2017年东北三省四市高考数学二模试卷(理科)
辽宁省沈阳市2017届高考数学二模试卷理科
2017年辽宁省沈阳市高考数学二模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.11.已知向量,,(m>0,n>0),若m+n ∈[1,2],则的取值范围是()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.等比数列{a n}中各项均为正数,S n是其前n 项和,且满足2S3=8a1+3a2,a4=16,则S4=.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.(12分)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数2040805010男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数4575906030(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM ﹣B的余弦值为.20.(12分)已知F1,F2分别是长轴长为2的椭圆C: +=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.21.(12分)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.2017年辽宁省沈阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2}【考点】交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.【点评】本题考查了解不等式与交集的运算问题,是基础题.3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立.即可得出.【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.【点评】本题考查了祖暅原理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【考点】抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.【点评】本题考查抛物线的几何性质,要先将抛物线的方程化为标准方程.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.30【考点】数列的求和.【分析】利用等差数列的通项公式可得a n.及其数列{a n}的前n项和S n.令a n ≥0,解得n,分类讨论即可得出.﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.【解答】解:∵a n+1∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.【点评】本题考查了分类讨论方法、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]【考点】简单线性规划.【分析】画出满足约束条件的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到目标函数的取值范围.【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,利用图象分析目标函数的取值是解答本题的关键.7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体是四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以几何体的体积是:=.故选D.【点评】本题是基础题,考查三视图复原几何体的体积的求法,考查计算能力,空间想象能力.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.7【考点】互斥事件的概率加法公式.【分析】由题意,1﹣≥,即可求出n的最小值.【解答】解:由题意,1﹣≥,∴n≥4,∴n的最小值为4,故选A.【点评】本题考查概率的计算,考查对立事件概率公式的运用,比较基础.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【考点】正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈[0,],∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,m的值,当m=时,满足条件|a﹣b|<d,输出m的值为.【解答】解:输入a=1,b=2,m=,f(1)=﹣1<0,f(m)=f(>0,f(1)f(m)<0,a=1,b=,|1﹣|=>,m=,f(1)=﹣1,f(m)=f()<0,f(1)f(m)>0,a=,b=,|﹣|=>,m=,f(a)=f()<0,f(m)=f()<0,f(a)f(m)>0,a=,b=,|﹣|=<,退出循环,输出m=,故选:A.【点评】本题主要考查了程序框图和算法的应用,准确执行循环得到a,b,S,k的值是解题的关键,属于基础题.11.已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是()A.B.C.D.【考点】简单线性规划;简单线性规划的应用;平面向量数量积的运算.【分析】根据题意,由向量的坐标运算公式可得=(3m+n,m﹣3n),再由向量模的计算公式可得=,可以令t=,将m+n∈[1,2]的关系在直角坐标系表示出来,分析可得t=表示区域中任意一点与原点(0,0)的距离,进而可得t的取值范围,又由=t,分析可得答案.【解答】解:根据题意,向量,,=(3m+n,m﹣3n),则==,令t=,则=t,而m+n∈[1,2],即1≤m+n≤2,在直角坐标系表示如图,t=表示区域中任意一点与原点(0,0)的距离,分析可得:≤t<2,又由=t,故≤<2;故选:B.【点评】本题考查简单线性规划问题,涉及向量的模的计算,关键是求出的表达式.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)【考点】三角函数的化简求值.【分析】当m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2时,只要2(1+)>m﹣1即可,当m<2时,只要1+<2(m﹣1)即可,由此能求出结果,综合可得结论.【解答】解:函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立.当m>2时,f(x)∈[1+,m﹣1],只要2(1+)>m﹣1即可,解得2<m<5.当m<2时,f(x)∈[m﹣1,1+],只要1+<2(m﹣1)即可,解得<m<2,综上,实数m的取值范围(,5),故选:C.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意分类讨论思想的合理运用,属于中档题.二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48种不同的分法(用数字作答).【考点】排列、组合的实际应用.【分析】甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,即可得出结论.【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.【点评】本题考查了分组分配的问题,关键是如何分组,属于基础题.14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x.【考点】利用导数研究曲线上某点切线方程.【分析】先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),(2分)f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x(4分).故答案为:y=x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=30.【考点】等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】方法一、运用两渐近线的对称性和条件,可得A为BF的中点,由垂直平分线的性质和等腰三角形的性质,可得Rt△OAB中,∠AOB=,求得渐近线的斜率,运用离心率公式即可得到;方法二、设过左焦点F作的垂线方程为,联立渐近线方程,求得交点A,B的纵坐标,由条件可得A为BF的中点,进而得到a,b的关系,可得离心率.【解答】解法一:由,可知A为BF的中点,由条件可得,则Rt△OAB中,∠AOB=,渐近线OB的斜率k==tan=,即离心率e===.解法二:设过左焦点F作的垂线方程为联立,解得,,联立,解得,,又,∴y B=﹣2y A∴3b2=a2,所以离心率.故答案为:.【点评】本题考查双曲线的性质和应用,主要是离心率的求法,解题时要认真审题,仔细解答,注意向量共线的合理运用.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)(2017•沈阳二模)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f(x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.【点评】本题考查向量的数量积以及两角和与差的三角函数,三角函数的周期,基本不等式以及余弦定理的应用,考查计算能力.18.(12分)(2017•沈阳二模)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数2040805010男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数4575906030(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大;(Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,根据X的取值计算对应的概率,求出X的分布列和数学期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:,,,,,其相对应的小长方形的高为,,,,,对于男性用户,各小组的频率分别为:,,,,,其相对应的小长方形的高为,,,,,直方图如图所示:,由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X123PX的数学期望为EX=1×+2×+3×=2.【点评】本题考查了频率分布直方图以及概率的计算问题,也考查了离散型随机变量的分布列及数学期望的问题,是综合题.19.(12分)(2017•沈阳二模)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM ﹣B的余弦值为.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),,,,M(2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.【点评】本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•沈阳二模)已知F1,F2分别是长轴长为2的椭圆C:+=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)利用椭圆Q的长轴长为2,求出a=,设P(x0,y0),通过直线PA与OM的斜率之积恒为,﹣.化简求出b,即可得到椭圆方程;(Ⅱ)将直线方程代入椭圆方程,由此利用韦达定理、中点坐标公式、直线方程、弦长公式,能求出线段AB长的取值范围.【解答】解:(Ⅰ)由题意可知2a=2,则a=,设P(x0,y0),∵直线PA与OM的斜率之积恒为﹣,∴×=﹣,∴+=1,∴b=1,椭圆C的方程;(Ⅱ)设直线l:y=k(x+1),A(x1,y1),B(x2,y2),联立直线与椭圆方程:,得:(2k2+1)x2+4k2x+2k2﹣2=0,则x1+x2=﹣,x1x2=,则y1+y2=k(x1+x2+2)=,∴AB中点Q(﹣,),QN直线方程为:y﹣=﹣(x+)=﹣x﹣,∴N(﹣,0),由已知得﹣<﹣<0,∴0<2k2<1,∴|AB|=•=•=•=(1+),∵<<12k2+1<1,∴|AB|∈(,2),线段AB长的取值范围(,2).【点评】本题考查椭圆方程、线段长的取值范围的求法,考查椭圆、直线与椭圆的位置关系的应用,考查推理论证能力、运算求解能力,考查转化化归思想,解题时要注意韦达定理、中点坐标公式、直线方程、弦长公式的合理运用,属于中档题.21.(12分)(2017•沈阳二模)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的极值即可;(2)问题转化为证明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e ﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根据函数的单调性证明即可.【解答】解:(1)f′(x)=,f(x)的定义域是(0,+∞),x∈(0,e)时,f′(x)>0,f(x)单调递增;x∈(e,+∞)时,f'(x)<0,f(x)单调递减.当x=e时,f(x)取极大值为,无极小值.(2)要证f(e+x)>f(e﹣x),即证:,只需证明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x).设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),,∴F(x)>F(0)=0,故(e﹣x)ln(e+x)>(e+x)ln(e﹣x),即f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)知0<x1<e<x2,∴0<e﹣x1<e,由(2)得f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),又2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,∴2e﹣x 1<x2,即x1+x2>2e,∴,∴f'(x0)<0.【点评】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,考查学生解决问题的综合能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•长春三模)已知在平面直角坐标系xOy中,以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•长春三模)已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)法一:根据绝对值的性质求出f(x)的最小值,得到x=时取等号,证明结论即可;法二:根据f(x)的分段函数的形式,求出f(x)的最小值,证明即可;(2)法一,二:问题转化为≥t恒成立,根据基本不等式的性质求出的最小值,从而求出t的范围即可;法三:根据二次函数的性质判断即可.【解答】解:(1)法一:f(x)=|x+a|+|2x﹣b|=|x+a|+|x﹣|+|x﹣|,∵|x+a|+|x﹣|≥|(x+a)﹣(x﹣)|=a+且|x﹣|≥0,∴f(x)≥a+,当x=时取等号,即f(x)的最小值为a+,∴a+=1,2a+b=2;法二:∵﹣a<,∴f(x)=|x+a|+|2x﹣b|=,显然f(x)在(﹣∞,]上单调递减,f(x)在[,+∞)上单调递增,∴f(x)的最小值为f()=a+,∴a+=1,2a+b=2.(2)方法一:∵a+2b≥tab恒成立,∴≥t恒成立,=+=(+)(2a+b )•=(1+4++),当a=b=时,取得最小值,∴≥t,即实数t的最大值为;方法二:∵a+2b≥tab恒成立,∴≥t恒成立,t≤=+恒成立,+=+≥=,∴≥t,即实数t的最大值为;方法三:∵a+2b≥tab恒成立,∴a+2(2﹣a)≥ta(2﹣a)恒成立,∴2ta2﹣(3+2t)a+4≥0恒成立,∴(3+2t)2﹣326≤0,∴≤t≤,实数t的最大值为.【点评】本题考查了绝对值不等式问题,考查绝对值的性质以及二次函数的性质,考查转化思想,是一道中档题.。
2017年高三数学二模(理科)答案
