交换机系列培训
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交换机系列培训
交换机系列培训:交换机的基础知识
许多新型的Client/Server应用程序以及多媒体技术的出现,导致了传统的共享式网络远远不能满足要求,这也就推动了局域网交换机的出现。
1、交换机的定义
局域网交换机拥有许多端口,每个端口有自己的专用带宽,并且可以连接不同的网段。
交换机各个端口之间的通信是同时的、并行的,这就大大提高了信息吞吐量。
为了进一步提高性能,每个端口还可以只连接一个设备。
为了实现交换机之间的互连或与高档服务器的连接,局域网交换机一般拥有一个或几个高速端口,如100M以太网端口、FDDI端口或155M ATM端口,从而保证整个网络的传输性能。
2、交换机的特性
通过集线器共享局域网的用户不仅是共享带宽,而且是竞争带宽。
可能由于个别用户需要更多的带宽而导致其他用户的可用带宽相对减少,甚至被迫等待,因而也就耽误了通信和信息处理。
利用交换机的网络微分段技术,可以将一个大型的共享式局域网的用户分成许多独立的网段,减少竞争带宽的用户数量,增加每个用户的可用带宽,从而缓解共享网络的拥挤状况。
由于交换机可以将信息迅速而直接地送到目的地能大大提高速度和带宽,能保护用户以前在介质方面的投资,并提供良好的可扩展性,因此交换机不但是网桥的理想替代物,而且是集线器的理想替代物。
与网桥和集线器相比,交换机从下面几方面改进了性能:
(1)通过支持并行通信,提高了交换机的信息吞吐量。
(2)将传统的一个大局域网上的用户分成若干工作组,每个端口连接一台设备或连接一个工作组,有效地解决拥挤现像。
这种方法人们称之为网络微分段(Micro一segmentation)技术。
(3)虚拟网(VirtuaI LAN)技术的出现,给交换机的使用和管理带来了更大的灵活性。
我们将在后面专门介绍虚拟网。
(4)端口密度可以与集线器相媲美,一般的网络系统都是有一个或几个服务器,而绝大部分都是普通的客户机。
客户机都需要访问服务器,这样就导致服务器的通信和事务处理能力成为整个网络性能好坏的关键。
交换机就主要从提高连接服务器的端口的速率以及相应的帧缓冲区的大小,来提高整个网络的性能,从而满足用户的要求。
一些高档的交换机还采用全双工技术进一步提高端口的带宽。
以前的网络设备基本上都是采用半双工的工作方式,即当一台主机发送数据包的时候,它就不能接收数据包,当接收数据包的时候,就不能发送数据包。
由于采用全双工技术,即主机在发送数据包的同时,还可以接收数据包,普通的10M端口就可以变成20M端口,普通的100M端口就可以变成200M 端口,这样就进一步提高了信息吞吐量。
3、交换机的工作原理
传统的交换机本质上是具有流量控制能力的多端口网桥,即传统的(二层)交换机。
把路由技术引入交换机,可以完成网络层路由选择,故称为三层交换,这是交换机的新进展。
交换机(二层交换)的工作原理交换机和网桥一样,是工作在链路层的联网设备,它的各个端口都具有桥接功能,每个端口可以连接一个LAN或一台高性能网站或服务器,能够通过自学习来了解每个端口的设备连接情况。
所有端口由专用处理器进行控制,并经过控制管理总线转发信息。
同时可以用专门的网管软件进行集中管理。
除此之外,交换机为了提高数据交换的速度和效率,一般支持多种方式。
(1)存储转发:
所有常规网桥都使用这种方法。
它们在将数据帧发柱其他端口之前,要把收到的帧完全存储在内部的存储器中,对其检验后再发往其他端口,这样其延时等于接收一个完整的数据帧的时间及处理时间的总和。
如果级联很长时,会导致严重的性能问题,但这种方法可以过
滤掉错误的数据帧。
(2)切入法:
这种方法只检验数据帧的目标地址,这使得数据帧几乎马上就可以传出去,从而大大降低延时。
其缺点是:错误帧也会被传出去。
错误帧的概率较小的情况下,可以采用切入法以提高传输速度。
而错误帧的概率较大的情况下,可以采用存储转发法/以减少错误帧的重传。
4、交换机的配置
我们下面以Cisco公司的Catlystl900交换机为例,介绍交换机的一般配置过程。
