根据二次根式被开方数必须是非负数的条件,-≥⇒≥.-x20x2x2≥故答案为x213、8如图,连接OC,在在Rt△ACO中,由tan∠OAB=OCAC,求出AC即可解决问题.【题目详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC ,∴AC=4,∴AB=2AC=8,故答案为8【题目点拨】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.14、50°【解题分析】根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.【题目详解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案为50°.【题目点拨】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.15、3或1.解:方程去分母得:1+3(x ﹣1)=mx ,整理得:(m ﹣3)x =2.①当整式方程无解时,m ﹣3=0,m =3; ②当整式方程的解为分式方程的增根时,x =1,∴m ﹣3=2,m =1. 综上所述:∴m 的值为3或1. 故答案为3或1. 16、2 【解题分析】解:如图,过D 点作DG ⊥AC ,垂足为G ,过A 点作AH ⊥BC ,垂足为H ,∵AB=AC ,点E 为BD 的中点,且AD=23AB , ∴设BE=DE=x ,则AD=AF=1x . ∵DG ⊥AC ,EF ⊥AC ,∴DG ∥EF ,∴AE DE =AF GF ,即5x x =4x GF ,解得4GF=x 5. ∵DF ∥BC ,∴△ADF ∽△ABC ,∴DF AD =BC AB ,即DF 4x=66x,解得DF=1. 又∵DF ∥BC ,∴∠DFG=∠C ,∴Rt △DFG ∽Rt △ACH ,∴DF GF =AC HC ,即4x 45=6x 3,解得25x =2. 在Rt △ABH 中,由勾股定理,得2222536336992AH AB BH x =-=-=⨯-=.∴ABC 11S BC AH 692722∆=⋅⋅=⨯⨯=. 又∵△ADF ∽△ABC ,∴22ADF ABC S DF 44S BC 69∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴ADF 4S 27=129∆=⨯ ∴ABC ADF DBCF S S S 271215∆∆=-=-=四边形. 故答案为:2.三、解答题(共8题,共72分)17、吉普车的速度为30千米/时.【解题分析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.【题目详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:1515151.560 x x-=.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.18、(1)50;(2)115.2°;(3).【解题分析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B等级的学生共有:(人).∴所占的百分比为:∴B等级所对应扇形的圆心角度数为:.(3)列表如下:男女1 女2 女3男﹣﹣﹣(女,男)(女,男)(女,男)女1 (男,女)﹣﹣﹣(女,女)(女,女)女2 (男,女)(女,女)﹣﹣﹣(女,女)女3 (男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P (选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键. 19、证明见解析. 【解题分析】由已知条件BE ∥DF ,可得出∠ABE=∠D ,再利用ASA 证明△ABE ≌△FDC 即可. 证明:∵BE ∥DF ,∴∠ABE=∠D , 在△ABE 和△FDC 中, ∠ABE=∠D ,AB=FD ,∠A=∠F ∴△ABE ≌△FDC (ASA ), ∴AE=FC .“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC 和△FDC 全等. 20、(1)4y x=;(2)点P 的坐标是(0,4)或(0,-4). 【解题分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标. 【题目详解】(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入ky x=得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等,∴1OP AM4 2⋅⋅=.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).21、(1)12;(2)点A不与点B重合;(3)1919 86b≤≤【解题分析】(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b=198,抛物线右半支经过点B;当抛物线经过点C,解得,b=196,抛物线右半支经过点C;从而求得b的取值范围为198≤b≤196.【题目详解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数kyx=的图象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若点A与点B重合,则有b=4,且b2=3,显然不成立,∴点A不与点B重合;(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,解得,b=198,显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有2=﹣62+2b×6,解得,b=196,这时仍然是抛物线右半支经过点C , ∴b 的取值范围为198≤b ≤196.【题目点拨】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题. 22、(1)证明参见解析;(2)半径长为154,AE =6. 【解题分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长. 【题目详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【题目点拨】1.圆的切线的判定;2.锐角三角函数的应用. 23、证明见解析【解题分析】试题分析:首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF . 试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )24、不等式组的解集为1≤x <2,该不等式组的整数解为1,2,1. 【解题分析】先求出不等式组的解集,即可求得该不等式组的整数解. 【题目详解】()3241213x x xx ⎧--≤⎪⎨+>-⎪⎩①②, 由①得,x≥1, 由②得,x <2.所以不等式组的解集为1≤x <2, 该不等式组的整数解为1,2,1. 【题目点拨】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海中考数学试卷分析
一、试卷基本结构:
48分(每题4分);19-25题为解答题,占78分(其中,19-22每题10分,23-24每题12分,25题14分)。
(1选
择题
的考
查范
围比
较广,涵盖
了初
中数
(2)题目设置:概念题、理解运用题型。
(3) 考查侧重于对基础概念的考查。
(4)选择题的选项设置全部为单选题
(5) 通过以上分析,我们可以看出,选择题的考查以基本知识为核心内容。
只要同学们对课本内容熟悉,基础知识牢固,是可以轻松解决的。
2.填空题分析
(1
填
空题
的考
查范
围同
样比
较广
泛初
中数
学的
基础
概念
知识
覆盖
较全。
(2题
目设置:概念题、综合应用题等。
(3)侧重于对课本上数学基础知识的考查。
(4)基础题以外的题目难度并不大,同样的,如果对课本熟悉,基础概念牢固,大部分通过简单的推理与计算都会很容易得到解决。
3.简答题分析
解答
题重点考查了理解能力、重题干获取信息的能力和综合运用能力。
(2)第19、20题考查学生代数的基本计算。
(3)第21题考查学生对一次函数和反比例函数相关概念性质的理解及运用。
(4)第22题涉及到数学知识与生活的联系,是今年出现的新题型,有助于学生更深刻理解所学知识。
(5)第23题综合考查了初中平面几何的大部分知识点,综合度较高,需要学生对几何知识有较为
深入的理解、掌握。
(6)第24题和第25题是代数与几何相结合的题型,体现了“数形结合”的思想,综合程度高,
难度较大,是中考中区分度较大的题型。
四、总结分析:
能力;另外注重几何知识的综合应用;综合题难度较大,着重考查“数形结合”思想,尤其是函数与几何
相结合的综合性题型。
2.试卷的特点:
试题完全忠于书本,试题难度适中,以基础为主。
试卷容量恰当,考查知识全面,覆盖面较大,几何
所占比例较大,整张试卷基本再现了初中数学的知识网络。
就整张数学试卷,试题主重体现了对课本的掌握和理解能力的培养。
在信息的收集整理与处理、知识
的记忆和整理、作图与识图、分析计算及科学探究方面提出了要求。