2017年沈阳市高中三年级教学质量监测(二)数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 三、只给整数分数,选择题和填空题不给中间分. 一、选择题(本大题共12小题,每小题5分,共60分)1. B2. D3. A4. D5.C6.B7. D8. A9. C 10. A 11. A 12. C简答与提示:1. 【命题意图】本题考查复数的共轭复数及复数运算.【试题解析】B (12)(12)5z z i i ⋅=+-=. 故选B.2. 【命题意图】本题考查集合运算.【试题解析】D 由{|13},{|0,A x x B x x =-<<=<或1}x >,故{|10,A B xx =-<< 或13}x <<. 故选D.3. 【命题意图】本题考查祖暅原理及简易逻辑等知识.【试题解析】A 根据祖暅原理容易判断q ⌝是p ⌝的充分不必要条件,再利用命题的等价性, 故p 是q 的充分不必要条件. 故选A. 4. 【命题意图】本题考查抛物线的相关知识.【试题解析】D 抛物线22y x =上的点到焦点的最小距离是2p ,即18. 故选D.5. 【命题意图】本题主要考查等差数列.【试题解析】 C {}n a 是以2为公差的等差数列,12627,||||||n a n a a a =-+++53113518=+++++=. 故选C.6. 【命题意图】本题主要考查线性规划问题.【试题解析】B 不等式组所表示的平面区域位于直线03=-+y x 的上方区域和直线10x y -+=的上方区域,根据目标函数的几何意义确定4≤z . 故选B.7. 【命题意图】本题考查三视图.【试题解析】D 四棱锥的体积为. 382431=⨯⨯=V . 故选D. 8. 【命题意图】本题考查概率相关问题.【试题解析】A 由已知1151(),4216nn -≥≥. 故选A. 9. 【命题意图】本题主要考查三角函数的相关知识.【试题解析】C令26t x π=+,从而7[,]66t ππ∈,由于方程有两个解,所以12122()3t t x x ππ+=++=,进而123x x π+=. 故选C.10. 【命题意图】本题主要考查程序框图.【试题解析】A 第一次执行循环体有,33,,1,||0.522m b a a b ===-=;第二次执行循环 体有,535,,,||0.25424m b a a b ===-=;第三次执行循环体有, 11311,,,||0.125828m b a a b d ===-=<. 故选A.11. 【命题意图】本题考查平面向量的相关知识.【试题解析】A 由已知22(3,3),||(3)(3)OC m n m n OC m n m n =+-=++-2210m n =+,由0,0,12m n m n >>≤+≤,有22222m n ≤+<,则5||210OC ≤<. 故选A.12. 【命题意图】本题是考查函数的应用.【试题解析】C ①当2m =时显然成立;②当2m >时,2()[1,1]3m f x m -∈+-,只要 22(1)13m m -+>-即可,有25m <<,;③当2m <时,2()[1,1]3m f x m -∈-+,只要 21213m m -+<-即可,有725m <<. 故选C.二、填空题(本大题共4小题,每小题5分,共20分)13. 4814. x y =15. 30 16.233简答与提示:13. 【命题意图】本题考查排列组合相关知识.【试题解析】甲乙二人的票要连号,故424248A A =. 14. 【命题意图】本题考查导数的几何意义.【试题解析】()(sin cos ),(0)1,xf x e x x f ''=+=切线方程为x y =. 15. 【命题意图】本题考查等比数列.【试题解析】由条件可求得12,2,q a ==所以430S =.16. 【命题意图】本题考查双曲线问题.【试题解析】法一:由||1||2AF BF =可知,||1||2OA OB =,则Rt OAB ∆中,3AOB π∠=,渐近线OA 的斜率3tan 63b k a π===,即离心率2231()3b e a =+=. 法二:设过左焦点F 作x a b y -=的垂线方程为)(c x bay +=联立⎪⎩⎪⎨⎧-=+=x a b y c x b a y )(,解得,c ab y A =联立⎪⎩⎪⎨⎧=+=x a b y c x b a y )(,解得,22a b abc y B -= 又||1||2AF BF = A B y y 2-=∴ 223a b =∴所以离心率2231()3be a=+=. 三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数性质及正弦定理等. 【试题解析】(Ⅰ)(3,1),(3cos ,1sin )OP QP x x ==--, (2分)()33cos 1sin 42sin()3f x x x x π=-+-=-+, (4分))(x f 的周期为π2. (5分)(Ⅱ)因为()4f A =,所以23A π=, (6分)又因为3BC =,由正弦定理,23sin ,23sin AC B AB C ==, (8分)所以三角形周长为323sin 23sin 323sin()3B C B π++=++ (10分)因为03B π<<,所以3sin()(,1]32B π+∈, 所以三角形周长最大值为323+. (12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率统计知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】(Ⅰ)解:女性用户和男性用户的频率分布表分别如下左、右图:(3分)由图可得女性用户的波动小,男性用户的波动大. (4分)(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于 90分的人数为4,从6人中任取3人,记评分小于90分的人数为X ,则X 取值为1,2,3,12423641(1)205C C P X C ====;214236123(2)205C C P X C ====; 评分频率组距100908070600.0350.0250.020.0150.010.0050.030.04O 50评分频率组距100908070600.0350.0250.020.0150.010.0050.030.04O 5032423641(3)205C C P X C ====. (9分)所以X 的分布列为X1 2 3 P1535151632555EX =++=.(12分)19. (本小题满分12分)【命题意图】本题以四棱锥为载体,考查直线与平面垂直,以及二面角问题等. 【试题解析】(Ⅰ)⊥PA 平面ABCD ,⊂AB 平面ABCD ,AB PA ⊥∴,平面ABCD 为矩形,AD AB ⊥∴ , A AD PA = ,⊥∴AB 平面PAD , (2分)⊂PD 平面PAD , PD AB ⊥∴, AD PA = , E 为PD 中点⊥∴=⊥∴PD A AB AE AE PD ,平面ADE (4分) (Ⅱ)以A 为原点,以,,AB AD AP 为,,x y z 轴正方向,建立空间直角坐标系A BDP -,令||2AB =,则(0,0,0)A ,(2,0,0)B ,(0,0,2)P ,(2,2,0)C ,(0,1,1)E ,(1,0,0)F ,(1,0,2)PF =-,(2,2,2)PM λλλ=-,(2,2,22)M λλλ- (6分)设平面PFM 的法向量111(,,)m x y z =,=0=0m PF m PM ⎧⋅⎪⎨⋅⎪⎩,即202220x z x y z λλλ-+=⎧⎨+-=⎩,(2,1,1)m =- (8分)设平面BFM 的法向量222(,,)n x y z =,=0=0n BF n FM ⎧⋅⎪⎨⋅⎪⎩,即()()0212220x x y z λλλ=⎧⎪⎨-++-=⎪⎩,(0,1,)n λλ=- (10分) ()2213|cos ,|3||||61m nm n m n λλλλ⋅-+<>===+-,解得12λ=. (12分)20. (本小题满分12分)【命题意图】本小题考查椭圆的标准方程及直线与椭圆的的位置关系,考查学生的逻辑思维 能力和运算求解能力.【试题解析】(Ⅰ)由已知222=a ,2=a ,记点)(0,0y x P ,1PA OM k k = ,2202000000122ax ya x y a x y k k k k PA PA M PA -=-⨯+=⨯=⨯∴, (2分) 又)(0,0y x P 在椭圆上,故1220220=+by a x ,212202-=-=⨯∴a b k k M PA ,2122=∴a b ,∴12=b ,∴椭圆的方程为1222=+y x . (4分)(Ⅱ)设直线)1(:+=x k y l ,联立直线与椭圆方程⎪⎩⎪⎨⎧=++=12)1(22y x x k y 得0224)12(2222=-+++k x k x k ,记),(),,(2211y x B y x A由韦达定理可得⎪⎪⎩⎪⎪⎨⎧+-=⨯+-=+122212422212221k k x x k k x x ,可得122)2(22121+=++=+k kx x k y y , (6分) 故AB 中点)12,122(222++-k kk k Q , QN 直线方程:121)122(1122222+--=++-=+-k k x k k k x k k ky (8分) )0,12(22+-∴k k N ,已知条件得:<-4101222<+-k k ,∴ 1202<<k , (10分) )1211(212122112224)124(12222222222++=+++=+--+-+=∴k k k k k k k k kAB , 1121212<+<k,)22,223(∈∴AB . ( 12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函 数的单调性等,考查学生解决问题的综合能力.【试题解析】(Ⅰ)21ln ()xf x x -'=, (0,)x e ∈时,()0f x '>,()f x 单调递增;(,)x e ∈+∞时,()0f x '<,()f x 单调递减. 当x e =时,()f x 取极大值为1e,无极小值. (3分)(Ⅱ)要证)()(x e f x e f ->+,即证:xe x e x e x e -->++)ln()ln(,只需证明:)ln()()ln()(x e x e x e x e -+>+-.(5分)设)ln()()ln()()(x e x e x e x e x F -+-+-=,222222222222()4()l n ()[2l n ()]0e x x F x e x e xe xe x+'=--=--+>--, (7分)0)0()(=>∴F x F .故)ln()()ln()(x e x e x e x e -+>+-,即)()(x e f x e f ->+. (8分) (III )不妨设21x x <,由(Ⅰ)知210x e x <<<,e x e <-<∴10,由(Ⅱ)得)()()]([)]([2111xf x f x e e f x e e f ==-->-+, (10分) 又e x e >-12,e x >2,且)(x f 在),(+∞e 上单调递减, 122e x x ∴-<,即e x x 221>+,e x x x >+=∴2210,0)(0<'∴x f . (12分) 22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化.【试题解析】 (I) 由221:40,C x y x +-=:230l x y +-=.(5分)(II )(,22),4P π直角坐标为(2,2),1(2cos ,sin ),(1cos ,1sin )2Q M αααα++, M 到l 的距离|1cos 2sin 3|10|sin()|545d ααπα+++-==+,从而最大值为105. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】(I)因为2b a -<,所以3,()|||2|=,23,2x a b x a b f x x a x b x a b a x b x a b x ⎧⎪--+<-⎪⎪=++--++-≤<⎨⎪⎪+-≥⎪⎩,显然()f x 在(,]2b -∞上单调递减,()f x 在[,)2b+∞上单调递增,所以()f x 的最小值为()22b b f a =+,所以12ba +=,22ab +=. (5分)(II)因为2a b tab +≥恒成立,所以2a bt ab+≥恒成立, 212121122()(2)(14)22a b a b a b ab b a b a b a +=+=++=+++1229(142)22a b b a ≥++⋅= 当23a b ==时,2a b ab +取得最小值92,所以92t ≥,即实数t 的最大值为92. (10分)。
2017年高考理科数学全国2卷(附答案)
给丁看甲的成绩。看后甲对大家说:我还是不知道我的成绩。根据以上信息,
则
A .乙可以知道四人的成绩
C .乙、丁可以知道对方的成绩 8. 执行右面的程序框图,如果输入的
A .2 B.3 C.4 D .5
B.丁可以知道四人的成绩 D.乙、丁可以知道自己的成绩 a=–1,则输出的 S=
22
9. 若双曲线 C:xa2–yb2=1(a>0,b>0) 的一条渐近线被圆 (x –2)2+y2=4 所截得的弦长为
A .–15
B .–9
C. 1
6. 安排 3 名志愿者完成 4 项工作,每人至少完成
不同的安排方式共有
D .9 1 项,每项工作由 1 人完成,则
A .12 种
B.18 种
C. 24 种
D. 36 种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。老师说:你们四
人中有 2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,
8sin 2 ,故 2
上式两边平方,整理得 17cos2B-32cosB+15=0
解得 cosB= 1(舍去), cosB= 15 17
- 11 -
(2)由
15 cosB =
得
sin
B
17
又 S ABC =2,则 ac 17 2
由余弦定理及 a c 6 得
8 ,故 S ABC
17
1
4
acsin B ac
直线 l 过 C 的左焦点 F.
21. ( 12 分)已知函数 f (x) ax 2 ax x ln x, 且 f ( x) 0 .
( 1)求 a;
( 2)证明: f ( x) 存在唯一的极大值点
吉林省长春市2017年高三第二次模拟考试数学(理科)答案
吉林省长春市2017年高三第二次模拟考试数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题(1)(A ) ;(2)(B );(3)(B );(4)(C );(5)(A );(6)(D );(7)(B );(8)(C) ; (9)(D );(10)(C );(11)(B );(12)(D ). 二.填空题(13)6;(14)3π;(15)5;(16)147(,1)(,]333三.解答题(17) (I)证明:由已知得12142a a a +=+,解得28a =,……………………………2分 12124b a a =-=.又有2211142(42)44n n n n n n n a S S a a a a +++++=-=+-+=-…………4分所以21122(2)n n n n a a a a +++-=-,即12n n b b +=因此数列{}n b 是首项为4,公比为2的等比数列.………………………………………6分 (Ⅱ)解:由(1)得等比数列{}n b 中14b =,2q = 所以1112422n n n n n b a a -++=-=⨯=,11122n nn n a a ++-=,……………………………………10分 因此数列2n na ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列,2n n a n =,2nn a n =⋅……………12分 (18)解:(Ⅰ)将10x = 带入到ˆ 1.91yx =+,得ˆ 1.910120y =⨯+=,所以预测下一年的销售量20m =;………………………………………………………………………2分 (Ⅱ)解得4,8.6x y ==,………………………………………………………………4分所以132536*********.6ˆ 1.914916100516b⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯,………………………6分8.6 1.941ay bx =-=-⨯= ,所以线性回归方程为ˆ 1.91y x =+.……………………8分 与第一个表格所求得的回归方程相同,原因如下:由最小二乘法原理,第二个表格的回归方程ˆˆˆybx a =+使得 22222ˆˆˆˆˆˆˆˆˆˆ(13)(25)(36)(49)(1020)ba b a b a b a b a ⨯+-+⨯+-+⨯+-+⨯+-+⨯+-取最小值,而由第一个表格可得ˆ 1.91yx =+使得该式子前四项和最小,使得该式子第五项为零,所以ˆ 1.91yx =+即为所求. ………………………………………………………12分 (19)(本小题满分12分) (Ⅰ)AD AB = ,O 为BD 中点AO BD ∴⊥,又AO ABD ⊂ 平面 ABD BCD ⊥平面平面 ABD BCD BD = 平面平面AO BCD ∴⊥平面 ………………………………………………………………………6分(Ⅱ)如图,取CD 中点,记为M ,以O 为坐标原点,,,OD OM OA 为,,x y z 轴轴轴建立空间直角坐标系,222(0,0,0),(0,0,),(,0,0),(,2,0),222O A B C --222(,0,0),(,0,),244D E ……………………………………………………………7分设AF AC λ=,0BC BD BC AO AO BD BC ABD ⊥⊥=∴⊥ ,,,平面 1111121123232218F AEB C AEB ABD V V S BC λλλ--∆∴==⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=23λ=,………………………………………………………………………………………8分 MO FED CBA xz y23AF AC ∴= ,2222(,,)336F ∴-因为平面ABE 与y 轴垂直,所以平面ABE 的一个法向量为1(0,1,0)n =,设平面FEB 的法向量为2()n x,y,z =222222222(,0,0)(,,)(,,)2336636FB =---=---222322(,0,)(,0,0)(,0,)44244BE =--=22220636322044x y z x z ⎧---=⎪⎪⎨⎪+=⎪⎩解得方程组的一组解为1123x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 21(1,,3)2n ∴=- …………………………………………………………………………10分设平面ABD 和平面BDF 所成角为θ则1412cos 4111194θ==⨯++,∴锐二面角的余弦值为4141………………12分 (20) (本小题满分12分)解:(Ⅰ)方法一:设点21122(2,),(,)(,)C m m A x y B x y ,,242x xy y '=∴= ,,∴点C 处的切线斜率为22m k m ==. 过点A 作直线AG x ⊥轴,交抛物线的准线1y =-于点G ,则AG AF =,又因为FAD FDA ∠=∠,所以DF AF =,所以AG DF =,……………………3分又//AG DF ,所以四边形AGFD 为平行四边形,//AB FG ∴,。
2017届高三第二次教学质量检测数学理试题(12页有答案)
