株洲市人教版七年级上册数学期末试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
株洲市人教版七年级上册数学期末试卷及答案-百度文库 一、选择题
1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )
A .0.1289×1011
B .1.289×1010
C .1.289×109
D .1289×107
3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )
A .1212
∠-∠ B .132122∠-∠ C .12()12∠-∠ D .21∠-∠
4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2 C .1,4 D .1,3
5.在实数:3.14159,35-,π,25,﹣
17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )
A .1个
B .2个
C .3个
D .4个 6.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( ) A .22()m n -
B .2(2m-n)
C .22m n -
D .2(2)m n - 7.计算:2.5°=( )
A .15′
B .25′
C .150′
D .250′ 8.一个几何体的表面展开图如图所示,则这个几何体是( )
A .四棱锥
B .四棱柱
C .三棱锥
D .三棱柱
9.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法
表示为 ( )吨.
A .415010⨯
B .51510⨯
C .70.1510⨯
D .61.510⨯ 10.将方程212134
x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+ C .(21)63(2)x x -=-+ D .4(21)123(2)x x -=-+ 11.下列计算正确的是( )
A .-1+2=1
B .-1-1=0
C .(-1)2=-1
D .-12=1
12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯ C .6510⨯ D .510⨯ 二、填空题
13.一个角的余角等于这个角的13
,这个角的度数为________. 14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________. 15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.
17.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.
18.36.35︒=__________.(用度、分、秒表示)
19.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.
20.请先阅读,再计算:
因为:
111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910
++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111191122334
9101010=-+-+-++-=-= 则1111100101101102102103
20192020++++=⨯⨯⨯⨯_________.
21.计算7a 2b ﹣5ba 2=_____.
22.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.
23.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.
24.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______
三、解答题
25.解下列一元一次方程
()1()23x x +=-
()2()113124
x x --+= 26.(1)如图1,∠AOB 和∠COD 都是直角,
①若∠BOC=60°,则∠BOD= °,∠AOC= °;
②改变∠BOC 的大小,则∠BOD 与∠AOC 相等吗?为什么?
(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC 的度数.
27.化简:3(a 2﹣2ab )﹣2(﹣3ab+b 2)
28.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.
29.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足2|2|(8)0a c ++-=,1b =,
(1)a =_____________,c =_________________;
(2)若将数轴折叠,使得A 点与B 点重合,则点C 与数 表示的点重合.
(3)在(1)(2)的条件下,若点P 为数轴上一动点,其对应的数为x ,当代数式||||||x a x b x c -+-+-取得最小值时,此时x =____________,最小值为
__________________.
(4)在(1)(2)的条件下,若在点B 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点C 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请表示出甲、乙两小球之间的距离d (用t 的代数式表示)
30.如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.
(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;
(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论;
(3)与COD ∠互余的角有:______.
四、压轴题
31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?
(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.
32.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图①,连接边长为2的正三角形三条边的中点,从上往下看:
边长为1的正三角形,第一层有1个,第二层有3个,共有
个;
边长为2的正三角形一共有1个.
探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
33.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
【详解】
∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点P与N之间,
∴这四个数中绝对值最小的数对应的点是点N.
故选B.
2.C
解析:C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.C
解析:C
【解析】
【分析】
由图知:∠1和∠2互补,可得∠1+∠2=180°,即1
2
(∠1+∠2)=90°①;而∠1的余角
为90°-∠1②,可将①中的90°所表示的1
2
(∠1+∠2)代入②中,即可求得结果.
【详解】
解:由图知:∠1+∠2=180°,
∴1
2
(∠1+∠2)=90°,
∴90°-∠1=1
2
(∠1+∠2)-∠1=
1
2
(∠2-∠1).
故选:C.
【点睛】
此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.
4.A
解析:A
【解析】
【分析】
由题意根据单项式系数和次数的确定方法即可求出答案得到选项.
【详解】
解:单项式2r h
π的系数和次数分别是π,3;
故选:A.
【点睛】
本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.
5.C
解析:C
【解析】
【分析】
无理数就是无限不循环小数,依据定义即可判断.
