烟台九年级备战中考数学反比例函数解答题压轴题提高专题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟台九年级备战中考数学反比例函数解答题压轴题提高专题练习
一、反比例函数
1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣
x+10,交于C,D两点,并且OC=3BD.
(1)求出双曲线的解析式;
(2)连结CD,求四边形OCDB的面积.
【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,
∴∠AMO=∠CEO=∠DFB=90°,
∵直线OA:y=x和直线AB:y=﹣x+10,
∴∠AOB=∠ABO=45°,
∴△CEO∽△DEB
∴= =3,
设D(10﹣m,m),其中m>0,
∴C(3m,3m),
∵点C、D在双曲线上,
∴9m2=m(10﹣m),
解得:m=1或m=0(舍去)
∴C(3,3),
∴k=9,
∴双曲线y= (x>0)
(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,
∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB
= ×3×3+ ×(1+3)×6+ ×1×1=17,
∴四边形OCDB的面积是17
【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x
和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.
2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点
(1)已知点A的坐标是(2,3),求k的值及C点的坐标;
(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.
【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比
例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,
∴k=6,C(﹣2,﹣3),
即k的值是6,C点的坐标是(﹣2,﹣3);
(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,
∵点A(2,3),k=6,
∴AN=2,
∵△APO的面积为2,
∴,
即,得OP=2,
∴点P(0,2),
设过点A(2,3),P(0,2)的直线解析式为y=kx+b,
,得,
∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,
当y=0时,0=0.5x+2,得x=﹣4,
∴点D的坐标为(﹣4,0),
设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,
则,得,
∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,
∴点D到直线AC的直线得距离为:= .
【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C
在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.
3.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A
(﹣1,a),B(b,1)两点.
(1)求反比例函数的表达式;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;
(3)求△PAB的面积.
【答案】(1)解:当x=﹣1时,a=x+4=3,
∴点A的坐标为(﹣1,3).
将点A(﹣1,3)代入y= 中,
3= ,解得:k=﹣3,
∴反比例函数的表达式为y=﹣
(2)解:当y=b+4=1时,b=﹣3,
∴点B的坐标为(﹣3,1).
作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.
∵点B的坐标为(﹣3,1),
∴点D的坐标为(﹣3,﹣1).
设直线AD的函数表达式为y=mx+n,
将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,
,解得:,
∴直线AD的函数表达式为y=2x+5.
当y=2x+5=0时,x=﹣,
∴点P的坐标为(﹣,0)
(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =
【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.
4.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).
(1)点C的坐标________;
(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;
(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,
使得S△PEF= S△CEF,求点P的坐标.
【答案】(1)(3,0)
(2)解:∵AB=CD=3,OB=1,
∴A的坐标为(1,3),又C(3,0),
设直线AC的解析式为y=ax+b,
则,解得:,
∴直线AC的解析式为y=﹣ x+ .
∵点E(2,m)在直线AC上,
∴m=﹣ ×2+ = ,
∴点E(2,).
∵反比例函数y= 的图象经过点E,
∴k=2× =3,
∴反比例函数的解析式为y=
(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).
在y= 中,当x=3时,y=1,
∴F(3,1).
过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.
设直线EF的解析式为y=a'x+b',
∴,解得,
∴y=﹣ x+ .
设直线PM的解析式为y=﹣ x+c,
代入M(3,﹣0.5),得:c=1,
∴y=﹣ x+1.
当x=1时,y=0.5,
∴点P(1,0.5).
同理可得点P(1,3.5).
∴点P坐标为(1,0.5)或(1,3.5).
【解析】【解答】解:(1)∵D(3,3),
∴OC=3,
∴C(3,0).
故答案为(3,0);
【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解
析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接
EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.
5.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.
(1)求一次函数和反比例函数的解析式;
(2)求△ABH面积.
【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,
∴CO=2,即C(0,2),
把C(0,2),D(﹣1,0)代入y=ax+b可得,
,解得,
∴一次函数解析式为y=2x+2,
∵点A的横坐标是1,
∴当x=1时,y=4,即A(1,4),
把A(1,4)代入反比例函数y= ,可得k=4,
∴反比例函数解析式为y=
(2)解:解方程组,可得或,
∴B(﹣2,﹣2),
又∵A(1,4),BH⊥y轴,
∴△ABH面积= ×2×(4+2)=6.