-1012}012}01}-101}-1012} 23B.5A.4C.D.3[+高三年级第二次教学质量检测试题理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,,,,,B={x|-2<x≤2},则A B=A.{-1,,,B.{-1,,C.{-2,,,D.{-2,,,,2.复数2-i1+i对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量a=(2,-1),b=(3,x),若a⋅b=3,则x=A.3B.4C.5D.64.已知双曲线x2y2-a b23=1的一条渐近线方程为y=x,则此双曲线的离心率为457445.已知条件p:x-4≤6;条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是A.(-∞,-1]B.(-∞,9]C.1,9]D.[9,∞)6.运行如图所示的程序框图,输出的结果S=A.14B.30C.62D.1268.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是A.πA.332D.27.(x-1)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数是xA.56B.35C.-56D.-35...A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l//m,l⊂/α,m⊂α,则l//αC.若α⊥β,αβ=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n9.已知f(x)=sin x+3cos x(x∈R),函数y=f(x+ϕ)的图象关于直线x=0对称,则ϕ的值可以是πππB.C.D.263410.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是A.2人B.3人C.2人或3人D.4人11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A与1点A关于x轴对称,若直线AB斜率为1,则直线A B的斜率为12B.3C.12.下列结论中,正确的有①不存在实数k,使得方程x ln x-1x2+k=0有两个不等实根;2②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为π6;③函数y=ln与y=ln tan x2是同一函数;④在椭圆x2y2+a2b2=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.A.①④B.①③C.①②D.②④13.已知等比数列{a}的前n项和为S,且a+a=5n2414.已知实数x、y满足约束条件⎨y≥2,则z=2x+4y的最大值为______.⎪x+y≤6②若a∈(0,1),则a<a1+11-x是奇函数(第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答.二.填空题:本大题共4小题;每小题5分,共20分.5,a+a=,则S=__________.n13246⎧x≥2⎪⎩15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为__________.16.下列命题正确是.(写出所有正确命题的序号)①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;③函数f(x)=ln;三.解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=A+高三理科数学试题和答案第3页共6页π2., 20 40 60 80 ,(1)求 cos B 的值;(2)求 sin 2 A + sin C 的值.18.(本小题满分 12 分)如图,三棱柱 ABC - A B C 中,侧棱 AA ⊥ 平面 ABC , ∆ABC 为等腰直角三角形,1 1 1 1∠BAC = 90 ,且 AA = AB , E , F 分别是 C C , BC 的中点.1 1(1)求证:平面 AB F ⊥ 平面 AEF ;1(2)求二面角 B - AE - F 的余弦值.119.(本小题满分 12 分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0 100],样本数据分组为第一组[0, ),第二组[20, ),第 三组 [40, ),第四组 [60, ),第五组 [80 100].(1)求直方图中 x 的值;(2)如果年上缴税收不少于 60 万元的企业可申请政策优惠,若共抽取企业 1200 家,试估计有多少企业可以申请政策优惠;(3)从所抽取的企业中任选 4 家,这 4 家企业年上缴税收少于 20 万元的家数记为 X ,求 X 的分布列和数学期望.(以直方图中的频率作为概率)= 1(a > b > 0) 经过点 P (2, 2) ,离心率 e = ,直线 l 的方程为 220.(本小题满分 12 分)已知椭圆 C : x 2 y 2+ a 2 b 22 2x = 4 .(1)求椭圆 C 的方程;(2)经过椭圆右焦点 F 的任一直线(不经过点 P )与椭圆交于两点 A , B ,设直线 AB 与l 相交于点 M ,记 P A , PB , PM 的斜率分别为 k , k , k ,问:是否存在常数 λ ,使得1 2 3k + k = λ k ?若存在,求出 λ 的值,若不存在,说明理由.12321.(本小题满分 12 分)已知函数 f ( x ) = ax + ln x ,其中 a 为常数,设 e 为自然对数的底数.(1)当 a = -1 时,求 f ( x ) 的最大值;(2)若 f ( x ) 在区间 (0, e ] 上的最大值为 -3 ,求 a 的值;(3)设 g ( x ) = xf ( x ), 若 a > 0, 对于任意的两个正实数 x , x ( x ≠ x ) ,1 2 1 2证明: 2 g ( x 1 + x 2) < g ( x ) + g ( x ) .1 2请考生在第 22、23 二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用⎪⎪ 5⎩17.解:(1)∵ B = A + , ∴ A = B -, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1 分 ==2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎧3 x =- t + 2 在直角坐标系 xOy 中,直线 l 的参数方程为 ⎨ ( t 为参数),以原点 O 为极点, x⎪ y = 4 t ⎪5轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 ρ = a sin θ .(1)若 a = 2 ,求圆 C 的直角坐标方程与直线 l 的普通方程;(2)设直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,求 a 的值.23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x ) = 2x -1 + 2x + 5 ,且 f ( x ) ≥ m 恒成立.(1)求 m 的取值范围;(2)当 m 取最大值时,解关于 x 的不等式: x - 3 - 2x ≤ 2m - 8 .高三第二次质量检测理科数学答案一.ADABD CCABC CA二.13.631614.20 15. 61 16.①③ππ2 23 4 又 a = 3, b = 4 ,所以由正弦定理得 ,sin Asin B34所以, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3 分- cos B sin B所以 -3sin B = 4cos B ,两边平方得 9sin 2 B = 16cos 2 B ,3又 sin 2 B + cos 2 B = 1 ,所以 cos B = ± , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分5π 3而 B > ,所以 cos B = - . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 53 4(2)∵ cos B = - ,∴ sin B = , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分5 5∴面 ABC ⊥ 面 BB C C..........2 分+ = 则 F (0,0,0) , A ( 22 2 2 2 2 1 ∵ B = A +π2,∴ 2 A = 2 B - π ,∴ sin 2 A = sin(2 B - π ) = - sin 2 B ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分4 3 24= -2sin B cos B = -2 ⨯ ⨯ (- ) = ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分5 5 25又 A + B + C = π ,∴ C = 3π 2- 2 B ,7 24 7 31∴ sin C = - cos 2 B = 1 - cos 2 B = .∴ sin 2 A + sin C = . (12)25 25 25 25分18.解答: (1)证明:∵ F 是等腰直角三角形 ∆ABC 斜边 BC 的中点,∴ AF ⊥ BC .又∵侧棱 AA ⊥ 平面ABC ,11 1∴ AF ⊥ 面 BB 1C 1C , AF ⊥ B 1F .…3 分设 AB = AA = 1 ,则1,EF= , .∴ B F 2 + EF 2 = B E 2 ,∴ B F ⊥ EF ........... 4 分1 11又 AF ⋂ EF = F ,∴ B F ⊥平面 AEF .…1而 B F ⊂ 面 AB F ,故:平面 AB F ⊥ 平面 AEF . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5 分1 11(2)解:以 F 为坐标原点, FA , FB 分别为 x , y 轴建立空间直角坐标系如图,设 AB = AA = 1 ,12 2 1,0,0) , B (0, - ,1) , E (0, - , ) ,12 2 1 2 2AE = (- , - , ) , AB = (- , ,1) .… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 2 2 2 2由(1)知, B F ⊥平面 AEF ,取平面 AEF 的法向量:12m = FB = (0, ,1) . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分14 4 256 4 4 4 644 4 64 4 4 64设平面 B AE 的法向量为 n = ( x , y , z ) ,1由取 x = 3 ,得 n = (3, -1,2 2) (10),分设二面角 B - AE - F 的大小为θ ,1则 cos θ=|cos <>|=| |= .由图可知θ 为锐角,∴所求二面角 B - AE - F 的余弦值为.… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分119.解答: 解:(I )由直方图可得: 20 ⨯ (x + 0.025 + 0.0065 + 0.003 ⨯ 2) = 1解得 x = 0.0125 .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分(II )企业缴税收不少于 60 万元的频率 = 0.003 ⨯ 2 ⨯ 20 = 0.12 , ∴1200 ⨯ 0.12 = 144 .∴1200 个企业中有144 个企业可以申请政策优惠.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(III ) X 的可能取值为 0,1,2,3,4 .由(I )可得:某个企业缴税少于 20 万元的概率 = 0.0125 ⨯ 20 = 0.25 =分1 3 81 1 3 27P ( X = 0) = C 0 ( )0 ( )4 = P ( X = 1) = C 1 ( )1 ( )3 = 41 3 27 1 3 3P ( X = 2) = C 2 ( )2 ( )2 = P ( X = 3) = C 3 ( )3 ( )1 =4 4 14 (5)X0 1 2 3 44 4 256∴ E ( X ) = 0 ⨯ 81+ = 1 ① 又e = , 所以 = = 4, a = 8,b 1 + 2k 2 1 + 2k 2, x x = x - 2 x - 22, k = k = 2k - 2 4 - 2 2P8125627 64 27 64 3 64 1 2561 3 1P ( X = 4) = C 4 ( )4 ( )0 =4...................................... 10 分............. 11 分27 27 3 1+ 1⨯ + 2 ⨯ + 3 ⨯ + 4 ⨯= 1. ....12 分25664 64 64 25620.解:(1)由点 P (2, 2) 在椭圆上得, 4 2 2 c 2 a 2 b 2 2 a 2②由 ①②得 c 2 2 2 = 4 ,故椭圆 C 的方程为 x 2 y 2+ = 1 ……………………..4 分 8 4(2)假设存在常数 λ ,使得 k + k = λ k .1 23由题意可设 AB 的斜率为k , 则直线AB 的方程为 y = k ( x - 2) ③代入椭圆方程x 2 y 2+ = 1 并整理得 (1+ 2k 2 ) x 2 - 8k 2 x + 8k 2 - 8 = 0 8 48k 2 8k 2 - 8设 A ( x , y ), B ( x , y ) ,则有 x + x = ④ ……………6 分 1 1 2 2 1 2 1 2在方程③中,令 x = 4 得, M (4,2 k ) ,从而 k = y 1 - 2 y 2 - 21 2 1,3 2= k - .又因为 A 、F 、B 共线,则有 k = k AF = k BF ,即有y当 a = -1 时, f ( x ) = - x + ln x , f ' ( x ) = -1 + 1①若 a ≥ - ,则 f ' ( x ) ≥ 0 ,从而 f ( x ) 在 (0, e ] 上是增函数,y1=2= k ……………8 分x - 2x - 21 2所以 k + k = 1 2 y - 2 y - 2 1 + 2 x - 2 x - 21 2= y y 1 11 +2 - 2( + )x - 2 x - 2 x - 2 x - 2 1 2 1 2= 2k - 2x 1 + x 2 - 4x x - 2( x + x ) + 41 212⑤ ……………10 分将④代入⑤得 k + k = 2k - 2 1 2 8k 2- 41 + 2k2 8k 2 - 8 8k 2- 2 + 41 + 2k2 1 + 2k 2= 2k - 2 ,又 k = k - 32 2 ,所以 k + k = 2k 1 2 3 . 故存在常数 λ = 2 符合题意…………12 分21.【解答】解:(1)易知 f ( x ) 定义域为 (0, +∞) ,1 - x= ,x x令 f ' ( x ) = 0 ,得 x = 1 .当 0 < x < 1 时, f ' ( x ) > 0 ;当 x > 1 时, f ' ( x ) < 0 . (2)分∴ f ( x ) 在 (0,1) 上是增函数,在 (1,+∞) 上是减函数.f ( x )max= f (1) = -1.∴函数 f ( x ) 在 (0, +∞) 上的最大值为 -1 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(2)∵ f '( x ) = a + 1 1 1, x ∈ (0, e ], ∈ [ , +∞) .x x e1e∴ f ( x )max= f (e ) = ae + 1 ≥ 0 ,不合题意. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分11② 若 a < - ,则由 f ' ( x ) > 0 ⇒ a +ex> 0 ,即 0 < x < -1a11由 f ' ( x ) < 0 ⇒ a +< 0 ,即 - < x ≤ e . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分xa从而 f ( x ) 在 (0, - ) 上增函数,在 (- (3)法一:即证 2a ( x + x 2) + 2( 12 )ln( 222 2 x 2 x21 1a a, e ) 为减函数∴ f ( x ) max 1 1 = f (- ) = -1 + ln(- ) a a1 1令 -1 + ln(- ) = -3 ,则 ln(- ) = -2a a∴- 11= e -2 -e 2 < -a ,即 a = -e 2.∵ e ,∴ a = -e 2 为所求 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分1 1 x + x x + x2 2 22 ) ≤ ax 2 + ax 2 + x ln x + x ln x 1 2 1 1 222a ( x + x ( x + x )21 2 )2 - ax 2 - ax 2 = a ⋅[ 1 21 2- x 2 - x 2 ]1 2( x - x )2= -a 1 2 2< 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9 分另一方面,不妨设 x < x ,构造函数1 2k ( x ) = ( x + x )ln(1x + x12) - x ln x - x ln x ( x > x )1 1 1x + xx + x则 k ( x ) = 0 ,而 k ' ( x ) = ln 1 - ln x = ln 1 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分1x + x由 0 < x < x 易知 0 < 11< 1 , 即 k ' ( x ) < 0 , k ( x ) 在 ( x , +∞) 上为单调递减且连续, 1x + x故 k ( x ) < 0 ,即 ( x + x )ln( 11) < x ln x + x ln x 1 1相加即得证⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分1法二: g ' ( x ) = 2ax + 1 + ln x , g '' ( x ) = 2a + > 0.........9 分x故 g ' ( x ) 为增函数,不妨令 x > x 21令 h ( x ) = g ( x ) + g ( x ) - 2 g (1x + x12)( x > x )1h ' ( x ) = g '(x ) - g ' (x + x12) ......... 10 分易知 x > x + x x + x1 , 故h ' ( x ) = g '(x ) - g ' ( 12 2) > 0 (11)分而 h ( x ) = 0 , 知 x > x 时, h ( x ) > 0112(2)圆 C : x 2 + y - a ⎫2∴圆心 C 到直线的距离 d = 2- 8 得 a = 32 或 a = 32 ⎪ -4 x - 4, x < - 523.解 (1) f (x) = ⎨6, - 5⎩ 4 x + 4, x > 22 ≤ x ≤ ⎩3 - x - 2 x ≤4 ⎧ 3 ≤ x < 3 .所以,原不等式的解集为 ⎨⎧x x ≥ - ⎬ .故 h ( x ) > 0 , 即 2 g ( x 1 + x 2) < g ( x ) + g ( x )21 2 (12)分22.解 (1) a = 2 时,圆 C 的直角坐标方程为 x 2 + (y -1)2 = 1 ;直线 l 的普通方程为 4 x + 3 y - 8 = 0 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分⎛⎪ = ⎝ 2 ⎭a 2 4 ,直线 l : 4 x + 3 y - 8 = 0 ,∵直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,3a1 a5 = 2 ⨯ 2 ,11 .⎧2 ⎪1 ⎪2 ≤ x ≤ 2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分⎪1 ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分当 - 5 12 时,函数有最小值 6 ,所以 m ≤ 6 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分另解:∵ 2x -1 + 2x + 5 ≥ (2x -1) - (2x + 5) = -6 = 6 .∴ m ≤ 6 .(2)当 m 取最大值 6 时,原不等式等价于 x - 3 - 2x ≤ 4 ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分等价于 ⎨ x ≥ 3 ⎩ x - 3 - 2x ≤ 4 ⎧ x < 3 ,或 ⎨,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分可得 x ≥ 3 或 - 11 ⎫ ⎩ 3 ⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分。