【详解】
解:在3.14159π1
7
,0.1313313331…(每2个1之间依次多一个3)
π、0.1313313331…(每2个1之间依次多一个3)这3个,
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
6.C
解析:C
【分析】
根据题意可以用代数式表示m 的2倍与n 平方的差.
【详解】
用代数式表示“m 的2倍与n 平方的差”是:2m-n 2
,
故选:C .
【点睛】
本题考查了列代数式,解题的关键是明确题意,列出相应的代数式. 7.C
解析:C
【解析】
【分析】
根据“1度=60分,即1°=60′”解答.
【详解】
解:2.5°=2.5×60′=150′.
故选:C .
【点睛】
考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.
8.A
解析:A
【解析】
试题分析:根据四棱锥的侧面展开图得出答案.
试题解析:如图所示:这个几何体是四棱锥.
故选A.
考点:几何体的展开图.
9.D
解析:D
【解析】
【分析】
将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.
【详解】
150万=1500000=61.510⨯,
故选:D.
【点睛】
本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.
解析:D
【解析】
【分析】
方程两边同乘12即可得答案.
【详解】 方程212134
x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D .
【点睛】
本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.
11.A
解析:A
【解析】
解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;
C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;
D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .
12.B
解析:B
【解析】
【分析】
科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】
将50万用科学记数法表示为5510⨯,故B 选项是正确答案.
【点睛】
此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.
二、填空题
13.【解析】
【分析】
设这个角度的度数为x 度,根据题意列出方程即可求解.
【详解】
设这个角度的度数为x 度,依题意得90-x=
解得x=67.5
故填
【点睛】
此题主要考查角度的求解,解题的关键是
解析:67.5
【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.【详解】
设这个角度的度数为x度,依题意得90-x=1 3 x
解得x=67.5
故填67.5
【点睛】
此题主要考查角度的求解,解题的关键是熟知补角的性质.
14.8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点
解析:8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点睛】
此题考查多边形的对角线,解题关键在于掌握计算公式.
15.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元
解析:(23)a b
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
16.﹣3或5.
【解析】
【分析】
根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.
【详解】
解:根据题意得:a+b =0,c =﹣,m =2或﹣2,
当m =2时,原式=2(a+b )
解析:﹣3或5.
【解析】
【分析】
根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.
【详解】
解:根据题意得:a +b =0,c =﹣
13
,m =2或﹣2, 当m =2时,原式=2(a +b )﹣3c +2m =1+4=5; 当m =﹣2时,原式=2(a +b )﹣3c +2m =1﹣4=﹣3,
综上,代数式的值为﹣3或5,
故答案为:﹣3或5.
【点睛】
此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
17.1
【分析】
把x=2代入转换成含有a的一元一次方程,求解即可得
【详解】
由题意可知2×(a+1)−4a=0
∴2a+2−4a=0
∴2a=2
∴a=1
故本题答案应为:1
【点睛】
解
解析:1
【解析】
【分析】
把x=2代入转换成含有a的一元一次方程,求解即可得
【详解】
由题意可知2×(a+1)−4a=0
∴2a+2−4a=0
∴2a=2
∴a=1
故本题答案应为:1
【点睛】
解一元一次方程是本题的考点,熟练掌握其解法是解题的关键
18.【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
【点
解析:3621'
o
【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,
1′=60″.
19.30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30
解析:30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30﹣.
考点:列代数式
20.【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】
解:
故答案为
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的
解析:
24 2525
【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】
解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭ 1111111110010110110210210320192020
-+-+-++-= 96
10100242525=
= 故答案为
242525
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 21.2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
故答案为:
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.
解析:2a 2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
()22227a b 5ba =75a b=2a b ﹣﹣.
故答案为:22a b
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 22.5
【解析】
【分析】
根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.
【详解】
∵△ABE向右平移3cm得到△DCF,
∴BC=3cm,
∵BE=8cm,
∴C
解析:5
【解析】
【分析】
根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.
【详解】
∵△ABE向右平移3cm得到△DCF,
∴BC=3cm,
∵BE=8cm,
∴CE=BE-BC=8-3=5cm,
故答案为:5.
【点睛】
本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.23.6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1
解析:6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1+3+3=7个基础图案,
第3个图案中有1+3+3+3=10个基础图案,
……
第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,
当n=2013时,1+3n=1+3×2013=6040,
故答案为:6040.
