七年级上册期末试卷试卷(word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册期末试卷试卷(word版含答案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.将一副三角板放在同一平面内,使直角顶点重合于点O
(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.
(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.
(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.
【答案】(1)解:∵
而
同理:
∴
∴
(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:
(3)解:仍然成立.
理由如下:∵
又∵
∴
【解析】【分析】(1)先计算出
再根据
(2)根据(1)中得出的度数直接写出结论即可.(3)根据
即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.
2.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON 内部作射线OC.
(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°.若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;
(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数;
(3)若仍将三角板按照如图2的方式放置,仅满足OC平分∠MOB,试猜想∠AOM与∠NOC之间的数量关系,并说明理由.
【答案】(1)解:∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,
∴射线OC表示的方向为北偏东60°
(2)解:∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°
(3)解:∠AOM=2∠NOC.
令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,
∵∠AOM+∠MOC+∠BOC=180°,
∴γ+90°﹣β+90°﹣β=180°,
∴γ﹣2β=0,即γ=2β,
∴∠AOM=2∠NOC
【解析】【分析】(1)根据∠MOC=∠AOC﹣∠AOM代入数据计算,即得出射线OC表示的方向;(2)根据角的倍分关系以及角平分线的定义即可求解;(3)令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,根据∠AOM+∠MOC+∠BOC=180°即可得到∠AOM与∠NOC满足的数量关系.
3.一副直角三角板(其中一个三角板的内角是45°,45°,90°,•另一个是30°,60°,90°)
(1)如图①放置,AB⊥AD,∠CAE=________,BC与AD的位置关系是________;
(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD 边重合, AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由. (3)根据(1)(2)的计算,请解决下列问题:
如图③∠BAD=90°,∠BAC=∠FAD= (是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.
【答案】(1)15°;BC与AD相互平行
(2)解:AE是∠CAB′的角平分线.
理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,
∴∠EAB′=∠EAD-∠B′AC′=15°.
又由(1)知,∠CAE=15°,
∴∠CAE=∠EAB′,即AE是∠CAB′的角平分线
(3)解:AE是∠CAF的角平分线.
理由如下:如图③,∵∠EAD=45°,∠BAD=90°,
∴∠BAE=∠DAE=45°,
又∵∠BAC=∠FAD=α,
∴∠BAE-∠BAC=∠DAE-∠FAD,
∴∠CAE=∠FAE,即AE是∠CAF的角平分线
【解析】【解答】(1)解:∵AB⊥AD,
∴∠BAD=90°,
∴∠CAE=90°-45°-30°=15°,
∵AB⊥AD,AB⊥BC,
∴BC与AD相互平行
【分析】(1)∠CAE=∠BAD-∠BAC-∠EAD=15°,因为AB⊥AD,AB⊥BC,
所以BC与AD相互平行;(2)先计算出∠EAB′=∠EAD-∠B′AC′=15°,由(1)可得∠EAB′=∠CAE,所以AE是∠CAB′的角平分线;(3)分别计算出∠CAE=∠FAE=45°-α,所以AE是∠CAF的角平分线.
4.已知:,点,分别在,上,点为,之间的一点,连接, .
(1)如图1,求证:;
(2)如图2,,,,分别为,,,的角平分线,求证与互补;
【答案】(1)证明:过C点作CG∥MN,
∵,
∴,
∴∠MAC=∠ACG,∠PBC=∠GCB,
∵∠ACB=∠ACG+∠GCB,
∴∠ACB=∠MAC+∠PBC
(2)证明:由(1)同理可知,
∵,,,分别为,,,的角平分线,
∴∠DAE=∠DBE= =90°,
∴∠D+∠E=360°-(∠DAE+∠DBE)=180°,
∴与互补.
【解析】【分析】(1)过C点作CG∥MN,再根据两直线平行,内错角相等即可证明;(2)由(1)可知,,再根据角平分线的
性质与平角的性质知∠DAE=∠DBE=90°,即可证得 + =180°.
5.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).
(1)若∠BEC的补角是它的余角的3倍,则∠BEC=________°;
(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;
(3)若射线EF平分∠AED,∠FEG=m°(m>90°)(如图2),则∠AEG﹣∠CEG=________°(用m的代表式表示).
【答案】(1)45°
(2)解:∵∠CEG=∠AEG﹣25°,
∴∠AEG=180°﹣∠BEC﹣∠CEG
=180°﹣45°﹣(∠AEG﹣25°)=160°﹣∠AEG,
∴∠AEG=80°;
(3)2m﹣180.