东北三省四市2017届高三数学二模试卷理(含解析)
2017年东北三省四市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2} B.{x|﹣2<x<3} C.{x|﹣1<x<3} D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞) B.(﹣∞,4] C.7.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.8.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a11.已知向量,,若m+n=1,则|的最小值为()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4= .16.F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.20.椭圆C:的长轴长为2,P为椭圆C 上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.21.已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.五、23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.2017年东北三省四市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】A5:复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2} B.{x|﹣2<x<3} C.{x|﹣1<x<3} D.{x|﹣1<x<2} 【考点】1E:交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立.即可得出.【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【考点】K8:抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.5.已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.30【考点】8E:数列的求和.【分析】利用等差数列的通项公式可得a n.及其数列{a n}的前n项和S n.令a n≥0,解得n,分类讨论即可得出.【解答】解:∵a n+1﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞) B.(﹣∞,4] C.【考点】7C:简单线性规划.【分析】画出满足约束条件的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到目标函数的取值范围.【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.7.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.【考点】L!:由三视图求面积、体积.【分析】通过三视图复原的几何体是正四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是正四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以四棱锥的体积.故选D.8.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.7【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件及n次独立重复试验中事件A恰好发生k次的概率计算公式得到p=1﹣()n,由此能求出n的最小值.【解答】解:将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,∴p=1﹣()n,∴()n≤.∴n的最小值为4.故选:A.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【考点】H6:正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈,∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.10.运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a【考点】EF:程序框图.【分析】分析程序运行的功能是比较a、b、c的大小并按大小顺序输出,写出运行结果即可.【解答】解:由程序框图知,程序运行的功能是比较a、b、c的大小并按大小顺序输出,程序运行后输出的是c≤b≤a.故选:A.11.已知向量,,若m+n=1,则|的最小值为()A.B.C.D.【考点】93:向量的模.【分析】根据题意,由向量的坐标计算公式可得的坐标,由向量模的公式可得||=,由基本不等式的性质可得≥()2=,即m2+n2≥;即可得答案.【解答】解:根据题意,向量,则=m﹣n=(3m+n,m﹣3n),||==,又由m+n=1,则有≥()2=,即m2+n2≥;故||=≥,即||的最小值为;故选:C.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.【考点】3T:函数的值.【分析】当m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2时,只要即可,当m<2时,只要即可,由此能求出结果.【解答】解:当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立;当m>2时,,只要即可,解得2<m<5;当m<2时,,只要即可,解得,综上.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48 种不同的分法(用数字作答).【考点】D8:排列、组合的实际应用.【分析】甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,即可得出结论.【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x .【考点】6H:利用导数研究曲线上某点切线方程.【分析】先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x.故答案为:y=x.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4= 30 .【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.16.F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为或2 .【考点】KC:双曲线的简单性质.【分析】运用两渐近线的对称性和条件,可得A为BF的中点,由垂直平分线的性质和等腰三角形的性质,可得Rt△OAB中,∠AOB=,求得渐近线的斜率,运用离心率公式即可得到.【解答】解:当b>a>0时,由,可知A为BF的中点,由条件可得=,则Rt△OAB中,∠AOB=,渐近线OB的斜率k=,即离心率e===2.同理当a>b>0时,可得e=;故答案为:或2.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f (x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大;(Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,根据X的取值计算对应的概率,求出X的分布列和数学期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:0.1,0.2,0.4,0.25,0.05,其相对应的小长方形的高为0.01,0.02,0.04,0.025,0.005,对于男性用户,各小组的频率分别为:0.15,0.25,0.30,0.20,0.10,其相对应的小长方形的高为0.015,0.025,0.03,0.02,0.01,直方图如图所示:,由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X的数学期望为EX=1×+2×+3×=2.19.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),,,,M(2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.20.椭圆C:的长轴长为2,P为椭圆C 上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.【考点】KH:直线与圆锥曲线的综合问题;KL:直线与椭圆的位置关系.【分析】(I)由2a=2,解得a=,设P(x0,y0),A1(,0),A2(,0).由=1,可得=﹣.根据OM∥PA1,可得,于是===﹣=﹣,解得b2.(II)设直线l的方程为:y=k(x+1),A(x1,y1),B(x2,y2).与椭圆方程联立化为:(2k2+1)x2+4k2x+2k2﹣2=0,利用根与系数的关系与中点坐标公式可得线段AB的中点Q,QN的方程为:y﹣=﹣,可得N.根据<<0,解得:0<2k2<1.利用弦长公式可得:|AB|=,即可得出.【解答】解:(I)由2a=2,解得a=,设P(x0,y0),A1(,0),A2(,0).则=1,可得=﹣.∵OM∥PA1,∴,∴====﹣=﹣,解得b2=1.∴椭圆C的方程为=1.(II)设直线l的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(2k2+1)x2+4k2x+2k2﹣2=0,则x1+x2=,x1•x2=,∴y1+y2=k(x1+x2+2)=,可得线段AB的中点Q,QN的方程为:y﹣=﹣,∴N.∵<<0,解得:0<2k2<1.∴|AB|=•=,∵<1,∴|AB|∈.21.已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.【考点】6D:利用导数研究函数的极值.【分析】(1)求导,令f′(x)=0,根据函数单调性与导数的关系,即可求得函数f(x)的极值;(2)采用分析法,要证明f(e+x)>f(e﹣x),只需证(e﹣x)ln(e+x)>(e+x)ln(e ﹣x),构造辅助函数求导,由F′(x)>0,即可求得函数单调性递增,F(x)>F(0)=0,即可求得f(e+x)>f(e﹣x);(3)由(1)可知0<x1<e<x2,则0<e﹣x1<e,由(2)可知,f(x)在(e,+∞)上单调递减,x1+x2>2e,x0=>e,即可f'(x0)<0.【解答】解:(1)由f(x)=,x>0,求导f′(x)=,当x∈(0,e),f′(x)>0,f(x)单调递增,x∈(e,+∞)时,f′(x)<0,f(x)单调递减,∴当x=e时,f(x)取极大值为,无极小值,(2)证明:要证明f(e+x)>f(e﹣x),即证>,只需证(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),求导F′(x)=﹣ln(e2﹣x2)=+>0,∴f(x)在(0,e)单调递增,∴F(x)>F(0)=0,∴(e﹣x)ln(e+x)>(e+x)ln(e﹣x),∴f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)可知0<x1<e<x2,由0<e﹣x1<e,由(2)可知:f>f=f(x1)=f(x2),由2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,即x1+x2>2e,则x0=>e,∴f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.五、23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.【考点】3R:函数恒成立问题.【分析】(1)化简f(x)的解析式,判断f(x)的单调性,根据单调性得出f(x)的最小值化简即可得出结论;(2)分离参数得t≤,把2a+b=2代入不等式,根据基本不等式的性质得出的最小值,从而得出t的范围.【解答】解:(1)证明:令x+a=0得x=﹣a,令2x﹣b=0得x=,∵a>0,b>0,∴﹣a,则f(x)=,∴f(x)在(﹣∞,]上单调递减,在(,+∞)上单调递增,∴f min(x)=f()=a+=1,2a+b=2;(2)∵a+2b≥tab恒成立,∴t≤恒成立,∵2a+b=2,∴a+b=1,∴=+=+=+≥=,(当且仅当a=b时取等号)∴的最小值为,∴t.。
吉林省2017届高三数学第二次模拟考试试题 理
吉林省2017届高三数学第二次模拟考试试题 理第Ⅰ卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若集合{}3log 22<x x P ≤=,{}8,,6,4,2=Q ,则=Q P ⋂ A.{}2 B.{}4,2 C 。
{}6,4 D 。
{}8,6,4 2.在复平面内,复数13+-i i(i 是虚数单位)的共轭复数对应的点位于 A. 第四象限 B 。
第三象限 C. 第二象限 D 。
第一象限 3.设3log ,23,2log 7755=⎪⎭⎫ ⎝⎛==c b a ,则,,a b c 的大小关系是 A . b a c >> B .a c b >> C . b c a >> D .a b c >>4。
已知p :函数2()1f x x mx =++与x 轴有两个交点;q :x R ∀∈, 244(2)10x m x +-+>恒成立.若q p ∨为真,则实数m 的取值范围为A . (2,3)B . (,1](2,)-∞+∞C . (,2)[3,)-∞-+∞D .),1()2,(+∞⋃--∞ 5.下列命题正确的是A .命题:“若3x =,则2230x x --=” 的否命题是:“若3=x ,则2230x x --≠”. B. 命题: “x ∃∈R ,使得210x -<"的否定是: “x ∀∈R ,均有210x -<"。
C 。
命题:“存在四边相等的四边形不是正方形”,该命题是假命题. D. 命题:“若cos cos x y =,则x y =”的逆否命题是假命题.6. 已知函数⎪⎩⎪⎨⎧≥-<+=)1(,)1(,13)(2x x ax x x f x,若a f f 3))0((=,则实数a 等于A .12B .4C .2D .97.若函数x x a x x f +-=2323)(在区间)2,1(上单调递减,则实数a 的取值范围为 A 。
辽宁省沈阳市2017届高三上学期第二次模拟考试数学理试题Word版含答案
2016-2017学年度上学期高中学段高三联合考试数学理科试卷 使用时间:2016.10.20命题人:刘新风校对人:来洪臣本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间120分钟. 第Ⅰ卷(选择题共60分)一、选择题:本大题12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}R x x x y y A ∈--==,122,⎭⎬⎫⎩⎨⎧≠∈+==0,1x R x x x y y B 且,则=⋂A B C R )(()A .]2,2(--B .[)2,2-C .),2[+∞-D .)2,2(- 2.若复数z 满足71i i z+=(i 为虚数单位),则复数z 的虚部为 ( ) A .1B .1-C .iD .i -3. 指数函数,0()(>=a a x f x 且)1≠a 在R 上是减函数,则函数3)2()(x a x g -=在R 上的单调性为()A.单调递增B.单调递减C.在),0(+∞上递增,在)0,(-∞上递减 D .在),0(+∞上递减,在)0,(-∞上递增 4.已知命题p:(,0),34xxx ∃∈-∞<;命题q :(0,)x ∀∈+∞,x x sin >则下列命题中的真命题是 ( )A.p q ∧B.()p q ∨⌝C.()p q ∧⌝D.p q ⌝∧ 5.在下列区间中,函数()=+43xf x e x -的零点所在的区间为() A.(1-4,0) B.(0,14) C.(14,12) D.(12,34)6.设2018log ,2016log ,2014log 100910081007===c b a ,则()A .a b c >>B .a c b >>C .b c a >>D .c b a >> 7.已知函数x a x y cos sin +=的图像关于3π=x 对称,则函数x x a y cos sin +=的图像的一条对称轴是( )A .65π=x B .32π=x C .3π=x D .6π=x8.函数1ln ||x x y e e -=-的部分图象大致为()9.函数1222)21()(--+-=m mx x x f 的单调增区间与值域相同,则实数m 的取值为 ( ) A .2-B .2C .1-D .110.在整数集Z 中,被7除所得余数为r 的所有整数组成的一个“类”,记作][r ,即{}Z k r k r ∈+=7][,其中6,...2,1,0=r .给出如下五个结论:①]1[2016∈;②]4[3∈-;③=⋂]6[]3[φ; ④]6[]5[]4[]3[]2[]1[]0[⋃⋃⋃⋃⋃⋃=Z ;⑤“整数b a ,属于同一“类””的充要条件是“]0[∈-b a ”。
【东北三省四市】2017届高三二模(理)数学试卷-答案
- 6 - / 10
故选:B.
