物理3-2知识点总结归纳
人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流
![人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流](https://img.taocdn.com/s3/m/0ccb155bf5335a8103d22024.png)
人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。
2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。
3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。
4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。
【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。
要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。
(2)互感现象可以把能量从一个电路传到另一个电路。
变压器就是利用互感现象制成的。
(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。
要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。
再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。
如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。
断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。
图甲实验叫通电自感。
在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。
图乙实验叫断电自感。
断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。
虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。
物理选修3 2知识点总结
![物理选修3 2知识点总结](https://img.taocdn.com/s3/m/0605dd2224c52cc58bd63186bceb19e8b8f6ec95.png)
物理选修3 2知识点总结第一章电荷与电场1.1 电荷的基本性质1.1.1 电荷的定义电荷是构成物质的一种基本性质,有正负之分。
相同电荷相斥,不同电荷相吸。
1.1.2 电荷的守恒封闭系统中的总电荷守恒,即电荷不会增加或减少。
1.1.3 电荷的离散化电荷是离散的,它们只能是整数倍的基本电荷。
1.2 电场的产生1.2.1 电荷产生电场电荷周围存在电场,电场由正电荷指向负电荷,大小与电荷的大小和距离有关。
1.2.2 电场的定义电场是空间中某一点单位正电荷所受的力,大小为F=qE。
1.2.3 电场的叠加原理多个电荷产生的电场可以叠加,合成电场为各个电场矢量和。
1.2.4 电场的三种表达形式电场可以用电场线、电场强度分布图和电场力线图来表示。
1.3 电荷在电场中的运动1.3.1 电荷在电场中受力电荷在电场中受到电场力F=qE。
1.3.2 电荷在电场中的加速度电荷在电场中受到的电场力会导致电荷产生加速度a=qE/m。
1.3.3 电荷在电场中的运动轨迹电荷在电场中运动的轨迹依赖于开始的初速度和角度,可以是直线、椭圆、抛物线或者双曲线。
1.4 高中物理常见问题探究1.4.1 电场强度的方向问题1.4.2 电势能公式的导出1.4.3 电势差和电势能的关系第二章电容器2.1 电容的定义2.1.1 电容的概念电容是指某两导体之间存储电荷的能力,记为C。
2.1.2 电容的基本单位电容的基本单位是法拉(F)。
2.2 平行板电容器2.2.1 平行板电容器的构成平行板电容器由两块平行金属板组成。
2.2.2 平行板电容器的电容公式平行板电容器的电容公式为C=ε0S/d。
2.2.3 平行板电容器的等效电容连接在串联或并联平行板电容器的等效电容可以根据串联与并联的原理求出。
2.3 圆板电容器2.3.1 圆板电容器的构成圆板电容器由两块圆形金属板组成。
2.3.2 圆板电容器的电容公式圆板电容器的电容公式为C=πε0R。
2.3.3 圆板电容器的等效电容串联或并联连接的圆板电容器的等效电容可以根据串联与并联的原理求出。
(完整版)高中物理选修3-2知识点总结