【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.
6.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)
(1)试确定上述比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.
【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,
∴反比例函数解析式为y= ,正比例函数解析式为y= x;
(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;
(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,
∴OE= OA= ,点D(,2),
∴点B(3,4),
又∵点F在正比例函数y= x图象上,
∴F(,),
∴DF= 、BC=3、EA= ,
∴四边形DFCB的面积为 ×( +3)× = .
【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.
7.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
【答案】(1)①当x=4时,
∴点B的坐标是(4,1)
当y=2时,由得得x=2
∴点A的坐标是(2,2)
设直线AB的函数表达式为
∴解得
∴直线AB的函数表达式为
②四边形ABCD为菱形,理由如下:如图,
由①得点B(4,1),点D(4,5)
∵点P为线段BD的中点
∴点P的坐标为(4,3)
当y=3时,由得,由得,
∴PA= ,PC=
∴PA=PC
而PB=PD
∴四边形ABCD为平行四边形
又∵BD⊥AC
∴四边形ABCD是菱形
(2)四边形ABCD能成为正方形
当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),当x=4时,
∴点B的坐标是(4,)
则点A的坐标是(4-t,)
∴,化简得t=
∴点D的纵坐标为
则点D的坐标为(4,)
所以,整理得m+n=32
【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;
②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且
由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.
8.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.
(1)若点A的坐标为(a,3),求a的值;
(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;
(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.
【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;
(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,
则∠ADO=∠CEO=90°,
∴∠DAO+∠AOD=90°,
∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,
当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,
∵∠AOD=∠BOE,∴∠DAO=∠EOC,
∴△ADO≌△OEC,
又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),
由△ADO≌△OEC得,CE=OD=3,EO=DA=2,
所以C(-3,-2);
(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,
则∠ADO=∠CEO=90°,
∴∠DAO+∠AOD=90°,
∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,
∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,
∵∠AOD=∠BOE,∴∠DAO=∠EOC,
∴△ADO∽△OEC,
∴,
∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,
∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,
∴A( n,- m),代入y=-中,
得mn=18.
【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;
(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出
CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;
(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出
,根据锐角三角函数的定义,及特殊锐角三角函数值得出
,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.
9.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.
(1)求直线AB的表达式;
(2)求的值.
【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,
∴点A(1,6),点B(-3,-2),
将点A、B代入直线,得,解得,
∴直线AB的表达式为:
(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,
则∠AMO=∠BNO=90°,AM=1,BN=3,
∴AM//BN,∴△ACM∽△BCN,
∴
【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.
10.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A (1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,
∴a=﹣1+3=2,
∴点A(1,2).
∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,
∴k=1×2=2,
∴反比例函数的表达式为y= .
联立一次函数与反比例函数关系式成方程组,得:
,解得:,,
∴点B(2,1)
(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.
∵点B、B′关于x轴对称,
∴PB=PB′.
∵点A、P、B′三点共线,
∴此时PA+PB取最小值.
设直线AB′的函数表达式为y=mx+n(m≠0),
将A(1,2)、B(2,﹣1)代入y=mx+n,
,解得:,
∴直线AB′的函数表达式为y=﹣3x+5.
当y=﹣3x+5=0时,x= ,
∴满足条件的点P的坐标为(,0).
【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.
11.在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).
(1)填空:正方形的面积为________;当双曲线 (k≠0)与正方形ABCD有四个交点时,k的取值范围是________.
(2)已知抛物线L: (a>0)顶点P在边BC上,与边AB,DC分别相交于
点E,F,过点B的双曲线(k≠0)与边DC交于点N.
①点Q(m,-m2-2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别求运动过程中点Q在最高位置和最低位置时的坐标.
②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求的值.
③求证:抛物线L与直线的交点M始终位于轴下方.