【解析】【解答】解:(1)设∠BEC=x°,
根据题意,可列方程:180﹣x=3(90﹣x),
解得x=45°,
故∠BEC=45°,
故答案为:45°;
( 3 )∵EF平分∠AED,
∴∠AEF=∠DEF,
设∠AEF=∠DEF=α,∠AEG=∠FEG﹣∠AEF=m﹣α,
∠CEG=180°﹣∠GEF﹣DEF=180﹣m﹣α,
∴∠AEG﹣∠CEG=m﹣α﹣(180﹣m﹣α)=2m﹣180.
故答案为:2m﹣180.
【分析】(1)设∠BEC=x°,根据题意,可列方程:180﹣x=3(90﹣x),解出∠BEC;(2)由∠CEG=∠AEG﹣25°,得∠AEG=180°﹣∠BEC﹣∠CEG=180°﹣45°﹣(∠AEG﹣25°),解出∠AEG;(3)计算出∠AEG和∠CEG,然后相减,即可得到结果.
6.如图,O为直线AB上一点,∠BOC=36°.
(1)若OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数:
(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,求∠AOE的度数:
(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用n含的代数式表示∠AOE的度数________(直接写出结果).
【答案】(1)解:∵∠BOC=36°,OD平分∠AOC,
∴∠AOD=∠DOC=72°,
∵∠DOE=90°,则∠AOE=90°−72°=18°;
故答案为:18°
(2)解:设∠AOD=x,
则∠DOC=2x,
∠BOC=180°−3x=36°,
解得:x=48°,
∴∠AOE=60°-x=60°−48°=12°
(3) .
【解析】【解答】(3)设∠AOD=x,则∠DOC=(n−1)x,∠BOC=180°-nx=36°,
解得:x=,
∴∠AOE=-=.
【分析】(1)利用角平分线的性质得出∠AOD=∠DOC=72°,进而得出∠AOE的度数;(2)设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,得出x的值,进而得出∠AOE 的度数;(3)利用(2)中作法,得出x与α的关系,进而得出答案.
7.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,
(1)在图1中,若∠AOC=40°,则∠BOC=________°,∠NOB=________°.
(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);
(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.
【答案】(1)50;40
(2)解:β=2α-40°,理由是:
如图1,∵∠AOC=α,
∴∠BOC=90°-α,
∵OC平分∠MOB,
∴∠MOB=2∠BOC=2(90°-α)=180°-2α,
又∵∠MON=∠BOM+∠BON,
∴140°=180°-2α+β,即β=2α-40°
(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,
理由是:如图2,
∵∠AOC=α,∠NOB=β,
∴∠BOC=90°-α,
∵OC平分∠MOB,
∴∠MOB=2∠BOC=2(90°-α)=180°-2α,
∵∠BOM=∠MON+∠BON,
∴180°-2α=140°+β,即2α+β=40°,
答:不成立,此时此时α与β之间的数量关系为:2α+β=40.
【解析】【解答】(1)如图1,
∵∠AOC与∠BOC互余,
∴∠AOC+∠BOC=90°,
∵∠AOC=40°,
∴∠BOC=50°,
∵OC平分∠MOB,
∴∠MOC=∠BOC=50°,
∴∠BOM=100°,
∵∠MON=40°,
∴∠BON=∠MON-∠BOM=140°-100°=40°,
【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.
8.探究题
学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。
(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B 的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=________.
(2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.
过点P作PE∥AC.
∴∠A=________
∵AC∥BD
∴________∥________
∴∠B=________
∵∠BPA=∠BPE-∠EPA
∴________.
(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.
【答案】(1)∠APB=∠A+∠B
(2)∠1;PE;BD;∠EPB;∠APB=∠B -∠1
(3)证明:过点A作MN∥BC
∴∠B= ∠1
∠C= ∠2
∵∠BAC+∠1+∠2=180°
∴∠BAC+∠B+∠C=180°
【解析】【解答】解:(1)如图:
由平行线的性质可得:∠1=∠A, ∠2=∠B,
∴∠1+∠2=∠A+∠B
即APB=∠A+∠B
⑵解:过点P作PE∥AC.
∴∠A=∠1
∵AC∥BD
∴ PE ∥ BD
∴∠B=∠EPB
∵∠APB=∠BPE-∠EPA
∴∠APB=∠B -∠1
【分析】根据图形做出平行辅助线,探究角度关系。
此类做辅助线的方法变式多,是考试热点问题。
9.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;
(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;
(4)你能用一句简洁的话,描述你发现的结论吗?
【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7
(2)MN=MC+NC= (AC+BC)= a
(3)MN=MC-NC= AC- BC= (AC-BC)= b
(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.
【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)
只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.
10.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .
(1)求证:∠EFC=∠FEC;
(2)①若∠B=30°,∠CAD=50°,则=________,=________;
②试探究与的关系,并说明理由;
(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.
【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.
∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,
∴∠EFC=∠FEC.
(2)35°;70°;解:② , 理由如下: 由(1)可知:
, 又∵ , ∴ . ∴ .
(3)解:图形如下:
∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,
∴ .
又∵,
∴在△CEF中有:∠ECF+2∠CEF=180°,
即 .
.
∵2∠EAC=∠DAC, ,
∴ .∴即 .
∴ .
【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,
∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.
∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,
∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.
故答案为:35°,70°.
【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.
11.已知,如图,在四边形ABCD中,,延长BC至点E,连接AE交CD于点F,使
(1)求证:;
(2)求证:;
(3)若BF平分,请写出与的数量关系________ 不需证明【答案】(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAF=∠DAE+∠CAF,
∴∠BAF=∠CAD;
(2)证明:∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,
∴∠B=∠D,
∵AB∥CD,
∴∠B+∠BCD=180°,
∴∠D+∠BCD=180°,
∴AD∥BE;
(3)2∠AFB+∠CAF=180°
【解析】【解答】解:(3)如图2,∵AD∥BE,
∴∠E=∠1=∠2,
∵BF平分∠ABC,
∴∠3=∠4,
∵∠AFB是△BEF的外角,
∴∠AFB=∠4+∠E=∠4+∠1,
∴∠AFB=3+∠2,
又∵AD∥BC,
∴∠ABC+∠BAD=180°,
∴∠3+∠4+∠1+∠CAF+∠2=180°,
即2∠AFB+∠CAF=180°.
故答案为:2∠AFB+∠CAF=180°.
【分析】(1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD=180°,进而得到2∠AFB+∠CAF=180°.
12.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度数;
(2)若∠BOF=36°,求∠AOC的度数;
(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)【答案】(1)解:∵∠BOD=∠AOC=76°,
又∵OE平分∠BOD,
∴∠DOE= ∠BOD= ×76°=38°.
∴∠COE=180°﹣∠DOE=180°﹣38°=142°,
∵OF平分∠COE,
∴∠EOF= ∠COE= ×142°=71°,
∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°
(2)解:∵OE平分∠BOD,OF平分∠COE,
∴∠BOE=∠EOD,∠COF=∠FOE,
∴设∠BOE=x,则∠DOE=x,
故∠COA=2x,∠EOF=∠COF=x+36°,
则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,
解得:x=36°,
故∠AOC=72°
(3)解:设∠BOE=x,
∵OE平分∠BOD,∠BOD=∠AOC,
∴∠DOE=x,∠COA=2x,
∴∠BOC=180°-2x,
∴∠COE=180°-x,
∵OF平分∠COE,
∴∠EOF=90°- x,
∴∠BOF=90°﹣ x,
∵|∠AOC﹣∠BOF|=α°,
∴|2x﹣(90°﹣ x)|=α°,
解得:x=()°+ α°或x=()°﹣α°,
当x=()°+ α°时,
∠AOC=2x=()°+ α°,
∠BOF=90°﹣ x=()°﹣α°;
当x=()°﹣α°时,
∠AOC=2x=()°﹣α°,
∠BOF=90°﹣ x=()°+ α°
【解析】【分析】(1)由∠AOC=76°易得∠BOD=76°,结合OE平分∠BOD可得∠DOE=∠BOE=38°,由此可得∠COE=180°-38°=142°,结合OF平分∠COE可得∠EOF=71°,最后由∠BOF=∠EOF-∠BOE即可求得∠BOF的度数;(2)设∠BOE=x,由OE平分∠BOD,∠AOC=∠BOD可得∠DOE=∠BOE=x,∠AOC=2x,结合∠BOF=36°,OF平均∠EOF 可得∠COF=∠EOF=x+36°,最后由∠AOC+∠COF+∠BOF=180°即可列出关于x的方程,解方程求得x的值即可求得∠AOC的度数;(3)设∠BOE=x,则由已知条件易得∠AOC=2x,
∠BOF=90°- x,这样结合|∠AOC﹣∠BOF|=α°即可列出关于x的方程,解方程求得x的值即可求得∠AOC和∠BOF的值.
13.如图,直线CB和射线OA,CB//OA,点B在点C的右侧.且满足∠OCB=∠OAB=100°,连接线段OB,点E、F在直线CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠BOE
(2)当点E、F在线段CB上时(如图1),∠OEC与∠OBA的和是否是定值?若是,求出这个值;若不是,说明理由。
(3)如果平行移动AB,点E、F在直线CB上的位置也随之发生变化.当点E、F在点C左侧时,∠OEC和∠OBA之间的数量关系是否发生变化?若不变,说明理由;若变化,求出他们之间的关系式.