![(完整版)高中物理选修3-2知识点总结](https://img.taocdn.com/s3/m/fd58e617bceb19e8b9f6ba25.png)
高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。
③电源内部的电流从负极流向正极。
3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。
8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。
这种现象叫互感。
9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。
另外, 有铁心的线圈的自感系数比没有铁心时要大得多。
(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。
10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。
高中物理选修3-2知识点汇总
![高中物理选修3-2知识点汇总](https://img.taocdn.com/s3/m/c74a1f2a6fdb6f1aff00bed5b9f3f90f76c64de1.png)
高中物理选修3-2知识点汇总高中物理选修3-2知识点汇总高中物理选修3-2主要涵盖了电磁学的内容,以电磁感应为核心,探究了电磁场的产生和作用。
本文将对选修3-2的内容进行汇总,重点介绍电磁感应、电磁波等重要知识点。
1. 电磁感应:电磁感应是指当导体中的磁通量发生变化时,导体中会产生感应电动势,导致产生感应电流。
电磁感应的重要性在于它是发电原理的基础,也是变压器和电动机等电器的工作原理。
- 导体中感应电动势的大小与导体中的磁通量变化率成正比,即U = -dΦ/dt,其中U为电动势,Φ为磁通量,t为时间。
- 感应电动势的方向由三个规律确定:法拉第电磁感应定律、楞次定律和楞次-菲阻抗定律。
2. 法拉第电磁感应定律:法拉第电磁感应定律规定了感应电动势的大小和方向。
- 当导体中的磁通量Φ发生变化时,电动势U将引起感应电流流动。
- 感应电动势的大小与磁通量的变化率成正比,方向由右手螺旋法确定。
3. 楞次定律:楞次定律是电磁感应的基本规律,主要包括两个方面的内容:- 感应电动势的方向总是使产生它的磁通量发生变化的原因趋于减弱。
- 通过改变线圈中的磁场大小或方向,可以实现电磁感应。
4. 楞次-菲阻抗定律:楞次-菲阻抗定律描述了感应电动势由于电流的存在而受到的阻碍。
- 线圈中的感应电动势会导致感应电流的产生,在电路中形成闭合回路。
- 感应电流会产生磁场,使感应电动势遭到阻碍,即电阻的作用。
5. 电感、自感和互感:电感是指通过导体形成的闭合线圈中,由于电流产生的磁场而导致的自感作用。
- 自感可以通过比例系数L来表示,L=dΦi/di,其中Φi为线圈的磁通量,i为线圈的电流。
- 互感是指两个线圈之间由于彼此磁场的相互作用而产生的感应。
6. 电磁场和电磁波:电磁场是由电荷或电流产生的磁场和电场相互作用而形成的。
- 磁场是由电流形成的,符号为B,单位为特斯拉(T);电场是由电荷形成的,符号为E,单位为牛顿/库仑(C/N)。
物理选修3-2知识点归纳
![物理选修3-2知识点归纳](https://img.taocdn.com/s3/m/c4dc4541ba1aa8114431d952.png)
物理选修3-2知识点归纳(鲁科版)第一章 电磁感应 第1节 磁生电的探索1.电磁感应:只要闭合电路的磁通量发生变化,闭合电路中就会产生电流。
国磁通量变化而产生电流的现象叫做电磁感应,所产生的电流叫做感应的电流。
第2节 感应电动势与电磁感应定律1.感应电动势:电磁感应现象中产生的电动势叫感应电动势。
电路中感应电动势的大小与电路中磁通量变化的快慢有关。
2.法拉第电磁感应定律:电路中感应电动势的大小与穿过这一电路的磁通量变化率成正比。
tkE ∆∆Φ=,k 为比例常数。
在国际单位制中,感应电动势E 的单位是V ,Φ的单位是Wb ,t 的单位是s , 1=k , 上式可以化简为t E ∆∆Φ=。
n 匝线圈的感应电动势大小为:tn E ∆∆Φ=。
磁通量的变化量仅由导线切割磁感线引起时,感应电动势的公式还可以写成:Blv E =。
第3节 电磁感应定律的应用1.涡流:将整块金属放在变化的磁场中,穿过金属块的磁通量发生变化,金属块内部就产生感应电流。
这种电流在金属块内部形成闭合回路,就像旋涡一样,我们把这种感应电流叫做涡电流(eddy current),简称涡流。
如图所示,把绝缘导线绕在块状铁芯上,当交变电流通过导线时,铁芯中会产生图中虚线所示的涡流。
在以上实验中,小铁锅的电阻很小,穿过铁锅的磁通量变比时产生的涡流较大,足以使水温升高;而玻璃杯是绝缘体,电阻很大,不产生涡流。