7.解:由题意三视图可知,几何体是正四棱锥,
底面边长为 2 的正方形,一条侧棱垂直正方形的一个顶点,长度为 2,
所以四棱锥的体积V 1 2 2 2 8 .
3
3
故选 D.
8.解:将一枚质地均匀的硬币连续抛掷 n 次,
事件“至少有一次正面向上”的概率为 p( p 15) , 16
kOM
kPA2
kPA1
=
x0
y0
2
y0 x0
2
y02 x02 2
b2 2
1 2
,
解得 b2 1. ∴椭圆 C 的方程为 x2 y2 1 .
2
(Ⅱ)设直线 l 的方程为: y k(x 1), A(x1, y), B(x2, y2 ) .
y k(x 1)
联立
x2
2
y2
1
,
z1
)
,
m
m
PF PM
0 0
,即
x 2z 0 2x 2 y
2
z
,m 0
(2, 1,1)
设平面 BFM 的法向量 n (x2 , y2 , z2 ) , BFM
n
BF
0
,
n FM 0
即
x (2
0 1)
x
2
y
(2
2)
z
0
,
n (0, 1,) | cos m, n || m n || 1 | 3 ,解得 1 .
,化为: (2k2
1)x2
4k2x 2k2
2
0,
则 x1 x2
4k 2 2k 2
1
,
【东北三省四】2017届高三二模(理)数学年试题
东北三省四市2017届高三二模(理)数学试卷答 案1.A 2.D 3.A 4.D 5.C 6.B 7.D 8.A 9.C 10.A 11.C 12.C 13.48 14.y x = 15.3016217.解:(Ⅰ)f x PO QP ==()(3cos ,1sin )x x --=sin 4x x -+=π2sin 43x -++(), 2π()π2f x T ==的最小正周期; (Ⅱ)∵()4f A =,∴2π3A =,又∵3BC =, ∴29()b c bc =+-.∵2()4b c bc +≤,∴23()94b c +≤,∴b c +≤当且仅当b c =取等号,∴三角形周长最大值为3+18.解:(Ⅰ)对于女性用户,各小组的频率分别为:0.1,0.2,0.4,0.25,0.05,其相对应的小长方形的高为0.01,0.02,0.04,0.025,0.005, 对于男性用户,各小组的频率分别为:0.15,0.25,0.30,0.20,0.10, 其相对应的小长方形的高为0.015,0.025,0.03,0.02,0.01, 直方图如图所示:由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人, 其中评分小于90分的人数为4,从6人人任取3人, 记评分小于90分的人数为X ,则X 取值为1,2,3,且12423641(1)205C C P X C ====,214236123(2)205C C P X C ====,30423641(3)205C C P X C ====; 所以X 的分布列为()1X E X =的数学期望为232555⨯+⨯+⨯=.19.(Ⅰ)证明:∵,PA ABCD AB ABCD ⊥⊂底面底面,∴PA AB ⊥,又∵底面,,,ABCD AB AD PAAD A PA PAD AD PAD ∴⊥=⊂⊂为矩形,平面平面,∴,,,,AB PAD PD PAD AB PD AD AP E PD ⊥⊂∴⊥=平面又平面为中点,∴AE PD ⊥,,,,AE AB A AE ABE AB ABE PD ABE =⊂⊂∴⊥平面平面平面.(Ⅱ)以A 为原点,以,,AB AD AP 为,,x y z 轴正方向,建立空间直角坐标系A BDP -,令2AB =,则(0,0,0)A ,(2,0,0)B ,(0,0,2)P ,(2,2,0)C ,(0,1,1)E ,(1,0,0)F ,(1,0,2)PF =-,(2,2,2)PC =-,(2,2,2)PM λλλ=-,2,2,22Mλλλ-() 设平面PFM 的法向量111(,,)m x y z =,00m PF m PM ⎧=⎪⎨=⎪⎩,即202220x z x y z λλλ-+=⎧⎨+-=⎩,(2,1,1)m =-设平面BFM 的法向量222(,,)n x y z =,BFM 00n BF n FM ⎧=⎪⎨=⎪⎩,即0(21)2(22)0x x y z λλλ=⎧⎨-++-=⎩,(0,1,)n λλ=-|cos ,||||||||6m n m nm n <>==,解得12λ=.20.解:(Ⅰ)由2a =解得a 设00(,)P x y ,1(A ,2A .则220022x y b+=1,可得2202022y b x =--. ∵1//OM PA ,∴1OM PA k k =,∴221PA OM PA PA k k k k ⋅=⋅002x =-220201222y b x =-=--,解得21b =.∴椭圆C 的方程为2212x y +=.(Ⅱ)设直线l 的方程为:122(1),(,),(,)y k x A x y B x y =+.联立22(1)12y k x x y =+⎧⎪⎨+=⎪⎩,化为:2222(21)4220k x k x k +++-=, 则2122421k x x k -+=+,21222221k x x k -=+,∴121222(2)21k y y k x x k +=++=+,可得线段AB 的中点2222(,)2121k kQ k k -++,QN 的方程为:22212()2121k k y x k k k -=-+++,∴N 2(,0)21kk -+. ∵2210421k k -<-<+,解得:2021k <<. ∴21)21AB k =++,∵2111221k <<+,∴AB ∈.21.解:(1)由ln ()x f x x =,0x >,求导f x '=()21ln xx -, 当(0,e),()0,()x f x f x ∈'>单调递增,(e,)()0,()x f x f x ∈+∞'时,<单调递减,∴当e ()x f x =时,取极大值为1e,无极小值, (2)证明:要证明(e )(e )f x f x +->,即证ln(e )ln(e )e e x x x x+->+-,只需证(e )ln(e )(e )ln(e )x x x x -++->, 设()(e )ln(e )(e )ln(e )F x x x x x =-+-+-,求导2222222222(e )4ln e 0e e x x F x x x x +'=-->--()()=+,∴()(0,e)f x 在单调递增, ∴()(0)0F x F =>,∴(e )ln(e )(e )ln(e )x x x x -++->, ∴(e )(e )f x f x +->,(3)证明:不妨设12x x <,由(1)可知120e x x <<<, 由10e e x -<<,由(2)可知:12()()f f f x f x ==>,由122e e,e,()(e,)x x f x -+∞>>且在上单调递减, 即122e x x +>, 则120e 2x x x +=>, ∴0'()0f x <.22.解:(1)曲线214cos 4cos C ρθρρθ==的极坐标方程为,即, 可得直角坐标方程:221:40C x y x +-=.直线l的参数方程为115x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t 可得普通方程:230x y +=﹣.(2)π)4P ,直角坐标为(2,2),(2cos ,sin )Q αα,1(1cos ,1sin )2M αα++,∴M 到l的距离πsin()|4d α=+,. 23.解:(1)证明:令0,202bx a x a x b x +==--==得令得, ∵0,0a b >>,∴2b a -<, 则3,,23,2x a b x a b f x x a b a x b x a b x ⎧⎪--+≤-⎪⎪=-++-<<⎨⎪⎪+-≥⎪⎩(), ∴]()(,2b f x -∞在上单调递减,在(,)2b+∞上单调递增,∴min ()()1,2222b bf x f a a b ==+=+=;(2)∵2a b tab +≥恒成立,∴2a bt ab+≤恒成立,∵22a b +=,∴112a b +=,∴2a b ab +=112255922222a ba b a b b a b a b a +++=+=++≥+=,(当且仅当a b =时取等号) ∴2a b ab +的最小值为92, ∴t ≤92.解 析1.∵12z i =+,∴z z ⋅2z ==25=. 故选:A .2.集合22301{|}{|3}A x x x x x ==--<-<<,{|}{|2}22B x x x x ==<﹣<<.故选:D .3.由p ⇒q ,反之不成立. ∴p q 是的充分不必要条件. 故选:A .4.解:根据题意,抛物线22y x =上,设P d PF d =到准线的距离为,则有, 抛物线的方程为22y x =,即212x =y ,其准线方程为:18y =-,分析可得:当P d 在抛物线的顶点时,有最小值18,即PF 的最小值为18,故选:D .5.解:∵1125n n a a a +==﹣,-,∴数列{n a }是公差为2的等差数列. ∴52127n a n n =+=﹣(﹣)﹣. 数列{n a }的前n 项和(527)2n n n S -+-==26n n ﹣.令270n a n =≥-,解得72n ≥.∴3n n n a a ≤=时,-.4n n n a a ≥=时,.则12612345663262662326318a a a a a a a a a S S ++⋯+=+++==-⨯--⨯=﹣﹣﹣﹣(). 故选:C .6.解:满足约束条件010x y x y +≤⎧⎨-+≤⎩的平面区域如下图所示:由图可知3010x y x y +-=⎧⎨-+=⎩解得12A (,)当1224x y z x y ===+,时,目标函数有最大值. 故目标函数z =2x +y 的值域为(-∞,4]故选:B .7.解:由题意三视图可知,几何体是正四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2, 所以四棱锥的体积1822233V =⋅⋅⋅=. 故选D .8.解:将一枚质地均匀的硬币连续抛掷n 次, 事件“至少有一次正面向上”的概率为15()16p p ≥, ∴112p n =-()1516≥, ∴12n ()116≤.∴n 的最小值为4. 故选:A .9.解:∵x ∈,∴72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 方程2sin(2)6x ππ+=在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个不相等的实数解12x x ,, ∴122(2)662x x ππ+++=2π,则123x x π+=,故选:C . 10.解:由程序框图知,程序运行的功能是 比较a b c 、、的大小并按大小顺序输出, 程序运行后输出的是c b a ≤≤. 故选:A .11.解:根据题意,向量(3,1),(1,3)OA OB ==-, 则(3,3)OC mOA nOB m n m n =-=+-,||(3OC =,又由1m n +=,则有2221()224m n m n ++≥=≥,即2212m n +≥;故||10(OC =即||OC 故选:C .12.解:当22cos 2cosx m f x x +==+时,()=1,此时1f a f b f c ===()()(),是等边三角形的三边长,成立; 当2m >时,2()[1,m 1]3m f x -∈+-, 只要22(1)13m m -+>-即可,解得25m <<; 当2m <时,2()[m 1,1]3m f x -∈-+, 只要212(1)3m m -+<-即可, 解得725m <<,综上7(,5)5m ∈.故选:C .13.解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有336A =种情况, ∴共有8648⨯=种不同的分法. 故答案为48.14.解:∵sin sin cos x xf x e x f x e x x =⋅'=+(),()(),0100f f '==(),(),∴函数00f x A ()的图象在点(,)处的切线方程为 010y x =⨯﹣(﹣),即y x =. 故答案为:y x =.15.解:设等比数列{an }的公比为3120283q S a a =+>,,416a =,∴2112183a q q a q++=+()(),31a q =16, 解得12a q ==.则442(21)21S -=-=30.故答案为:30.16.解:当0b a >>时,由||1||2AF BF =,可知A BF 为的中点,由条件可得||1||2OA OB =, 则Rt OAB △中,π3AOB ∠=,渐近线OB k =的斜率,即离心率22ce ===. 同理当0a b >>时,可得e =2. 17.(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f x ()的最小正周期; (Ⅱ)利用函数的解析式求解A bc ,然后利用余弦定理求解即可,得到的范围,然后利用基本不等式求解最值.18.(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大; (Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X ,根据X 的取值计算对应的概率,求出X 的分布列和数学期望. 19.(I )证明AB PAD AB PD AE PD AEAB A ⊥⊥⊥=平面,推出,,,即可证明PD ABE ⊥平面.(II )以A 为原点,以,,AB AD AP 为x y z ,,轴正方向,建立空间直角坐标系A BDP -,求出相关点的坐标,平面PFM 的法向量,平面BFM 的法向量,利用空间向量的数量积求解即可. 20.(I )由22a =解得a =设00P x y (,),1A (),2A ).由220022x y b+=1,可得2202022y b x =--.根据1//OM PA ,可得OM PA k k =,于是:221PA OM PA PA k k k k ⋅=⋅=220201222y b x =-=--,解得2b .(II )设直线l 的方程为:11221y k x A x y B x y =+(),(,),(,).与椭圆方程联立化为:2222214220k x k x k +++=()-,利用根与系数的关系与中点坐标公式可得线段AB 的中点2222(,)2121k k Q k k -++,QN 的方程为:22212()2121k k y x k k k -=-+++,可得N 2(,0)21k k -+.根据2210421k k -<-<+,解得:2021k <<.利用弦长公式可得:21)21AB k =++,即可得出. 21.(1)求导,令0f x '=(),根据函数单调性与导数的关系,即可求得函数f x ()的极值; (2)采用分析法,要证明f e x f e x +()>(﹣),只需证ln ln e x e x e x e x ++(-)()>()(-),构造辅助函数求导,由0F x '()>,即可求得函数单调性递增,00F x F =()>(),即可求得f e x f e x +()>(﹣); (3)由(1)可知120x e x <<<,则10e x e <-<,由(2)可知,f x e +∞()在(,)上单调递减,1212022x x x x e x e ++=>,>,即可0'0f x ()<.22.(1)曲线C1的极坐标方程为24cos 4cos ρθρρθ==,即,可得直角坐标方程.直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t 可得普通方程. (2)π)4P ,直角坐标为22(,),(2cos ,sin )Q αα,1(1cos ,1sin )2M αα++,利用点到直线的距离公式及其三角函数的单调性可得最大值.23.(1)化简f x ()的解析式,判断f x ()的单调性,根据单调性得出f x ()的最小值化简即可得出结论; (2)分离参数得2a b t ab +≤,把22a b +=代入不等式,根据基本不等式的性质得出2a bab+的最小值,从而得出t 的范围.。
吉林省长春市2017届高三第二次模拟考试数学试题(理)含答案
2
2
A. x 3 y 1 4
3 x 对称的圆的方程是
3
2
B. x 2 y
2
24
C. x 2
2
y2 4
2
2
D. x 1 y 3 4
5.堑堵,我国古代数学名词,其三视图如图所示 .《九章算术》 中有如下问题: “今有堑堵,下广二丈,表一十八丈六尺,高
二丈五尺,问积几何?”意思是说: “今有堑堵,底面宽为 2
D. 1,4
2.已知复数 z 1 i ,则下列命题中正确的是 .① z 2 ; ② z 1 i ; .③ z 的虚部为 i ; ④ z 在复平面上对应的点位于第一象限 .