【答案】(1)解:,
,
平分,
,
,
;
(2)解:,,
,
又,
,
由(1)可知;
∴
(3)变化,,
证明:当点E、F在点C左侧时,如图,
,
,
平分,
,
,
;
∴,
,,
,
又,
∴,
∴,
∴ .
即:
【解析】【分析】(1)根据两直线平行,同旁内角互补求出,然后根据已知可得,由此计算即可得解;
(2)根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和可得 ,从而可得
,由此即可解题;
(3)同理(1)可得,根据三角形的内角和定理可知∠OEC=180°-
(∠OBE+∠BOE),从而得到,由此计算即可得解.
14.如图,在△ ABC中,∠ ABC、∠ ACB的平分线交于点O.
(1)若∠ABC=40°,∠ ACB=50°,则∠BOC=________
(2)若∠ABC+∠ ACB=lO0°,则∠BOC="________"
(3)若∠A=70°,则∠BOC=________
(4)若∠BOC=140°,则∠A=________
(5)你能发现∠ BOC与∠ A之间有什么数量关系吗?写出并说明理由.
【答案】(1)135°
(2)130°
(3)125°
(4)100°
(5)解:BO平分∠ABC, CO平分∠ABC ∴∠OBC=0.5∠ABC ∠OCB=0.5∠ACB ∴∠OBC+∠OCB=0.5∠ABC+0.5∠ACB= 0.5(180-∠A)=90-0.5∠A ∴∠O=180-(∠OBC+∠OCB)=180-(90-0.5∠A)=90°+0.5∠A
【解析】【解答】解:(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC=20°,∠OCB= ∠ACB=25°,
∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,
故答案是:135°;
( 2 )在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,
∴∠BOC=180°- (∠ABC+∠ACB)=180°-50°=130°,
故答案是130°.
( 3 )在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠OBC+∠OCB= (∠ABC+∠ACB)=55°,
∴∠BOC=180°- (∠ABC+∠ACB)=180°-55°=125°,
故答案是125°;
( 4 )∵∠BOC=140°,
∴∠OBC+OCB=40°,
∵∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,
∴∠A=100°,
故答案是:100°;
【分析】根据角平分线的性质以及三角形内角和定理得出∠OBC和∠OCB与∠A之间的关系,然后根据△BOC的内角和定理得出∠BOC与∠A的关系.
15.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC=50°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。
(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠BON=________度;
(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,若第t秒时,OA,OC,ON三条射线恰好构成相等的角,则t的值为________(直接写出结果)
【答案】(1)25
(2)解:∠AOM与∠NOC之间满足等量关系为:∠AOM-∠NOC=40°,
理由如下:∵∠MON=90°,∠AOC=50°,
∴∠AOM+∠NOA=90°
∠AON+∠NOC=50°
∴∠AOM-∠NOC=40°
(3)13秒,34秒,49秒或64秒。
【解析】【解答】解:(1)∵∠AOC=50°,
∴∠BOC=180°-∠AOC=130°,
∵OM平分∠BOC,
∴∠BOM=∠BOC÷2=130°÷2=65°,
∴∠BON=90°-∠BOM=90°-65°=25°;
故答案为:25.
(3)如图,有四种情况:
1)当∠AON1=∠CON1,
∵∠AOC=50°,
∴∠AON1=∠CON1=(360°-∠AOC)÷2=155°,
∴∠NON1=155°-90°=65°,
∴t=65°÷5=13(秒);
2)当∠AOC=∠CON2,
∴∠NON2=360°-∠AON-2∠AOC=360°-90°-2×50°=170°,
∴t=170°÷5=34(秒);
3)当∠AON3=∠CON3,
∵∠NON3=∠NOB+∠AOB-∠AON3=90°+180°-50°÷2=245°,
∴t=245°÷5=49(秒);
4)当∠COA=∠AON4,
∠NON4=∠NOB+∠AOB+∠AON4=90°+180°+50°=320°,
∴t=320°÷5=64(秒).
故答案为:13秒,34秒,49秒或64秒.
【分析】(1)已知∠AOC的度数,根据补角的性质可求∠BOC的度数,结合OM平分∠BOC,则∠BOM的角度可求,于是根据余角的性质即可确定∠BON的大小;
(2)∠AOM和∠NOA互余,∠AON与∠NOC之和等于50°,两式联立消去∠AON,可得∠AOM和∠NOC的数量关系;
(3)因为OA,OC,ON三条射线恰好构成相等的角,分四种情况讨论,依次为当∠AON1=
∠CON1,当∠AON3=∠CON3,当∠COA=∠AON4,当∠AOC=∠CON2,根据已知角的大小,结合角的关系分别求出∠NON1,∠NON2 ,∠NON3,∠NON4的大小,则t可求.。