【答案】(1)36;0<k<4或-8<k<0
(2)解:①由题意可知,,
当m=-1,最大=4,在运动过程中点Q在最高位置时的坐标为(-1,4)
当m<-1时,随m的增大而增大,当m=-2时,最小=3,
当m>-1时,随m的增大而减小,当m=4时,最小=-21,
3>-21,∴最小=-21,点Q在最低位置时的坐标(4,-21)
∴在运动过程中点Q在最高位置时的坐标为(-1,4),最低位置时的坐标为(4,-21)②将点B(-2,-2)代入双曲线得,∴k=4,∴反比例函数解析式为
N点横坐标x=4,代入得,∴N(4,1)
由顶点P(m,n)在边BC上,∴,BP= ,CP=
E点横坐标x=-2,F点横坐标x=4,分别代入抛物线可得
E ,
F ,
∴BE= ,CF= ,
∴,
又∵AE=NF,点F在点N下方,
∴
化简得,∴
③由题意得,M ,,
∵二次函数对称轴为m=1,,
∴当m=1时,取得最小值为,
当或4时,最大为,
当m=4时,抛物线L为,
E点横坐标为-2,代入抛物线得,∴E
F点横坐标为x=4,代入抛物线得,∴
∵E点在AB边上,且此时不与B重合,
∴,解得
∴,∴
当时,抛物线L为
同理可得E ,F
∵F在CD边上,且此时不与C重合
∴,解得,
∴,∴
综上,抛物线L与直线x=1的交点始终位于x轴的下方.
【解析】【解答】(1)解:由点A(-2,4),B(-2,-2)可知正方形的边长为6,
∴正方形面积为36;
当反比例函数在一、三象限时,若经过B(-2,-2)则,若经过D(4,4),则,根据图像特征,要有4个交点,则0<k<4;
当反比例函数在二、四象限时,若经过A(-2,4)则,若经过C(4,-2)则,根据图像特征,要有4个交点,则-8<k<0,
综上,k的取值范围是0<k<4或-8<k<0.
【分析】(1)由坐标求出正方形的边长,即可求出面积,讨论反比例函数在一、三象限和二、四象限时,利用数形结合求出k的范围;(2)①由题意可知,,
分,和分别讨论Q点符合条件的坐标;②将点B(-2,-2)代入双曲线,可求k=4和N(4,1),再表示出点 E 和 F ,可推出BE= ,CF= ,
,再根据AE=NF可推出
,进而可求的值;③由题意得,M ,
,当m=1时,最小为,当或4时,最大为,再分别讨论当m=4时,根据E点不与B点重合,列出不等式可得
,当时, F点不与C点重合列出不等式可得,即可得证.
12.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t=________时,PQ∥AB
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB 能否垂直?若能,求出相应的t值;若不能,请说明理由.
能垂直,理由如下:
延长QE交AC于点D,
∵将△PQC翻折,得到△EPQ,∴△QCP≌△QEP,
∴∠C=∠QEP=90°,
若PE⊥AB,则QD∥AB,
∴△CQD∽△CBA,
∴,
∴,
∴QD=2.5t,
∵QC=QE=2t
∴DE=0.5t
∵∠A=∠EDP,∠C=∠DEP=90°,∴△ABC∽△DPE,
∴
∴,
解得:,
综上可知:当t= 时,PE⊥AB
【答案】(1)2.4
(2)解:∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB 向B点以2厘米/秒的速度匀速移动,
∴PC=AC-AP=6-t,CQ=2t,
∴S△CPQ= CP•CQ= =5,
∴t2-6t+5=0
解得t1=1,t2=5(不合题意,舍去)
∴当t=1秒时,△PCQ的面积等于5cm2
(3)解:
【解析】【解答】解:(1) ∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q 从C出发沿CB向B点以2厘米/秒的速度匀速移动,
∴PC=AC-AP=6-t,CQ=2t,
当PQ∥AB时,∴△PQC∽△ABC,
∴PC:AC=CQ:BC,
∴(6-t):6=2t:8
∴t=2.4
∴当t=2.4时,PQ∥AB
【分析】(1)根据题意可得PC=AC-AP=6-t,CQ=2t,根据平行线可得△PQC∽△ABC,利用相似三角形对应边成比例可得PC:AC=CQ:BC,即得(6-t):6=2t:8,求出t值即可;
(2)由S△CPQ=CP•CQ =5,据此建立方程,求出t值即可;
(3)延长QE交AC于点D,根据折叠可得△QCP≌△QEP,若PE⊥AB,则QD∥AB,可得△CQD∽△CBA,利用相似三角形的对应边成比例,求出DE=0.5t,根据
两角分别相等可证△ABC∽△DPE,利用相似三角形对应边成比例,据此求出t 值即可.。