【点睛】
本题考查图形规律问题,由前3个图案得出规律,写出第n 个图案中的基础图形个数表达式是解题的关键.
24.①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概
解析:①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
①这10000名考生的数学中考成绩的全体是总体,正确;
②每个考生的数学中考成绩是个体,故原说法错误;
③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;
④样本容量是200,正确;
故答案为:①③④.
【点睛】
本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
三、解答题
25.(1)2x =-;(2)32
x =-
【解析】
【分析】
(1)根据去括号、移项、合并同类项、x 系数化为1求解即可;
(2)根据去分母、去括号、移项、合并同类项、x 系数化为1求解即可.
【详解】
解:(1)去括号得,26x x +=-,
移项得,26x x +=-,
合并同类项得,36x =-,
系数化为1得,2x =-;
(2)去分母得,2(1)12(1)1x x --+=,
去括号得,2212121x x ---=,
移项、合并同类项得,-1015x =,
系数化为1得,32
x =-
. 【点睛】
本题考查了一元一次方程的解法,关键是掌握正确的步骤.
26.(1)①30;30;②相等,理由详见解析;(2)∠AOC=30°.
【解析】
【分析】
(1)①根据直角定义可得∠COD=∠AOB=90°,再利用角的和差关系可得答案;
②根据条件可得∠AOB=∠COD ,再用等式的性质可得∠AOB-∠COB=∠COD-∠BOC ,进而可得结论;
(2)设∠AOC=x °,则∠BOC=(100-x )°,然后再表示出∠BOD ,进而可得
∠AOD=∠AOB+∠BOD=100°+10°+x°=100°-x°+70°,再解方程即可.
【详解】
解:(1)①∵∠COD 是直角,
∴∠COD=90°,
∵∠BOC=60°,
∴∠BOD=30°,
∵∠AOB 是直角,
∴∠AOB=90°,
∵∠BOC=60°,
∴∠AOC=30°,
故答案为30;30;
②相等,
∵∠AOB 和∠COD 都是直角,
∴∠AOB=∠COD ,
∴∠AOB ﹣∠COB=∠COD ﹣∠BOC ,
即∠BOD=∠AOC ;
(2)设∠AOC=x°,则∠BOC=(100﹣x )°,
∵∠COD=110°,
∴∠BOD=110°﹣(100﹣x )°=x°+10°,
∵∠AOD=∠BOC+70°,
∴∠AOD=∠AOB+∠BOD=100°+10°+x°=100°﹣x°+70°,
解得:x=30,
∴∠AOC=30°.
此题主要考查了角的计算,关键是理清图中角之间的和差关系.
27.3a 2﹣2b 2.
【解析】
【分析】
原式去括号合并即可得到结果.
【详解】
原式=()()223a -6ab --6ab+2b
22=3a 6ab 6ab 2b -+-
223a -2b =
【点睛】
本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.
28.-4.
【解析】
【分析】
首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.
【详解】
解:原式=﹣a 2b+3ab 2﹣a 2b ﹣4ab 2+2a 2b =(﹣1﹣1+2)a 2b+(3﹣4)ab 2=﹣ab 2, 当a =1,b =﹣2时,
原式=﹣1×(﹣2)2=﹣4.
【点睛】
考查整式的化简求值,解题关键是先化简,再代入求值.注意运算顺序及符号的处理.
29.(1)2-,8;(2)9-;(3)1;10;(4)
82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧=⎨----=->⎩
. 【解析】
【分析】
(1)根据两个非负数的和为零则这两个数均为零即可得出答案;
(2)先求出AB =3,则折点为AB 的中点,故折点表示的数为B 点表示的数减去
12AB ,即折点表示的数为:1-12
×3=-0.5,再求出C 点与折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9;
(3)当P 与点B 重合时,即当x =b 时,|x -a |+|x -b |+|x -c |取得最小值;
(4)分小球乙碰到挡板之前和之后,即当0≤t ≤3.5,t >3.5时,表示出甲、乙两小球之间的距离d 即可.