A. 1
B. 2
C. 3
D. 4
3.下列函数中,既是奇函数又在上单调递增的函数是
A.
B.
C.
D.
2
2
4.圆 x 2 y 4 关于直线 y
M, 过该点的动直线 l 与抛物线 C 交于 A,B
1
两点, 使得
2
AM
1
2 为定值 .如果存在, 求出点 M 的坐标; 如果不存在, 请说明理由 .
BM
21. (本题满分 12 分)
已知函数 f x 1 x2 2
1 a x a ln x, a R.
(1)若 f x 存在极值点 1,求 a的值;
(2)若 f x 存在两个不同的零点 x1, x2 ,求证: x1 x2 2.
那么不同的发言顺序共有
(种) .(用数字作答)
16.已知四棱锥 P ABCD 的底面为矩形,平面 PBC 平面 ABCD , PE BC 于点 E ,
EC 1, AB 6, BC 3, PE 2 ,则四棱锥 P ABCD 的外接球半径为
2017年黑龙江省大庆市高考数学二模试卷(理科)(解析版)
2017年黑龙江省大庆市高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A={﹣2,﹣1,0,1,2},B={x|﹣2<x≤2},则A∩B=()A.{﹣1,0,1,2} B.{﹣1,0,1} C.{﹣2,﹣1,0,1} D.{﹣2,﹣1,0,1,2}2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量=(2,﹣1),=(3,x).若•=3,则x=()A.6 B.5 C.4 D.34.已知双曲线﹣=1的一条渐近线方程为y=x,则此双曲线的离心率为()A.B.C.D.5.已知条件p:|x﹣4|≤6,条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是()A.(﹣∞,﹣1] B.(﹣∞,9] C.[1,9] D.[9,+∞)6.运行如图所示的程序框图,输出的结果S=()A.14 B.30 C.62 D.1267.在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是()A.35 B.﹣35 C.﹣56 D.568.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是()A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l∥m,l⊄α,m⊂α,则l∥αC.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n9.已知,函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A.B.C.D.10.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为,则其中女生人数是()A.2人B.3人C.2人或3人D.4人11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A1与点A关于x轴对称,若直线AB斜率为1,则直线A1B的斜率为()A. B.C. D.12.下列结论中,正确的有()①不存在实数k,使得方程xlnx﹣x2+k=0有两个不等实根;②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为;③函数y=ln与y=lntan是同一函数;④在椭圆+=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.A.①④B.①③C.①②D.②④二、填空题(本小题共4小题,每小题5分,共20分)13.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=,a 2+a 4=,则S 6= .14.已知实数x 、y 满足约束条件,则z=2x+4y 的最大值为 .15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为 .16.下列命题正确是 ,(写出所有正确命题的序号)①若奇函数f (x )的周期为4,则函数f (x )的图象关于(2,0)对称;②若a ∈(0,1),则a 1+a <a ;③函数f (x )=ln是奇函数;④存在唯一的实数a 使f (x )=lg (ax+)为奇函数.三、解答题(本题6小题,共70分)17.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且a=3,b=4,B=+A .(1)求cosB 的值; (2)求sin2A+sinC 的值.18.如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC ,△ABC 为等腰直角三角形,∠BAC=90°,且AB=AA 1,E 、F 分别是CC 1,BC 的中点. (1)求证:平面AB 1F ⊥平面AEF ; (2)求二面角B 1﹣AE ﹣F 的余弦值.19.某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(I)求直方图中x的值;(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;(Ⅲ)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)20.已知椭圆C: +=1(a>b>0)经过点P(2,),离心率e=,直线l的渐近线为x=4.(1)求椭圆C的方程;(2)经过椭圆右焦点D的任一直线(不经过点P)与椭圆交于两点A,B,设直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,说明理由.21.已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.(1)当a=﹣1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为﹣3,求a的值;(3)设g(x)=xf(x),若a>0,对于任意的两个正实数x1,x2(x1≠x2),证明:2g()<g(x1)+g(x2).[选修4-1:几何证明选讲]22.在直角坐标系xoy中,直线l的参数方程为(t 为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ.(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.[选修4-4:坐标系与参数方程选讲]23.已知函数f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.(Ⅰ)求m的取值范围;(Ⅱ)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣8.2017年黑龙江省大庆市高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A={﹣2,﹣1,0,1,2},B={x|﹣2<x≤2},则A∩B=()A.{﹣1,0,1,2} B.{﹣1,0,1} C.{﹣2,﹣1,0,1} D.{﹣2,﹣1,0,1,2}【考点】交集及其运算.【分析】根据交集的定义写出A∩B即可.【解答】解:集合A={﹣2,﹣1,0,1,2},B={x|﹣2<x≤2},则A∩B={﹣1,0,1,2}.故选:A.2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算;复数的基本概念.【分析】利用两个复数代数形式的乘法,以及虚数单位i的幂运算性质,求得复数为,它在复平面内对应的点的坐标为(,﹣),从而得出结论.【解答】解:∵复数==,它在复平面内对应的点的坐标为(,﹣),故选D.3.已知向量=(2,﹣1),=(3,x).若•=3,则x=()A.6 B.5 C.4 D.3【考点】平面向量数量积的运算.【分析】由题意, =(2,﹣1),=(3,x).•=3,由数量积公式可得到方程6﹣x=3,解此方程即可得出正确选项.【解答】解:∵向量=(2,﹣1),=(3,x).•=3,∴6﹣x=3,∴x=3.故选D4.已知双曲线﹣=1的一条渐近线方程为y=x,则此双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】因为焦点在 x轴上的双曲线方程的渐近线方程为y=±,由双曲线的一条渐近线方程为y=,就可得到含a,b的齐次式,再把b用a,c表示,根据双曲线的离心率e=,就可求出离心率的值.【解答】解:∵双曲线的焦点在x轴上,∴渐近线方程为y=±,又∵渐近线方程为y=,∴∴∵b2=c2﹣a2,∴化简得,即e2=,e=故选A5.已知条件p:|x﹣4|≤6,条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是()A.(﹣∞,﹣1] B.(﹣∞,9] C.[1,9] D.[9,+∞)【考点】必要条件、充分条件与充要条件的判断.【分析】解出关于p的不等式,根据充分必要条件的定义求出m的范围即可.【解答】解:由|x﹣4|≤6,解得:﹣2≤x≤10,故p:﹣2≤x≤10;q:x≤1+m,若p是q的充分不必要条件,则1+m≥10,解得:m≥9;故选:D.6.运行如图所示的程序框图,输出的结果S=()A.14 B.30 C.62 D.126【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=6时,不满足条件k≤5,退出循环,计算输出S的值.【解答】解:模拟执行程序框图,可得k=1,S=0满足条件k≤5,S=2,k=2满足条件k≤5,S=6,k=3满足条件k≤5,S=14,k=4满足条件k≤5,S=30,k=5满足条件k≤5,S=62,k=6不满足条件k≤5,退出循环,输出S的值为62,故选:C.7.在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是()A.35 B.﹣35 C.﹣56 D.56【考点】二项式系数的性质.【分析】根据二项式展开式中恰好第5项的二项式系数最大,得出n的值,再利用展开式的通项公式求出展开式中含x2项的系数即可.【解答】解:∵在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,∴展开式中第5项是中间项,共有9项,∴n=8;展开式的通项公式为T=•x8﹣r•=(﹣1)r••x8﹣2r,r+1令8﹣2r=2,得r=3,∴展开式中含x2项的系数是(﹣1)3•=﹣56.故选:C.8.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是()A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l∥m,l⊄α,m⊂α,则l∥αC.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】根据线面垂直的判定定理如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面,进行判定即可.【解答】解:若l⊥m,l⊥n,m⊂α,n⊂α,不能推出l⊥α,缺少条件m与n相交,故不正确.故选A9.已知,函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A.B.C.D.【考点】y=Asin(ωx+φ)中参数的物理意义;运用诱导公式化简求值;图形的对称性.【分析】化简函数的表达式,函数y=f(x+φ)的图象关于直线x=0对称,说明是偶函数,求出选项中的一个φ即可.【解答】解: =2sin(x+),函数y=f(x+φ)=2sin(x+φ+)的图象关于直线x=0对称,函数为偶函数,∴φ=故选D.10.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为,则其中女生人数是()A.2人B.3人C.2人或3人D.4人【考点】列举法计算基本事件数及事件发生的概率.【分析】设女生人数是x人,则男生(8﹣x)人,利用从中任选3人,出现2个男生,1个女生的概率为,可得=,即可得出结论.【解答】解:设女生人数是x人,则男生(8﹣x)人,∵从中任选3人,出现2个男生,1个女生的概率为,∴=,∴x=2或3,故选C.11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A1与点A关于x轴对称,若直线AB斜率为1,则直线A1B的斜率为()A. B.C. D.【考点】抛物线的简单性质.【分析】求得直线AB的方程,代入椭圆方程,根据直线的斜率公式及韦达定理,即可求得直线A1B的斜率.【解答】解:∵抛物线y2=4x上的焦点F(1,0),设A(x1,y1),B(x2,y2),A 1(x1,﹣y1),则可设直线AB的方程为y=x﹣1联立方程,可得x2﹣6x+1=0则有x1+x2=6,x1x2=1,直线A1B的斜率k====,∴直线A1B的斜率为,故选C.12.下列结论中,正确的有()①不存在实数k,使得方程xlnx﹣x2+k=0有两个不等实根;②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为;③函数y=ln 与y=lntan 是同一函数;④在椭圆+=1(a >b >0),左右顶点分别为A ,B ,若P 为椭圆上任意一点(不同于A ,B ),则直线PA 与直线PB 斜率之积为定值. A .①④B .①③C .①②D .②④【考点】命题的真假判断与应用.【分析】①,函数f (x )=xlnx ﹣x 2在定义域内单调,不存在实数k ,使得方程xlnx ﹣x 2+k=0有两个不等实根;②,a 2+b 2=2c 2≥2ab ,cosC=则角C 的最大值为;③,函数y=ln与y=lntan 的定义域不同,不是同一函数;④,设A (﹣a ,0),B (a ,0),P (m ,n ),则b 2m 2+a 2n 2=a 2b 2⇒a 2n 2=b 2(a 2﹣m 2)⇒直线PA 与直线PB 斜率之积为(定值).【解答】解:对于①,函数f (x )=xlnx ﹣x 2在定义域内单调,不存在实数k ,使得方程xlnx ﹣x 2+k=0有两个不等实根,正确;对于②,∵a 2+b 2=2c 2,∴a 2+b 2=2c 2≥2ab ,cosC=,则角C 的最大值为,故错;对于③,函数y=ln与y=lntan 的定义域不同,不是同一函数,故错;对于④,设A (﹣a ,0),B (a ,0),P (m ,n ),则b 2m 2+a 2n 2=a 2b 2⇒a 2n 2=b 2(a 2﹣m 2)⇒直线PA 与直线PB 斜率之积为(定值),故正确.故选:A .二、填空题(本小题共4小题,每小题5分,共20分)13.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=,a 2+a 4=,则S 6= .【考点】等比数列的前n 项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n }的公比为q ,∵a 1+a 3=,a 2+a 4=,∴a 2+a 4==q (a 1+a 3)=q ,解得q=.∴=,解得a 1=2.则S 6==故答案为:.14.已知实数x 、y 满足约束条件,则z=2x+4y 的最大值为 20 .【考点】简单线性规划.【分析】先画出可行域,结合z 为目标函数纵截距四倍,平移直线0=2x+4y ,发现其过(0,2)时z 有最大值即可求出结论.【解答】解:画可行域如图,z 为目标函数z=2x+4y ,可看成是直线z=2x+4y 的纵截距四倍,画直线0=2x+4y ,平移直线过A (2,4)点时z 有最大值20 故答案为:20.15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为.【考点】由三视图求面积、体积.【分析】根据三视图知该几何体是平放的直三棱柱,可还原为长方体,利用外接球的直径是长方体对角线的长,求出半径.【解答】解:由已知中的三视图可得:该几何体是平放的直三棱柱,且三棱柱的底面为直角三角形,高为12;可还原为长宽高是12、8、6的长方体,其外接球的直径是长方体对角线的长,∴(2R)2=122+82+62=244,即R2=61,∴半径为R=.故答案为:.16.下列命题正确是①③,(写出所有正确命题的序号)①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;②若a∈(0,1),则a1+a<a;③函数f(x)=ln是奇函数;④存在唯一的实数a使f(x)=lg(ax+)为奇函数.