2.电磁炉:电磁炉的工作原理与涡流有关。
如图所示,当50 Hz 的交流电流入电磁炉时,经过整流变为直流电,再使其变为高频电流(20~50 kHz)进入炉内的线圈。
由于电流的变化频率较高,通过铁质锅底的磁通量变化率较大,根据电磁感应定律t E ∆∆Φ=/可知,产生的感应电动势也较大;铁质锅底是整块导体,电阻很小,所以在锅底能产生很强的涡电流,使锅底迅速发热,进而加热锅内的食物。
(1)与煤气灶、电饭锅等炊具相比,电磁炉具有很多优点:电磁炉利用涡流使锅直接发热,减少了能量传递的中间环节,能大大提高热效率;电磁炉使用时无烟火,无毒气、废气;电磁炉只对铁质锅具加热,炉体本身不发热……由于以上种种优点,电磁炉深受消费者的喜爱,被称为“绿色炉具”。
物理选修3-2 总结
![物理选修3-2 总结](https://img.taocdn.com/s3/m/31c3d8095901020207409c29.png)
选修3-2知识点电磁感应现象Ⅰ只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。
这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。
感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φ=BSSinθ(θ是B与S的夹角)看,磁通量的变化Δφ可由面积的变化ΔS引起;可由磁感应强度B的变化ΔB引起;可由B与S的夹角θ的变化Δθ引起;也可由B、S、θ中的两个量的变化,或三个量的同时变化引起。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。
如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。
从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。
.法拉第电磁感应定律楞次定律Ⅱ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。
ε=BLV——当长L的导线,以速度V,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为ε。
如图所示。
设产生的感应电流强度为I,MN间电动势为ε,则MN受向左的安培力F=BIL,要保持MN以V匀速向右运动,所施外力F′=F=BLV,当行进位移为S时,外力功W=BILS=BILVt,t为所用时间。
而在t时间内,电流做功W′= εIt据能量转化关系,W′=W则。
BILVt=εIt∴ε=BLV,M点电势高,N点电势低。
此公式使用条件是B、L、V方向相互垂直,如不垂直,则向垂直方向作投影。
,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。
物理选修32知识点总结
![物理选修32知识点总结](https://img.taocdn.com/s3/m/341aef3c24c52cc58bd63186bceb19e8b8f6ecec.png)
物理选修32知识点总结物理选修3-2知识点总结一、电磁感应与发电机1. 法拉第电磁感应定律- 感应电动势的大小与磁通量的变化率成正比。
- 感应电流的方向由楞次定律决定。
2. 楞次定律- 感应电流的方向总是试图抵消引起它的磁通量的变化。
3. 电磁感应的三种情况- 导体切割磁感线产生感应电动势。
- 磁场变化引起磁通量变化,产生感应电动势。
- 磁场变化引起导体内部磁畴重新排列,产生感应电动势。
4. 发电机原理- 利用导体切割磁感线产生感应电动势,将机械能转化为电能。
二、交变电流1. 交流电的基本概念- 交流电是指电流的大小和方向随时间周期性变化的电流。
2. 正弦交流电- 交流电的一种基本形式,其大小和方向按照正弦规律变化。
3. 交流电的三要素- 频率:交流电周期性变化的速率。
- 峰值:交流电在一周期内出现的最大值。
- 相位:交流电在时间上的位移。
4. 交流电的表示方法- 解析式表示法:使用正弦函数表示交流电的变化。
- 向量图表示法:在复平面上表示交流电的相位关系。
5. 交流电的功率- 有功功率:交流电做功的速率。
- 无功功率:与磁场和电场建立和消散有关。
- 视在功率:有功功率和无功功率的矢量和。
三、电磁振荡与无线通信1. 电磁振荡- LC振荡电路中电场能和磁场能相互转换,产生振荡。
2. 振荡电路的基本参数- 振荡频率:电路自然振荡的频率。
- 品质因数Q:衡量振荡电路性能的参数。
3. 无线电通信基础- 无线电通信利用电磁波传播信息。
