安徽省合肥一中、合肥六中、北城中学联考2015-2016学年高二(上)期末数学试卷(文科)(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年安徽省合肥一中、合肥六中、北城中学联考高二(上)期
末数学试卷()
一、选择题(每小题5分,共60分)
1.空间直角坐标系中,点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C的坐标为()A.(4,1,1)B.(﹣1,0,5) C.(4,﹣3,1) D.(﹣5,3,4)
2.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()
A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=0
3.“”是“”的()
A.充分不必要条件B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.抛物线x=﹣4y2的准线方程为()
A.y=1 B.y=C.x=1 D.x=
5.直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()
A.0 B.1 C.2 D.3
6.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()
A.B.18 C.D.
7.双曲线的焦点与椭圆的焦点重合,则m的值等于()
A.12 B.20 C. D.
8.过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.B.C. D.
9.O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则△POF的面积为
()
A.1 B.C.D.2
10.四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是()
A. B. C.D.
11.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为()
A.2:1 B.5:2 C.1:4 D.3:1
12.点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若
,则该椭圆的离心率为()
A.B.C.D.
二、填空题(共4小题,每小题5分,共20分)
13.命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是.
14.抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为.15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为,则圆的方程为.
16.下列四个命题申是真命题的是(填所有真命题的序号)
①“p∧q为真”是“p∨q为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;
③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P过定点A(﹣2,0),且在定圆B:(x﹣2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆.
三、解答题(共有6小题,共70分)
17.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
18.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.
(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.
19.如图,直四棱柱ABCD﹣A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.
(1)证明:平面MNE⊥平面D1DE;
(2)证明:MN∥平面D1DE.
20.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
21.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求点D到平面AMP的距离.
22.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任
意一点,且椭圆的离心率为.
(1)求椭圆C的方程;
(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.
2015-2016学年安徽省合肥一中、合肥六中、北城中学联考高二
(上)期末数学试卷(文科)
参考答案与试题解析
一、选择题(每小题5分,共60分)
1.空间直角坐标系中,点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C的坐标为()A.(4,1,1)B.(﹣1,0,5) C.(4,﹣3,1) D.(﹣5,3,4)
【考点】空间中的点的坐标.
【分析】利用中点坐标公式求解.
【解答】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
2.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()
A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=0
【考点】直线的一般式方程与直线的平行关系.
【分析】联立方程组,求出直线的交点,由此能求出过交点且平行于直线2x+y﹣1=0的直线方程.【解答】解:联立,得x=1,y=3,
∴交点为(1,3),
过直线3x﹣2y+3=0与x+y﹣4=0的交点,
与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,
把点(1,3)代入,得:2+3+c=0,
解得c=﹣5,
∴直线方程是:2x+y﹣5=0,
故选:A.
3.“”是“”的()
A.充分不必要条件B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【考点】必要条件、充分条件与充要条件的判断.
【分析】,解得或x<0,即可判断出判断出.
【解答】解:,解得或x<0,
∴“”是“”的必要不充分条件.
故选:B.
4.抛物线x=﹣4y2的准线方程为()
A.y=1 B.y=C.x=1 D.x=
【考点】抛物线的简单性质.
【分析】将方程化为标准方程,再由y2=﹣2px的准线方程为x=,即可得到所求.
【解答】解:抛物线x=﹣4y2即为
y2=﹣x,
可得准线方程为x=.
故选:D.
5.直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()
A.0 B.1 C.2 D.3
【考点】空间中直线与平面之间的位置关系.
【分析】由直线与平面垂直的性质定理得命题P是真命题,¬P是假命题,由此能求出结果.
【解答】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,
∴命题P是真命题,∴命题P的逆否命题是真命题;
¬P:“若直线m不垂直于α,则m不垂直于l”,
∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.
故选:B.
6.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()
A.B.18 C.D.
【考点】由三视图求面积、体积.
【分析】作出几何体的直观图,观察截去几何体的结构特征,代入数据计算.
【解答】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22+3×()+=,
故选:D.
7.双曲线的焦点与椭圆的焦点重合,则m的值等于()
A.12 B.20 C. D.
【考点】双曲线的简单性质;椭圆的简单性质.
【分析】求得椭圆的焦点坐标,由双曲线的焦点与椭圆的重合,可得=4,解方程即可得到m的值.
【解答】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得=4,解得m=12.
故选:A.
8.过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.B.C. D.
【考点】直线与圆的位置关系.
【分析】根据直线和圆的位置关系即可得到结论.
【解答】解:若直线斜率不存在,此时x=0与圆有交点,
直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,
即kx﹣y﹣2=0,
若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,
则圆心到直线的距离d≤1,
即≤1,即k2﹣3≥0,
解得k≤﹣或k≥,
即≤α≤且α≠,
综上所述,≤α≤,
故选:A.
9.O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则△POF的面积为
()
A.1 B.C.D.2
【考点】抛物线的简单性质.
【分析】根据抛物线方程求得抛物线的准线方程与焦点坐标,利用|PF|=4,求得P点的纵坐标,代入抛物线方程求得横坐标,代入三角形面积公式计算即可得到.