解:(1)2|2|(8)0a c ++-=,|2|0a +≥,2(8)0c -≥
20a ∴+=,80c -=
2a ∴=-,8c =;
故答案为:2-,8;
(2)因为2a =-,1b =,
所以AB =1-(-2)=3,
将数轴折叠,使得A 点与B 点重合,
所以对折点为AB 的中点,
所以对折点表示的数为:1-12
×3=-0.5, C 点与对折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9,
即点C 与数-9表示的点重合,
故答案为:-9;
(3)当x =b =1时,
|x -a |+|x -b |+|x -c |=|x -(-2)|+|x -1|+|x -8|=10为最小值;
故答案为:1;10;
(4)t 秒后,甲的位置是2t --,乙的位置是82(0 3.5)12( 3.5)26( 3.5)t t t t t -≤≤⎧⎨+-=->⎩
, 82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧∴=⎨----=->⎩
. 【点睛】
此题考查是列代数式,数轴上两点之间的距离,掌握数轴上两点之间的距离求法是解决问题的关键.
30.(1)65COE ∠=︒,65BOE ∠=︒;(2)平分;(3)COE ∠、∠BOE .
【解析】
【分析】
(1)根据角平分线和直角的性质,即可得出∠COE ,然后根据平角的性质即可得出∠BOE ;
(2)根据角平分线的性质得出12COD AOD AOC ∠=∠=
∠,然后根据余角的性质得出∠COE=∠BOE ,即可得出OE 平分BOC ∠;
(3)根据余角的性质,即可判定.
【详解】
(1)∵OD 平分AOC ∠,50AOC ∠=︒, ∴11502522
COD AOD AOC ∠=∠=
∠=⨯︒=︒, ∵90DOE ∠=︒.
∴902565COE DOE COD ∠=∠-∠=︒-︒=︒,
180180259065BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒;
(2)平分
∵OD 平分AOC ∠, ∴12
COD AOD AOC ∠=∠=∠ ∵90DOE ∠=︒
∴∠DOC+∠COE=∠AOD+∠BOE=90°
∴∠COE=∠BOE
∴OE 平分BOC ∠;
(3)由题意,得∠DOE=∠DOC+∠COE=90°
∠AOD+∠BOE=90°,∠AOD=∠DOC
∴与COD ∠互余的角有:COE ∠、∠BOE
【点睛】
此题主要考查角平分线以及余角、平角的性质,熟练掌握,即可解题.
四、压轴题
31.(1)
107秒或10秒;(2)1413或11413
. 【解析】
【分析】
(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;
(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.
【详解】
(1)∵|a -20|+|c +10|=0,
∴a -20=0,c +10=0,
∴a =20,c =﹣10.
设点B 对应的数为b .
∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).
解得:b =10.
当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .
∵Q 到B 的距离与P 到B 的距离相等,
∴|﹣10+5t ﹣10|=|20+2t ﹣10|,
即5t ﹣20=10+2t 或20﹣5t =10+2t ,
解得:t =10或t =107. 答:运动了107
秒或10秒时,Q 到B 的距离与P 到B 的距离相等.
(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.
∵点M 为线段PR 的中点,点N 为线段RQ 的中点,
∴点M 对应的数为
224202x x ++-=442x +, 点N 对应的数为
2052x x -+=2x +10, ∴MN =|442
x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.
分三种情况讨论:
①当0<x <4时,12﹣1.5x +20﹣5x =25,
解得:x =1413
; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,
解得:x =
667
>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,
解得:x 31141=. 综上所述:x 的值为
1413或11413
. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
32.探究三:16,6;结论:n²,
;应用:625,300. 【解析】
【分析】
探究三:模仿探究一、二即可解决问题;
结论:由探究一、二、三可得:将边长为
的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有
个;边长为2的正三角形共有 个;
应用:根据结论即可解决问题.
【详解】
解:探究三:
如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有
个;
边长为2的正三角形有个.
结论:
连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有
个;
边长为2的正三角形,共有个.
应用:
边长为1的正三角形有=625(个),
边长为2的正三角形有(个).
故答案为探究三:16,6;结论:n², ;应用:625,300.
【点睛】
本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.
33.(1)x=1;(2) x=-3或x=5;(3) 30.
【解析】
【分析】
(1)根据题意可得4-x=x-(-2),解出x的值;
(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;
(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.
【详解】
(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:
x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:
2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.
【点睛】
本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。