- 调制:将信息信号加到载波上的过程。
- 解调:从调制信号中恢复信息信号的过程。
四、电磁波1. 电磁波的产生- 变化的电场产生磁场,变化的磁场产生电场,形成电磁波。
2. 电磁波的性质- 传播速度:在真空中为光速。
- 波长、频率和波速的关系:波长乘以频率等于波速。
3. 电磁谱- 电磁波按照波长或频率的不同分为不同的类型,如无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
物理选修3-2知识点归纳
![物理选修3-2知识点归纳](https://img.taocdn.com/s3/m/c892fa630a4c2e3f5727a5e9856a561252d321b3.png)
物理选修3-2知识点归纳一、电磁感应与发电机1. 电磁感应现象- 法拉第电磁感应定律:变化的磁场会在导体中产生电动势。
- 楞次定律:感应电流的方向总是试图抵消引起它的磁场变化。
- 感应电动势的大小与磁通量变化率成正比。
2. 电磁感应的应用- 发电机原理:利用导体在磁场中运动产生感应电动势来发电。
- 交流发电机与直流发电机的区别:交流发电机产生的是交流电,直流发电机通过换向器输出直流电。
3. 电磁感应的计算- 磁通量的计算:Φ = B·A·cosθ,其中B是磁场强度,A是面积,θ是磁场与面积法线之间的夹角。
- 感应电动势的计算:ε = -dΦ/dt,其中ε是感应电动势,dΦ/dt是磁通量的变化率。
二、交变电流1. 交流电的基本概念- 交流电:电流的方向和大小随时间周期性变化的电流。
- 正弦交流电:电流随时间的变化符合正弦规律。
2. 交流电的基本参数- 最大值(峰值):电流或电压在一个周期内的最大值。
- 有效值(RMS):交流电的热效应等效的直流电值。
- 周期和频率:周期是交流电完成一个循环的时间,频率是周期的倒数。
- 相位:描述交流电波形上某点位置的度量。
3. 交流电的计算- 交流电功率的计算:P = Vrms·Irms,其中P是功率,Vrms是电压有效值,Irms是电流有效值。
- 功率因数:表示电路中实际功率与视在功率的比值。
三、电磁波1. 电磁波的产生- 麦克斯韦方程组:描述电磁场的基本规律。
- 电磁波的产生:变化的电场产生磁场,变化的磁场产生电场,相互垂直并向外传播。
2. 电磁波的性质- 电磁波的传播:不需要介质,可以在真空中传播。
- 电磁波的速度:在真空中的速度等于光速,约为3×10^8 m/s。
- 电磁波的能量:电磁波携带能量,与频率成正比。
3. 电磁波的应用- 无线电通信:利用电磁波传输信息。
- 微波炉:利用微波加热食物。
- 医疗成像:如X射线、MRI等。
高中物理选修3-2公式总结
![高中物理选修3-2公式总结](https://img.taocdn.com/s3/m/828f2bc108a1284ac850435a.png)
十一、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W =Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U 总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
物理3-2知识点总结
![物理3-2知识点总结](https://img.taocdn.com/s3/m/f15e3f6982c4bb4cf7ec4afe04a1b0717ed5b31a.png)
物理3-2知识点总结《物理 3-2 知识点总结》物理 3-2 这部分的知识,在高中物理的学习中占据着重要的地位。
下面就来为大家详细总结一下这部分的关键知识点。
一、电磁感应现象1、磁通量磁通量是指穿过某一面积的磁感线的条数。
其计算公式为Φ = BS (其中 B 是磁感应强度,S 是垂直于磁场方向的有效面积)。
要注意磁通量是标量,但有正负之分。
2、电磁感应现象当穿过闭合回路的磁通量发生变化时,电路中就会产生感应电流。
产生感应电动势的那部分导体相当于电源。
3、产生感应电流的条件(1)闭合回路。
(2)回路中的磁通量发生变化。
二、法拉第电磁感应定律1、感应电动势在电磁感应现象中产生的电动势叫做感应电动势。
其大小与磁通量的变化率成正比。
2、法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
公式为 E =nΔΦ/Δt (其中 n 是线圈的匝数)。
3、导体切割磁感线时的感应电动势(1)当导体平动切割磁感线时,E =BLv(其中B 是磁感应强度,L 是导体切割磁感线的有效长度,v 是导体运动的速度)。
(2)当导体转动切割磁感线时,需要根据具体情况进行分析和计算。
三、楞次定律1、楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