【解答】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),
又P为C上一点,|PF|=4,
可得y P=3,
代入抛物线方程得:|x P|=2,
∴S△POF=|0F|•|x P|=.
故选:C.
10.四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是()
A. B. C.D.
【考点】异面直线及其所成的角.
【分析】以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,由此能求出异面直线BE与AC所成角的余弦值.
【解答】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),
=(﹣2,0,1),=(2,2,0),
设异面直线BE与AC所成角为θ,
则cosθ===.
故选:B.
11.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积
的,则这两个圆锥的体积之比为()
A.2:1 B.5:2 C.1:4 D.3:1
【考点】旋转体(圆柱、圆锥、圆台).
【分析】设球半径为r,则根据圆锥底面与球面积的关系得出圆锥的底面半径,根据勾股定理求出球心到圆锥底面的距离,得到两圆锥的高度.
【解答】解:设球的半径为R,圆锥底面的半径为r,则πr2=×4πR2=,∴r=.
∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.
∴两个圆锥的体积比为:=1:3.
故选:D.
12.点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若
,则该椭圆的离心率为()
A.B.C.D.
【考点】椭圆的简单性质.
【分析】设△AF1F2的内切圆半径为r,由已知得|AF1|r=2×|F1F2|r﹣|AF2|r,从而a=2,由此能
求出椭圆的离心率.
【解答】解:设△AF1F2的内切圆半径为r,则
S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,
∵,
∴|AF1|r=2×|F1F2|r﹣|AF2|r,
整理,得|AF1|+|AF2|=2|F1F2|.∴a=2,
∴椭圆的离心率e===.
故选:B.
二、填空题(共4小题,每小题5分,共20分)
13.命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是.
【考点】命题的否定.
【分析】直接利用全称命题的否定是特称命题写出结果即可.
【解答】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:
.
故答案为:.
14.抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为3x﹣y ﹣11=0.
【考点】抛物线的简单性质.
【分析】设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),代入抛物线的方程,相减,结合直线的斜率公式和中点坐标公式,以及点斜式方程可得直线方程,再由代入法,检验即可得到所求直线方程.
【解答】解:设过点P(4,1)的直线与抛物线的交点
为A(x1,y1),B(x2,y2),
即有y12=6x1,y22=6x2,
相减可得,(y1﹣y2)(y1+y2)=6(x1﹣x2),
即有k AB====3,
则直线方程为y﹣1=3(x﹣4),
即为3x﹣y﹣11=0.
将直线y=3x﹣11代入抛物线的方程,可得
9x2﹣72x+121=0,判别式为722﹣4×9×121>0,
故所求直线为3x﹣y﹣11=0.
故答案为:3x﹣y﹣11=0.
15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为,则圆的方程为(x﹣1)2+(y+1)2=5.
【考点】直线与圆的位置关系.
【分析】设出圆的方程为(x﹣a)2+(y﹣b)2=r2,由圆上的点关于直线的对称点还在圆上得圆心在这条直线上,把圆心坐标代入到直线x+y=0中得方程①;把A的坐标代入圆的方程得方程②;由圆与直线x ﹣y+1=0相交的弦长,利用垂径定理,勾股定理得方程③,三者联立求出a、b和r的值,即得圆的方程.【解答】解:设所求圆的圆心为(a,b),半径为r,
∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,
∴圆心(a,b)在直线x+y=0上,
∴a+b=0,①
且(2﹣a)2+(1﹣b)2=r2;②
又直线x﹣y+1=0截圆所得的弦长为,
且圆心(a,b)到直线x﹣y+1=0的距离为d==,
根据垂径定理得:r2﹣d2=,
即r2﹣()2=③;
由方程①②③组成方程组,解得;
∴所求圆的方程为(x﹣1)2+(y+1)2=5.
故答案为:(x﹣1)2+(y+1)2=5.
16.下列四个命题申是真命题的是①③④(填所有真命题的序号)
①“p∧q为真”是“p∨q为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;
③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P过定点A(﹣2,0),且在定圆B:(x﹣2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆.
【考点】命题的真假判断与应用.
【分析】①根据充分条件和必要条件的定义结合复合命题的真假关系进行判断.
②根据空间角的平行定理进行判断.
③根据线面所成角的定义进行求解判断.
④根据圆与的内切关系以及椭圆的定义进行判断.
【解答】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,
当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,
③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角
∵正三棱锥的底面边长为3,∴CO=
∵侧棱长为2,∴
在直角△POC中,tan∠PCO=
∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,
④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,
即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.
∴点P的轨迹是以A、B为焦点的椭圆,
故动圆圆心P的轨迹为一个椭圆,故④正确,
故答案为:①③④
三、解答题(共有6小题,共70分)
17.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是
增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
【考点】复合命题的真假.
【分析】根据函数恒成立问题,求出p为真时的a的范围,根据二次函数的性质求出q为真时的a的范围,从而判断出p、q一真一假时的a的范围即可.