对一台新的Catlystl900交换机,使用它的缺省配置就可以工作了。
这因为它是一种将软件装在FlashMemory中的硬件设备,当加电时,它首先要进行一系列自检,对所有端口进行测试之后,交换机就处于工作状态。
这时它的交换表是空的,它可以通过自学习来了解各个端口的设备连接情况,并将设备的 MAC地址记录在交换表中,当有信息交换时,交换机就根据交换表来进行数据转发。
但为了便于对它进行网络管理,Catlystl900交换机自己有一个MAC地址,这样就可以为它分配一个IP地址和屏蔽码。
网络管理员须通过交换机的串口接一台终端或仿真终端,才能为它指定一个IP地址,其缺省值是0.0.0.0。
指定IP地址以后,网络管理员就可以通过网络进行远程管理了。
Catlystl900交换机的配置界面是菜单形式,缺省配置下,它的所有端口都属于同一个VLAN,很多情况下都不需要作什么修改。
(1)将微机串口通过RS一232电缆与Cata1yst1900的Console口连接,运行仿真终端软件,Catalyst 1900 启动后。
(2)回车后,进入主菜单:
(3)按“S”键,进入系统配置菜单:(配置系统名,位置,日期)
(4)在主菜单中按“N”键进入网络管理菜单
(5)配置IP地置
(6)配置SNMP参数
5、交换机的种类
交换机是数据链路层设备,它可将多个物理LAN网段连接到一个大型网络上,与网络类似交换机传输和溢出也是基于MAC地址的传输。
由于交换机是用硬件实现的,因此,传输速度很快。
传输数据包时,交换机要么使用存储---转发交换方式,要么使用断---通交换方式。
目前有许多类型的交换机,其中包括AT M交换机,LAN交换机和不同类型的WAN交换机。
ATM交换机
ATM(Asynchronous Transfer Mode)交换机为工作组,企业网络中枢以及其它众多领域提供了高速交换信息和可伸缩带宽的能力。
ATM交换机支持语音,视频和文本数据应用,并可用来交换固定长度的信息单位(有时也称元素)。
企业网络是通过ATM中枢链路连接多个LAN组成的。
局域网交换机
LAN交换机用于多LAN网段的相互连接,它在网络设备之间进行专用的无冲突的通信,同时支持多个设备间的对话。
LAN交换机主要是用于高速交换数据帧。
通过LAN交换机将一个0Mbps以太网与一个100Mbps 以太网互联。
交换机系列培训:怎样选择交换机
交换机作为网络连接的主要设备,本身决定了网络的性能和稳定性。
随公司大小不同,网络的结构也有很大的差别,采用的交换机也必须视具体情况而定,但是为了让公司的网络能承担起大量的网络数据的传输且能持久稳定安全地运行,必须选用能符合条件的性能优异且价格合适的交换机。
我个人从事此方面的工作有一段时间,对目前交换机的技术和性能有一些基本的看法,希望能给大家一些参考作用:
1、近年来交换机产品上的新技术
近年交换机出现了很多新技术,有些技术是很有用的。
(1)、Trunking,Trunking技术可以在不改变现有网络设备以及原有布线的条件下,将交换机的多个低带宽交换端口捆绑成一条高带宽链路,通过几个端口进行链路负载平衡,避免链路出现拥塞现象。
在公司的网络骨干部分的一部分设备可以使用此技术:网络流量比较大,但是实际情况不允许使用光缆的情况下,使用Trunking可以解决数据传输中的瓶颈问题。
(2)、第三层交换机基础上发展的第四层交换机。
这个是比较新的功能,在这里详细介绍一下。
在网络中的数据包构成的数据流可分别在第2、3或4层进行识别。
每层都会提供关于该数据流的更为详细的信息。
在第2层,数据流中的每个数据包通过源站点和目的站点的MAC 地址被识别。
在广播域内,第2层交换功能有限,这是因为源和目的MAC地址仅是对数据包中信息的粗略解释。
第二层交换机可提供价格便宜、高带宽的网络连接,但它们无法对主干数据流提供必要的控制能力。
在第3层,数据流通过源和目的网络IP地址被识别,控制数据流的能力仅限于源、目的地址对。
如果一台客户机正在同时使用同一服务器上的多个应用程序,则第3层信息就不会对每一应用程序流作出详细描述,这样就无法辨认出不同的数据流,更无法为每个数据流逐一实施不同的控制规则了。