【考点】命题的真假判断与应用.【分析】①,若奇函数f(x)的周期为4,则f(﹣x)=f(﹣x+4)=﹣f(x),则函数f(x)的图象关于(2,0)对称;②,若a∈(0,1),1+a<1+则a1+a>a;③,函数f(x)=ln满足f(x)+f(﹣x)=0,且定义域为(﹣1,1),f(x)是奇函数;④,f(x)=lg(ax+)为奇函数时(ax+)(ax+)=1⇒a=±1.【解答】解:对于①,若奇函数f(x)的周期为4,则f(﹣x)=f(﹣x+4)=﹣f(x),则函数f(x)的图象关于(2,0)对称,故正确;对于②,若a∈(0,1),1+a<1+则a1+a>a,故错;对于③,函数f(x)=ln满足f(x)+f(﹣x)=0,且定义域为(﹣1,1),f(x)是奇函数,正确;对于④,f(x)=lg(ax+)为奇函数时,(ax+)(ax+)=1⇒a=±1,故错.故答案为:①③三、解答题(本题6小题,共70分)17.在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=+A.(1)求cosB的值;(2)求sin2A+sinC的值.【考点】正弦定理;余弦定理.【分析】(1)运用正弦定理和诱导公式、以及同角公式,即可得到cosB;(2)由二倍角的正弦和余弦公式,以及诱导公式,化简计算即可得到.【解答】解(1)∵,∴cosB=cos(+A)=﹣sinA,又a=3,b=4,所以由正弦定理得,所以=,所以﹣3sinB=4cosB,两边平方得9sin2B=16cos2B,又sin2B+cos2B=1,所以,而,所以.(2)∵,∴,∵,∴2A=2B﹣π,∴sin2A=sin(2B﹣π)=﹣sin2B=又A+B+C=π,∴,∴sinC=﹣cos2B=1﹣2cos2B=.∴.18.如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E、F分别是CC1,BC的中点.(1)求证:平面AB1F⊥平面AEF;(2)求二面角B1﹣AE﹣F的余弦值.【考点】与二面角有关的立体几何综合题;平面与平面垂直的判定.【分析】(1)连结AF,由已知条件推导出面ABC⊥面BB1C1C,从而AF⊥B1F,由勾股定理得B1F⊥EF.由此能证明平面AB1F⊥平面AEF.(2)以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系,利用向量法能求出二面角B1﹣AE﹣F的余弦值.【解答】(1)证明:连结AF,∵F是等腰直角三角形△ABC斜边BC的中点,∴AF⊥BC.又∵三棱柱ABC﹣A1B1C1为直三棱柱,∴面ABC⊥面BB1C1 C,∴AF⊥面BB1C1C,AF⊥B1F.…设AB=AA1=1,则,EF=,.∴=,∴B1F⊥EF.又AF∩EF=F,∴B1F⊥平面AEF.…而B1F⊂面AB1F,故:平面AB1F⊥平面AEF.…(2)解:以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系如图,设AB=AA1=1,则F(0,0,0),A(),B1(0,﹣,1),E(0,﹣,),, =(﹣,,1).…由(1)知,B1F⊥平面AEF,取平面AEF的法向量:=(0,,1).…设平面B1AE的法向量为,由,取x=3,得.…设二面角B1﹣AE﹣F的大小为θ,则cosθ=|cos<>|=||=.由图可知θ为锐角,﹣AE﹣F的余弦值为.…∴所求二面角B119.某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(I)求直方图中x的值;(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;(Ⅲ)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(I)由直方图可得:20×(x+0.025+0.0065+0.003×2)=1,解得x即可.(II)企业缴税收不少于60万元的频率=0.003×2×20=0.12,即可得出1200个企业中有1200×0.12个企业可以申请政策优惠.(III)X的可能取值为0,1,2,3,4.由(I)可得:某个企业缴税少于20万元的概率=0.0125×20=.因此X~B(4,),可得分布列为P(X=k)=,(k=0,1,2,3,4),再利用E(X)=4×即可得出.【解答】解:(I)由直方图可得:20×(x+0.025+0.0065+0.003×2)=1,解得x=0.0125.(II)企业缴税收不少于60万元的频率=0.003×2×20=0.12,∴1200×0.12=144.∴1200个企业中有144个企业可以申请政策优惠.(III)X的可能取值为0,1,2,3,4.由(I)可得:某个企业缴税少于20万元的概率=0.0125×20=0.25=.因此X~B(4,),∴分布列为P(X=k)=,(k=0,1,2,3,4),∴E(X)=4×=1.20.已知椭圆C: +=1(a>b>0)经过点P(2,),离心率e=,直线l的渐近线为x=4.(1)求椭圆C的方程;(2)经过椭圆右焦点D的任一直线(不经过点P)与椭圆交于两点A,B,设直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,说明理由.【考点】圆锥曲线的存在性问题;椭圆的标准方程;直线与椭圆的位置关系;圆锥曲线的定值问题.【分析】(1)利用点在椭圆上,椭圆的离心率,求解a ,b ,得到椭圆方程.(2)假设存在常数λ,使得k 1+k 2=λk 3.设AB 的斜率为k ,则直线AB 的方程为y=k (x ﹣2),代入椭圆方程,设A (x 1,y 1),B (x 2,y 2),利用韦达定理,结合A 、F 、B 共线,通过k=k AF =k BF ,求出k 1+k 2,然后推出k 1+k 2=2k 3.即可.【解答】解:(1)由点在椭圆上得,①②由 ①②得c 2=4,a 2=8,b 2=4,故椭圆C 的方程为…..(2)假设存在常数λ,使得k 1+k 2=λk 3.由题意可设AB 的斜率为k ,则直线AB 的方程为y=k (x ﹣2)③代入椭圆方程并整理得(1+2k 2)x 2﹣8k 2x+8k 2﹣8=0设A (x 1,y 1),B (x 2,y 2),则有④…在方程③中,令x=4得,M (4,2k ),从而,,.又因为A 、F 、B 共线,则有k=k AF =k BF ,即有…所以k 1+k 2===⑤…将④代入⑤得k 1+k 2=,又,所以k 1+k 2=2k 3.故存在常数λ=2符合题意…21.已知函数f (x )=ax+lnx ,其中a 为常数,设e 为自然对数的底数. (1)当a=﹣1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为﹣3,求a 的值;(3)设g (x )=xf (x ),若a >0,对于任意的两个正实数x 1,x 2(x 1≠x 2),证明:2g ()<g (x 1)+g (x 2).【考点】导数在最大值、最小值问题中的应用.【分析】(1)在定义域(0,+∞)内对函数f (x )求导,求其极大值,若是唯一极值点,则极大值即为最大值.(2)在定义域(0,+∞)内对函数f (x )求导,对a 进行分类讨论并判断其单调性,根据f (x )在区间(0,e]上的单调性求其最大值,并判断其最大值是否为﹣3,若是就可求出相应的最大值.(3)先求导,再求导,得到g ′(x )为增函数,不妨令x 2>x 1,构造函数,利用导数即可证明【解答】解:(1)易知f (x )定义域为(0,+∞),当a=﹣1时,f (x )=﹣x+lnx ,,令f ′(x )=0,得x=1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0, ∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. f (x )max =f (1)=﹣1.∴函数f (x )在(0,+∞)上的最大值为﹣1,(2)∵.①若,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,∴f(x)max=f(e)=ae+1≥0,不合题意,②若,则由,即由,即,从而f(x)在(0,﹣)上增函数,在(﹣,e]为减函数∴令,则,∴a=﹣e2,(3)证明:∵g(x)=xf(x)=ax2+xlnx,x>0∴,∴g′(x)为增函数,不妨令x2>x1令,∴,∵,∴而h(x1)=0,知x>x1时,h(x)>0故h(x2)>0,即[选修4-1:几何证明选讲]22.在直角坐标系xoy中,直线l的参数方程为(t 为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ.(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直接把极坐标方程和参数方程转化成直角坐标方程.(Ⅱ)利用点到直线的距离公式,建立方程求出a的值.【解答】解:(Ⅰ)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0(Ⅱ)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.[选修4-4:坐标系与参数方程选讲]23.已知函数f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.(Ⅰ)求m的取值范围;(Ⅱ)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣8.【考点】绝对值不等式的解法.,只需求得f(x)【分析】对第(1)问,由m≤f(x)恒成立知,m≤f(x)min的最小值即可.对第(2)问,先将m的值代入原不等式中,再变形为|x﹣3|≤4+2x,利用“|g (x)|≤h(x)⇔﹣h(x)≤g(x)≤h(x)”,可得其解集..【解答】解:(Ⅰ)要使f(x)≥m恒成立,只需m≤f(x)min由绝对值不等式的性质,有|2x﹣1|+|2x+5|≥|(2x﹣1)+(2x+5)|=6,=6,所以m≤6.即f(x)min(Ⅱ)由(Ⅰ)知,m=6,所以原不等式化为|x﹣3|﹣2x≤4,即|x﹣3|≤4+2x,得﹣4﹣2x≤x﹣3≤4+2x,转化为,化简,得,所以原不等式的解集为.2017年3月22日。
东北三省三校2017年高三第二次联合模拟考试-理科数学试题-Word版含答案
东北三省三校2017年高三第二次联合模拟考试-理科数学试题-Word版含答案哈尔滨师大附中东北师大附中 2017年高三第二次联合模拟考试辽宁省实验中学理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}A x x =≤<,2{|4}B x x=≥,则()R A C B =( )A .{|12}x x ≤<B .{|21}x x -≤<C .{|12}x x ≤≤D .{|12}x x <≤2.复数11i i -+(i 是虚数单位)的虚部为( ) A .i - B .2i - C . -1 D .-23.已知随机变量2(0,)XN σ,若(||2)P X a <=,则(2)P X >的值为( )A .12a -B .2aC .1a -D .12a + 4.等差数列{}n a 中,13539a a a ++=,57927a a a ++=,则数列{}n a 的前9项的和9S 等于( ) A .66 B .99 C . 144D .2975. α是一个平面,,m n 是两条直线,A 是一个点,π个单位长度得到平移48.已知偶函数()f x-为奇函数,f x的定义域为R,若(1)且(2)3+的值为()f=,则(5)(6)f fA. -3 B. -2 C. 2 D.3 9.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,正多边形的周长可无限逼近圆的周长,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,利用刘徽的割圆术设计的程序框图如图所示,若输出的n=,则判断框内可以填入()(参考数据:96≈)sin7.50.1305≈,sin1.8750.03272≈,sin3.750.06540A . 3.14p ≤B . 3.14p ≥C . 3.1415p ≥D . 3.1415926p ≥10.在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有( )A . 20B . 21C . 22D .2411.已知12,F F 是双曲线E :22221(0,0)x y a b a b -=>>的左、右焦点,过点1F 的直线l 与E 的左支交于,P Q 两点,若11||2||PF FQ =,且2F Q PQ ⊥,则E 的离心率是( ) A .52 B .72 C . 153 D .173 12.已知函数2()2ln 22x f x x x =+--,若函数()|()|log (2)(1)a g x f x x a =-+>在区间[1,1]-上有4个不同的零点,则实数a 的取值范围是( ) A .(1,2) B .(2,)+∞ C . 11ln 2[3,)-+∞ D .11ln 2(2,3]-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若直线(3)y k x =+与圆2223xy x +-=相切,则k = .14.甲乙两人从1,2,3,…,10中各任取一数(不重复),已知甲取到的数是5的倍数,则甲数大于乙数的概率为 .15.下列命题正确的是 .(写出所有正确命题的序号)①已知,a b R ∈,“1a >且1b >”是“1ab >”的充分条件; ②已知平面向量,a b ,“||1a >且||1b >”是“||1a b +>”的必要不充分条件;③已知,a b R ∈,“221ab +≥”是“||||1a b +≥”的充分不必要条件;④命题P :“0x R ∃∈,使001x e x ≥+且00ln 1x x ≤-”的否定为p ⌝:“x R ∀∈,都有1x e x <+且ln 1x x >-”16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若222a c b ac +-=,2c =,点G 满足19||3BG =且1()3BG BA BC =+,则sin A = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足13a =,121n n a a n +=-+,数列{}n b 满足12b =,1n n n b b a n+=+-. (1)证明:{}n a n -为等比数列;(2)数列{}n c 满足1(1)(1)n n n n a nc b b +-=++,求数列{}nc 的前n 项和T.n18.下表数据为某地区某种农产品的年产量x(单位:吨)及对应销售价格y(单位:千元/吨).(1)若y与x有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程^^^=+;y b x a(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z最大?19.如图,四棱锥S ABCD-中,底面ABCD是边长为4的正方形,平面SAD⊥平面SCD,22==.SA SD(1)求证:平面SAD⊥平面ABCD;(2)E 为线段DS 上一点,若二面角S BC E --的平面角与二面角D BC E --的平面角大小相等,求SE 的长.20. 已知F 是抛物线2:4C x y=的焦点,1122(,),(,)A x y B x y 为抛物线C 上不同的两点,12,l l 分别是抛物线C 在点A 、点B 处的切线,00(,)P x y 是12,l l 的交点. (1)当直线AB 经过焦点F 时,求证:点P 在定直线上;(2)若||2PF =,求||||AF BF 的值.21. 已知函数()sin f x x =.(1)当0x >时,证明:2'()12x f x >-;(2)若当(0,)2x π∈时,'()()()f x f x ax f x +>恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3)3ρθθ+=6πθ=,3πθ=分别与l 交于,A B 两点.(1)求||AB ;(2)设点P 是曲线22:19y C x +=上的动点,求ABP ∆面积的最大值. 23.选修4-5:不等式选讲 已知函数()|21||23|f x x x =++-.(1)求不等式()6f x ≤的解集;(2)若对任意1[,1]2x ∈-,不等式()|2|4f x x a ≥+-恒成立,求实数a 的取值范围.试卷答案一. 