【解答】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,
等价于a≥x2﹣x在x∈[2,4]恒成立,
而函数g(x)=x2﹣x在x∈[2,4]递增,
其最大值是g(4)=4,
∴a≥4,
若p为真命题,则a≥4;
f(x)=x2﹣ax+1在区间上是增函数,
对称轴x=≤,∴a≤1,
若q为真命题,则a≤1;
由题意知p、q一真一假,
当p真q假时,a≥4;当p假q真时,a≤1,
所以a的取值范围为(﹣∞,1]∪[4,+∞).
18.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.
(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.
【考点】双曲线的简单性质;椭圆的简单性质.
【分析】(1)由题意可设椭圆方程,代入(4,3),解方程可得λ,进而得到所求椭圆方程;
(2)由题意可设所求双曲线的方程为﹣=1(λ≠0),由焦距可得4|λ|+9|λ|=13,解方程即可得到所求双曲线的方程.
【解答】解:(1)由所求椭圆与椭圆有相同的焦点,
设椭圆方程,
由(4,3)在椭圆上得,
则椭圆方程为;
(2)由双曲线有相同的渐近线,
设所求双曲线的方程为﹣=1(λ≠0),
由题意可得c2=4|λ|+9|λ|=13,
解得λ=±1.
即有双曲线的方程为﹣=1或﹣=1.
19.如图,直四棱柱ABCD﹣A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.
(1)证明:平面MNE⊥平面D1DE;
(2)证明:MN∥平面D1DE.
【考点】直线与平面平行的判定;平面与平面垂直的判定.
【分析】(1)由已知推导出NE⊥DE,NE⊥DD1,从而NE⊥平面D1DE,由此能证明平面MNE⊥平面D1DE.
(2)推导出AB∥DE,从而AB∥平面D1DE,进而BB1∥平面D1DE,平面ABB1A1∥平面D1DE,由此能证明MN∥平面D1DE.
【解答】证明:(1)由等腰梯形ABCD中,
∵AB=CD=AD=1,BC=2,N是AB的中点,∴NE⊥DE,
又NE⊥DD1,且DD1∩DE=D,
∴NE⊥平面D1DE,
又NE⊂平面MNE,
∴平面MNE⊥平面D1DE.…
(2)等腰梯形ABCD中,
∵AB=CD=AD=1,BC=2,N是AB的中点,∴AB∥DE,∴AB∥平面D1DE,
又DD1∥BB1,则BB1∥平面D1DE,
又AB∩BB1=B,∴平面ABB1A1∥平面D1DE,
又MN⊂平面ABB1A1,∴MN∥平面D1DE.…
20.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
【考点】圆的一般方程.
【分析】(1)利用待定系数法建立方程关系进行求解即可.
(2)根据直线和圆的位置关系进行判断即可.
【解答】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点
则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)
21.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求点D到平面AMP的距离.
【考点】空间中直线与直线之间的位置关系;点、线、面间的距离计算.
【分析】(Ⅰ)取CD的中点E,连接PE、EM、EA,证明PE⊥平面ABCD,从而可得△ADE、△ECM、△ABM均为直角三角形,利用勾股定理可得结论;
(Ⅱ)利用V P
﹣ADM =V D
﹣PAM
,可求D点到平面PAM的距离.
【解答】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA ∵△PCD为正三角形
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD
∴PE⊥平面ABCD
∵四边形ABCD是矩形
∴△ADE、△ECM、△ABM均为直角三角形
由勾股定理得EM=,AM=,AE=3
∴EM2+AM2=AE2,∴∠AME=90°
∴AM⊥PM
(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P
﹣ADM =V D
﹣PAM
∴
而
在Rt△PEM中,由勾股定理得PM=
∴
∴
∴,即点D到平面PAM的距离为
22.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任
意一点,且椭圆的离心率为.
(1)求椭圆C的方程;
(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.
【考点】椭圆的简单性质.
【分析】(1)由椭圆的离心率为,求出,由此能求出椭圆C的方程.
(2)设l1:y=kx+m,l2:y=kx+n(m≠n),两直线分别与椭圆联立,得到m2=1+2k2,m=﹣n,由此利用点B到l1,l2的距离之积恒为1,能求出点B坐标,当l1,l2的斜率不存在时,点B(±1,0)到l1,l2的距离之积为1.由此能求出结果.
【解答】解:(1)∵椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),
P是椭圆C上任意一点,且椭圆的离心率为,
∴=,解得,
∴椭圆C的方程为.…
(2)①当l1,l2的斜率存在时,设l1:y=kx+m,l2:y=kx+n(m≠n)
,
△=0,m2=1+2k2,同理n2=1+2k2m2=n2,m=﹣n,
设存在,
又m2=1+2k2,则|k2(2﹣t2)+1|=1+k2,k2(1﹣t2)=0或k2(t2﹣3)=2(不恒成立,舍去)
∴t2﹣1=0,t=±1,点B(±1,0),
②当l1,l2的斜率不存在时,
点B(±1,0)到l1,l2的距离之积为1.
综上,存在B(1,0)或(﹣1,0).…
2016年5月11日。