OSI模型的第4层是传输层。
它负责协调网络源与目的系统之间的通信。
TCP(传输控制协议)和UDP(用户数据报协议)都位于第4层。
在第4层,每个数据包都包含可被用来唯一识别发出该包的应用程序的信息。
之所以能做到这一点是因为TCP和UDP报头都包含有"端口号",这些端口号可以确定每个包中包含的应用程序协议。
将第4层报头的端口号信息和第3层报头的源--目标信息结合使用可以实现真正的精确控制。
具体应用程序对话流可以在客户机与服务器间控制,如果交换式路由器是全功能的,则所有这些工作都可以以线速完成。
一对客户/服务器可同时打开多个不同的应用程序会话。
由于一个企业主干网可能包含数千个客户/服务器对,因此一个主干网级的交换式路由器必须具有极大的表容量,以便存储多达数百万个第4层流。
由于发送缓存负担过大,而且在这些路由器中时常因表错误造成主干网性能下降,因此第3层交换机一般都不保存有关第4层数据流的信息。
应用层控制有以下优点:
应用层服务质量。
真正的服务质量策略通过对所有应用程序提供线速带宽和低延时,满足网络中所有通信流量的需要。
但是,当交换机的某一个输出端口发生过载以及内部缓冲区被写满时,就应当要求服务质量建立规定优先权的规则或"策略",以便对网络流量排定优先次序。
交换式路由器允许对应用层流量设定服务质量策略,从而使网络管理人员能够对网络主干网中的带宽使用进行完全控制。
在第2、3层交换中,服务质量策略仅可应用于基于信源或目标地址的网络流量。
对第4层应用程序流量使用服务质量策略意味着对个别主机对主机的应用程序对话也可以设定优先次序。
应用层的网络安全。
传统路由器使用安全过滤器和访问控制列表实现对公司网络和数据库的安全访问。
基于软件的处理所导致的一个自然而然的结果是,一旦启用安全过滤器,就将导致路由器性能的大幅下降,这是因为中央处理器(CPU)在每个包上需要执行的指令大大增加了。
交换式路由器消除了与安全特性有关的性能损失。
当包括安全性在内的所有高级特性被激活时,真正的交换式路由器应能提供线速性能。
在交换式路由器中,数据包是在特定的ASIC中进行处理的,由于捕捉到了源和目的端口信息,应用层安全和线速性能是可以同时实现的。
例如,对公司信息的访问可根据用户的应用程序得到控制,而不是禁止所有用户访问某一特定应用程序。
这使网络管理员拥有了更多的灵活性和对公司网络更好的控制,并使桌面机能够选择使用更多的应用程序。
应用层记账。
管理需要测量。
我们无法测量网络流量就无法对网络实施有效管理,通过跟踪应用程序流,交换式路由器极大地改善了测量、记账和性能监视能力。
记账信息被直接转换成为标准的每端口上的RMON(远程网络监控)/RMON2,从而不需要再使用独立的外部RMON/RMON2探测器。
这样,交换式路由器便总能在所有端口上提供线速RMON/RMON2(包括所有的功能组),并且管理人员也能够从交换式路由器直接访问RMON/RMON2统计数据。
此功能应该在公司采用骨干交换机时考虑,它能极大程度的改善网络性能,并且能让公司对网络信息流进行细微的监控,对用户进行应用层记帐。
(3)、对多种路由协议的支持。
交换式路由器通过硬件措施大幅度提高了自身的性能和功能,但是路由处理仍基于软件。
最初的交换式路由器仅支持路由器信息协议(RIP),对于一个简单的网络,RIP一般是足够的。
但较复杂的网络需要有更复杂的路由协议。
为大型网络而设计的交换式路由器要求使用开放的最短路径优先(OSPF)路由协议。
随着要求使用多点组播(Multicast)支持的应用程序日渐流行,交换式路由器应该能够实施全套基于标准的多点组播协议,如距离矢量多点组播路由协议(DVMRP)及可扩展性更强的与协议无关的多点组播协议(PIM)。
例如Cabletron公司智能交换式路由器SmartSwitchRouter(SSR)能提供在所有端口上以每秒千兆位速率进行第2、3、4层交换功能。
高速的专用ASIC芯片通过对数据包第2、3、4层报头的查找实现数据包的转发。