选择题1-6:ACABDB 7-12:CDBBDC二. 填空题13. 3± 14.1318; 15. ③; 16.321三. 解答题17.解:(1)121n n a a n +=-+,1(1)2()n n a n a n +∴-+=- 又因为112a -=,所以{}n a n -是以2为首项,2为公比的等比数列 (2)11(1)22n nn a n a --=-⋅= 1,2n n n n n b b n a a n +=-+-=且1-=2n n nb b +∴121232-1-1-=2-=2-=2n n n b b b b b b ⎧⎪⎪⎨⎪⎪⎩累和得到12(12)22(2)12n n n b n -⋅-=+=≥-当1n =时,12b =,2nnb∴=∴111211(1)(1)(21)(21)2121n n n n n n n n n a n c b b +++-===-++++++111321n n T +∴=-+18. 解:(I )3x =, 50y =, 51627i ii x y ==∑, 52155ii x==∑解得:ˆ12.3b =-,ˆ86.9a= 所以:ˆ12.386.9y x =-+; (Ⅱ)年利润2(86.912.3)13.112.373.8z x x x x x=--=-+所以3x =时,年利润Z 最大. 19. 解:(Ⅰ)∵平面SAD ⊥平面SCD ,DC AD ⊥,∴DC ⊥平面SAD ∵DC ⊂底面ABCD ,∴平面SAD ⊥底面ABCD (Ⅱ)取AD 中点M ,连接SMSA AD SM AD=⇒⊥,又因为平面SAD ⊥底面ABCD ,所以SM ⊥平面ABCD以M 为原点,,,MD AB MS 方向分别为,,x y z 轴正方向建立空间直角坐标系平面ABCD 的法向量1(0,0,1)=n ,平面BCS 的法向量2(,,)x y z =n,(0,0,1),(1,2,0),(1,2,0)S B C -,(2,0,0),(1,2,1)BC BS ==-则2020x x y z =⎧⎨-+=⎩,∴2(0,1,2)=n设()2,0,2DE DS λλλ==-,所以()22,0,2E λλ- 由上同理可求出平面BCE 的法向量3(0,,2)λ=n由平面BCD 、BCS 与平面BCE 所成的锐二面角的大小相等可得13231323⋅⋅=⋅⋅n n n nn n n n ,∴254λ=∴102410SE =20. 解: (Ⅰ)抛物线2:4x C y =,则2xy '=, ∴切线PA 的方程为111()2xy y x x -=-,即211=24x x y x -,同理切线PB 的方程为222=24x x y x -,联立得点P 1212,24x xx x +⎛⎫⎪⎝⎭,设直线AB 的方程为1y kx =+,代入2:4C x y=得2440xkx --=。
黑龙江省哈尔滨市高三数学二模考试试题 理(扫描版)
黑龙江省哈尔滨市2017届高三数学二模考试试题理(扫描版)数学答案(理工类)1-------6:B DAA B C 7---------12:BAADBC13.240 14.(2,4] 15. 16.③④17. 解:(1)当时,由,得,(1分)两式相减,得,,(3分)当时,,,则.数列是以3为首项,3 为公比的等比数列(5分)(6分)(2)由(1)得错位相减得=(12分)18、解:(1)从茎叶图中可发现该样本中空气质量优的天数为,空气质量良的天数为,故该样本中空气质量优良的频率为,从而估计该月空气质量优良的天数为(2)3/5(3)由(1)估计某天空气质量优良的概率为,的所有可能取值为,,,.,,故的分布列为:显然19.(Ⅰ)延长,交于点,由相似知,平面,平面,则直线平面;(Ⅱ)由于,以,,为轴建立空间直角坐标系, 设,则,,,,则,平面的法向量为,则向量与的夹角为,则,则与平面夹角的余弦值为。
20. (Ⅰ)设,则处的切线为,则,,则,则;(Ⅱ)由于直线不与坐标轴平行或垂直,可设,则,得,由于恒成立,设两个根为,则,同理,由知:,得:(1)时,得得:或(2)时,得得:或综上,共分三种情况(1)两条直角边所在直线方程为:;(2)两条直角边所在直线方程为:(3)两条直角边所在直线方程为:21.(1)不是,是;(2)时,即证:且时,不防设,,令因为且时递增函数,所以,即为单调递增函数,所以,即;假设时,结论成立,即有成立;则时,有所以时,结论也成立,综合以上可得,原结论成立。
(3)令,,,即证:()成立,由(1)得为凸函数,而,有而,同理有:,则成立,得证。
22.(Ⅰ)曲线直角坐标方程:,焦点直角坐标:焦点极坐标:(Ⅱ)或23.(Ⅰ),当且仅当时取等号,只需:,由于,只需,顾的取值范围为:;(Ⅱ)解得:,知:,即.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年东北三省四市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.(5分)已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.(5分)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B 的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p 是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.(5分)已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.306.(5分)平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4]C.[4,+∞)D.[﹣2,2]7.(5分)某几何体的三视图如图所示,则其体积为()A.4 B.C.D.8.(5分)将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.79.(5分)若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.(5分)运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a11.(5分)已知向量,,若m+n=1,则|的最小值为()A.B.C.D.12.(5分)对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.(5分)函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.(5分)等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=.16.(5分)F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.(12分)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM ﹣B的余弦值为.20.(12分)椭圆C:的长轴长为2,P为椭圆C上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.21.(12分)已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.五、[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.2017年东北三省四市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【解答】解:∵z=1+2i,∴=|z|2=.故选:A.2.(5分)已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2}【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.3.(5分)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B 的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p 是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.4.(5分)若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.5.(5分)已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.30﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.【解答】解:∵a n+1∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.6.(5分)平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4]C.[4,+∞)D.[﹣2,2]【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.7.(5分)某几何体的三视图如图所示,则其体积为()A.4 B.C.D.【解答】解:由题意三视图可知,几何体是直四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以四棱锥的体积.故选D.8.(5分)将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.7【解答】解:将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,∴p=1﹣()n,∴()n≤.∴n的最小值为4.故选:A.9.(5分)若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【解答】解:∵x∈[0,],∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.10.(5分)运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a【解答】解:由程序框图知,程序运行的功能是比较a、b、c的大小并按大小顺序输出,程序运行后输出的是c≤b≤a.故选:A.11.(5分)已知向量,,若m+n=1,则|的最小值为()A.B.C.D.【解答】解:根据题意,向量,则=m﹣n=(3m+n,m﹣3n),||==,又由m+n=1,则有≥()2=,即m2+n2≥;故||=≥,即||的最小值为;故选:C.12.(5分)对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.【解答】解:当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立;当m>2时,,只要即可,解得2<m<5;当m<2时,,只要即可,解得,综上.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48种不同的分法(用数字作答).【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.14.(5分)函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),(2分)f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x(4分).故答案为:y=x.15.(5分)等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=30.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.16.(5分)F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为或2.【解答】解:当b>a>0时,由,可知A为BF的中点,由∠AOF=∠AOB=∠BOF'=60°,可得=,则Rt△OAB中,∠AOB=,渐近线OB的斜率k=,即离心率e===2.同理当a>b>0时,可得e=;故答案为:或2.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.18.(12分)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:0.1,0.2,0.4,0.25,0.05,其相对应的小长方形的高为0.01,0.02,0.04,0.025,0.005,对于男性用户,各小组的频率分别为:0.15,0.25,0.30,0.20,0.10,其相对应的小长方形的高为0.015,0.025,0.03,0.02,0.01,直方图如图所示:,由直方图可以看出男性用户比女性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X的数学期望为EX=1×+2×+3×=2.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM ﹣B的余弦值为.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F (1,0,0),,,,M(2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.20.(12分)椭圆C :的长轴长为2,P 为椭圆C 上异于顶点的一个动点,O 为坐标原点,A 2为椭圆C 的右顶点,点M 为线段PA 2的中点,且直线PA 2与直线OM 的斜率之积为﹣. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1且不与坐标轴垂直的直线l 交椭圆C 于两点A ,B ,线段AB 的垂直平分线与x 轴交于点N ,N 点的横坐标的取值范围是,求线段AB 的长的取值范围.【解答】解:(I )由2a=2,解得a=,设P (x 0,y 0),A 1(,0),A 2(,0). 则=1,可得=﹣.∵OM ∥PA1,∴,∴====﹣=﹣,解得b 2=1. ∴椭圆C 的方程为=1.(II )设直线l 的方程为:y=k (x +1),A (x 1,y 1),B (x 2,y 2). 联立,化为:(2k 2+1)x 2+4k 2x +2k 2﹣2=0,则x 1+x 2=,x 1•x 2=,∴y 1+y 2=k (x 1+x 2+2)=,可得线段AB 的中点Q ,QN的方程为:y﹣=﹣,∴N.∵<<0,解得:0<2k2<1.∴|AB|=•=,∵<1,∴|AB|∈.21.(12分)已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.【解答】解:(1)由f(x)=,x>0,求导f′(x)=,当x∈(0,e),f′(x)>0,f(x)单调递增,x∈(e,+∞)时,f′(x)<0,f(x)单调递减,∴当x=e时,f(x)取极大值为,无极小值,(2)证明:要证明f(e+x)>f(e﹣x),即证>,只需证(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),求导F′(x)=﹣ln(e2﹣x2)=[2﹣ln(e2﹣x2)]+>0,∴f(x)在(0,e)单调递增,∴F(x)>F(0)=0,∴(e﹣x)ln(e+x)>(e+x)ln(e﹣x),∴f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)可知0<x1<e<x2,由0<e﹣x1<e,由(2)可知:f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),由2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,即x1+x2>2e,则x0=>e,∴f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.五、[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.【解答】解:(1)证明:令x+a=0得x=﹣a,令2x﹣b=0得x=,∵a>0,b>0,∴﹣a,则f(x)=,∴f(x)在(﹣∞,]上单调递减,在(,+∞)上单调递增,∴f min(x)=f()=a+=1,2a+b=2;(2)∵a+2b≥tab恒成立,∴t≤恒成立,∵2a+b=2,∴a+b=1,∴=+=+=+≥=,(当且仅当a=b时取等号)∴的最小值为,∴t.。