2、对楞次定律的理解可以从“增反减同”“来拒去留”“增缩减扩”等方面来帮助理解和判断感应电流的方向。
3、右手定则适用于导体切割磁感线产生感应电流的情况。
伸开右手,让磁感线垂直穿过手心,大拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。
四、自感和涡流1、自感现象由于导体本身的电流发生变化而产生的电磁感应现象叫做自感现象。
自感电动势总是阻碍导体中原来电流的变化。
2、自感系数自感系数 L 与线圈的大小、形状、匝数以及是否有铁芯等因素有关。
3、涡流当线圈中的电流发生变化时,在附近的导体中会产生像水中的漩涡一样的感应电流,这种电流叫做涡流。
高中物理 选修3-2 变压器 知识点及方法总结 题型分类总结 变压器电路分析
![高中物理 选修3-2 变压器 知识点及方法总结 题型分类总结 变压器电路分析](https://img.taocdn.com/s3/m/675eebe850e2524de5187e77.png)
高中物理选修3-2变压器1、理想变压器(1)构造:如图所示,变压器是由闭合铁芯和绕在铁芯上的两个线圈组成的。
①原线圈:与交流电源连接的线圈,也叫初级线圈。
②副线圈:与负极连接的线圈,也叫次级线圈。
③闭合铁芯(2)原理:电流磁效应、电磁感应(3)基本公式①功率关系:P入=P出无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率纸盒②电压关系:U1U2=n1n2即对同一变压器的任意两个线圈,都有电压和匝数成正比。
有多个副线圈时,U1n1=U2n2=U3n3③电流关系:只有一个副线圈时I1I2=n2n1由P入=P出及P=UI推出有多个副线圈时,U1I1=U2I2+U3I3+⋯+U n I n当原线圈中U1、I1代入有效值时,副线圈对应的U2、I2也是有效值,当原线圈中U1、I1为最大值或瞬时值时,副线圈中的U2、I2也对应最大值或瞬时值④原副线圈中通过每匝线圈的磁通量的变化率相等⑤原副线圈中电流变化规律一样,电流的周期频率一样(4)几种常用的变压器①自耦变压器-调压变压器如图是自耦变压器的示意图。
这种变压器的特点是铁芯上只绕有一个线圈。
如果把整个线圈作原线圈,副线圈只取线圈的一部分,就可以降低电压;如果把线圈的一部分作原线圈,整个线圈作副线圈,就可以升高电压。
调压变压器:就是一种自耦便要,它的构造如图所示。
线圈AB绕在一个圆环形的铁芯上。
AB之间加上输入电压U1。
移动滑动触头P的位置就可以调节输出电压U2。
②互感器{电压互感器:用来把高电压变成低电压电流互感器:用来把大电流变成低电流交流电压表和电流表都有一定的量度范围,不能直接测量高电压和大电流。
用变压器把高电压变成低电压,或者把大电流变成小电流,这个问题就可以解决了。
这种变压器叫做互感器。
a、电压互感器电压互感器用来把高电压变成低电压,它的原线圈并联在高电压电路中,副线圈接入交流电压表。
根据电压表测得的电压U2和铭牌上注明的变压比(U1U2),可以算出高压电路中的电压。
高中物理选修3-2知识点详细汇总
![高中物理选修3-2知识点详细汇总](https://img.taocdn.com/s3/m/ca49748da26925c52dc5bfe2.png)
高中物理选修3-2知识点详细汇总电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。
产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3. 磁通量变化的常见情况 (Φ改变的方式):①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S增大或减小②线圈在磁场中转动导致Φ变化。
线圈面积与磁感应强度二者之间夹角发生变化。
如匀强磁场中转动的矩形线圈就是典型。
③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。
导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.2.楞次定律(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。
(定语) 主语 (状语) 谓语 (补语) 宾语(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。
阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.(3)楞次定律另一种表达:感应电流的效果总是要阻碍..(.或反抗...).产生感应电流的原因. (F安方向就起到阻碍的效果作用)即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。