此外,智能交换式路由器可通过在第4层交换数据包来实现带宽分配、故障诊断和对TCP/IP应用程序数据流进行访问控制的功能,并且提供详细的流量
统计信息和记账信息、应用层QoS策略和访问控制等能力。
很多公司网络使用静态路由,这是由于目前网络拓扑结构为星性决定的。
等到网络结构变得复杂的时候,公司网络就得考虑使用动态得路由协议,提供网络的冗余功能。
(4)、基于端口交换的交换机已经淘汰,取而代之的为帧交换机。
(5)、IEEE802.1X协议,此协议用于用户认证,可以提高网络的安全性。
在支持此协议的交换机上,只有通过系统认证的用户才能收发信息,认证信息保留在专用服务器上,可以方便的查询。
公司应尽量选用支持802.1X的交换机,在靠近用户端选用支持认证信息透传的交换机,这样可以显著提高网络的安全性和可管理性。
2、交换机选购考虑因素
综合以上几点,再考虑到交换机传统性能参数,可以得出实际应用中应该重点考虑的参数。
(1)、背板带宽、二/三层交换吞吐率。
这个决定着网络的实际性能,不管交换机功能再多,管理再方便,如果实际吞吐量上不去,网络只会变得拥挤不堪。
所以这三个参数是最重要的。
背板带宽包括交换机端口之间的交换带宽,端口与交换机内部的数据交换带宽和系统内部的数据交换带宽。
二/三层交换吞吐率表现了二/三层交换的实际吞吐量,这个吞吐量应该大于等于交换机∑(端口×端口带宽)。
(2)、VLAN类型和数量,一个交换机支持更多的VLAN类型和数量将更加方便地进行网络拓扑的设计与实现。
(3)、TRUNKING,目前交换机都支持这个功能,在实际应用中还不太广泛,所以个人认为只要支持此功能即可,并不要求提供最大多少条线路的绑定。
(4)、交换机端口数量及类型,不同的应用有不同的需要,应视具体情况而定。
(5)、支持网络管理的协议和方法。
需要交换机提供更加方便和集中式的管理。
(6)、Qos、802.1q优先级控制、802.1X、802.3X的支持,这些都是交换机发展的方向,这些功能能提供更好的网络流量控制和用户的管理,应该考虑采购支持这些功能的交换机。
(7)、堆叠的支持,当用户量提高后,堆叠就显得非常重要了。
一般公司扩展交换机端口的方法为一台主交换机各端口下连接分交换机,这样分交换机与主交换机的最大数据传输速率只有100M,极大得影响了交换性能,如果能采用堆叠模式,其以G为单位得带宽将发挥出巨大的作用。
主要参数有堆叠数量、堆叠方式、堆叠带宽等。
(8)、交换机的交换缓存和端口缓存、主存、转发延时等也是相当重要的参数。
(9)、对于三层交换机来说,802.1d生产树也是一个重要的参数,这个功能可以让交换机学习到网络结构,对网络的性能也有很大的帮助。
(10)、三层交换机还有一些重要的参数,如启动其他功能时二/三是否保持线速转发、路由表大小、访问控制列表大小、对路由协议的支持情况、对组播协议的支持情况、包过滤方法、机器扩展能力等都是值得考虑的参数,应根据实际情况考察。
通过以上的介绍,相信能对您选购交换机有所帮助。
交换机的选购,其实并不是那么复杂。
交换机系列培训:交换机和路由器的区别
计算机网络往往由许多种不同类型的网络互连连接而成。
如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。
因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。
将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。
根据中继系统所在的层次,可以有以下五种中继系统:
1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。
2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。
3.网络层(第三层,层L3)中继系统,即路由器(router)。
4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。
5.在网络层以上的中继系统,即网关(gateway).
当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。
高层网关由于比较复杂,目前使用得较少。
因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。
本文主要阐述交换机和路由器及其区别。
交换机和路由器
“交换”是今天网络里出现频率最高的一个词,从桥接到路由到ATM直至电话系统,无论何种场合都可将其套用,搞不清到底什么才是真正的交换。
其实交换一词最早出现于电话系统,特指实现两个不同电话机之间话音信号的交换,完成该工作的设备就是电话交换机。
所以从本意上来讲,交换只是一种技术概念,即完成信号由设备入口到出口的转发。
因此,只要是和符合该定义的所有设备都
可被称为交换设备。
由此可见,“交换”是一个涵义广泛的词语,当它被用来描述数据网络第二层的设备时,实际指的是一个桥接设备;而当它被用来描述数据网络第三层的设备时,又指的是一个路由设备。
我们经常说到的以太网交换机实际是一个基于网桥技术的多端口第二层网络设备,它为数据帧从一个端口到另一个任意端口的转发提供了低时延、低开销的通路。
由此可见,交换机内部核心处应该有一个交换矩阵,为任意两端口间的通信提供通路,或是一个快速交换总线,以使由任意端口接收的数据帧从其他端口送出。
在实际设备中,交换矩阵的功能往往由专门的芯片(ASIC)完成。
另外,以太网交换机在设计思想上有一个重要的假设,即交换核心的速度非常之快,以致通常的大流量数据不会使其产生拥塞,换句话说,交换的能力相对于所传信息量而无穷大(与此相反,ATM交换机在设计上的思路是,认为交换的能力相对所传信息量而言有限)。
虽然以太网第二层交换机是基于多端口网桥发展而来,但毕竟交换有其更丰富的特性,使之不但是获得更多带宽的最好途径,而且还使网络更易管理。
而路由器是OSI协议模型的网络层中的分组交换设备(或网络层中继设备),路由器的基本功能是把数据(IP报文)传送到正确的网络,包括:
1.IP数据报的转发,包括数据报的寻径和传送;
2.子网隔离,抑制广播风暴;
3.维护路由表,并与其他路由器交换路由信息,这是IP报文转发的基础。
4.IP数据报的差错处理及简单的拥塞控制;
5.实现对IP数据报的过滤和记帐。
对于不同地规模的网络,路由器的作用的侧重点有所不同。
在主干网上,路由器的主要作用是路由选择。
主干网上的路由器,必须知道到达所有下层网络的路径。
这需要维护庞大的路由表,并对连接状态的变化作出尽可能迅速的反应。
路由器的故障将会导致严重的信息传输问题。
在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位--园区网,同时负责下层网络之间的数据转发。
在园区网内部,路由器的主要作用是分隔子网。
早期的互连网基层单位是局域网(LAN),其中所有主机处于同一逻辑网络中。
随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。
在其中,处个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接。
第二层交换机和路由器的区别
传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。
它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。
路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。
交换机最大的好处是快速,由于交换机只须识别帧中MAC地址,直接根据MAC地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。
但交换机的工作机制也带来一些问题。
1.回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。
一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。
而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。
2.负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。
而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。
3.广播控制:交换机只能缩小冲突域,而不能缩小广播域。
整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。
而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。
4.子网划分:交换机只能识别MAC地址。
MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。
而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。
5.保密问题:虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。
6.介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。
因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。
而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。
路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。
近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。
划分子网可以缩小广播域,减少广播风暴对网络的影响。
路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。
对交换机而言,每一个端口对应一。