人教版 物理选修3-2知识点总结【完美笔记打印】
![人教版 物理选修3-2知识点总结【完美笔记打印】](https://img.taocdn.com/s3/m/22b4dd3281c758f5f71f673f.png)
⼈教版物理选修3-2知识点总结第四章电磁感应划时代的发现奥斯特梦圆“电⽣磁”法拉笫⼼系“磁⽣电”法拉第线圈电磁感应:磁⽣电感应电流:由磁场产⽣的电流变化的电流变化的磁场运动的恒定电流运动的磁铁在磁场中运动的导体探究电磁感应产⽣电条件实验探究实验⼀:闭合电路的⼀部分导体做切割磁感线的运动过程结论实验⼆:把磁铁插⼊螺线管或从螺线管拔出过程结论实验三:双螺线管实验过程结论总结实验⼀实质:改变了闭合电路在磁场中的⾯积实验⼆实质:改变了闭合电路中磁场的强弱实验三实质:改变了闭合电路中磁场的强弱结论:只要穿过闭合电路的磁通量发⽣变化,闭合电路中就有电流产⽣楞次定律实验:探究感应电流的⽅向有哪些特点实验装置实验过程结论结论1:当线圈内原磁通量增加时,感应电流的磁场B′的⽅向与原磁场B的⽅向相反感应电流的磁场阻碍磁通量的变化结论2:当线圈内原磁通量减少时,感应电流的磁场B′的⽅向与原磁场B的⽅向相同感应电流的磁场阻碍磁通量的变化楞次定律内容:感应电流具有这样的⽅向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化细化增反减同来拒去留增缩减扩增离减靠楞次定律使⽤⽅法(1)先确定原磁场⽅向。
(2)确定磁通量的变化趋势。
(增⼤或减⼩)(3)确定感应电流产⽣的磁场⽅向。
(增反减同)(4)⽤安培定则判定感应电流的⽅向。
法拉第电磁感应定律电磁感应规律的应⽤互感和⾃感涡流电磁阻尼和电磁驱动第五章交变电流交变电流交流与直流交变电流(AC):⼤⼩和时间都随时间周期性变化直流(DC):电流的⼤⼩和时间都不随时间变化交变电流的产⽣中性⾯电流⽅向的变化分析交变电流的变化规律公式推导顺势电动势:e=nBSω·sinωt峰值:Em=nBSωu=Um·sinωti=Im·sinωt变化规律电流、电动势:每次经过中性⾯,⽅向变化⼀次中性⾯磁通量最⼤、电流最⼩垂直于中性⾯位置磁通量最⼩、电流最⼤描述交变电流的物理量周期和频率周期符号:T单位:秒s定义:交变电流完成⼀次周期性变化所需的时间频率符号:f单位:赫兹Hz定义:交变电流在1s内完成周期性变化的次数联系:T=1/f峰值和有效值有效值:让交流与恒定电流分别通过⼤⼩相同的电阻,如果在交流的⼀个周期内它们产⽣的热量相等,⽽这个恒定电流是I、电压是U,我们就把I、U叫做这个交流的有效值峰值与有效值关系:I=Im/√2;U=Um/√2注意:电表示数均为有效值平均值:E=nΔФ/Δt;I=E/R电感和电容对交变电流的影响电感对交变电流的阻碍作⽤感抗:电感对交变电流阻碍作⽤的⼤⼩影响因素线圈的⾃感系数交流的频率应⽤:扼流圈低频扼流圈匝数:⼏千到⼀万⾃感系数:⼏⼗亨,较⼤特点:感抗⼤,“通直流,阻交流”⾼频扼流圈匝数:⼏百或⼏⼗⾃感系数:⼏毫亨,较⼩特点:对⾼频交流电有较⼤阻碍作⽤,对低频交流电阻碍较⼩,对直流阻碍更⼩。
(完整版)高中物理选修3-2知识点清单(非常详细)
![(完整版)高中物理选修3-2知识点清单(非常详细)](https://img.taocdn.com/s3/m/f210741f700abb68a982fbf3.png)
(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。
高二物理(3-2)知识点总结
![高二物理(3-2)知识点总结](https://img.taocdn.com/s3/m/23451cf804a1b0717fd5ddb5.png)
高二物理(3-2)知识点总结电磁感应现象楞次定律知识要点:一、电磁感应现象:1、只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。
这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。
回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中(是B与S的夹角)看,磁通量的变化可由面积的变化引起;可由磁感应强度B的变化引起;可由B与S的夹角的变化引起;也可由B、S、中的两个量的变化,或三个量的同时变化引起。
下列各图中,回路中的磁通量是怎么的变化,我们把回路中磁场方向定为磁通量方向(只是为了叙述方便),则各图中磁通量在原方向是增强还是减弱。
(1)图:由弹簧或导线组成回路,在匀强磁场B中,先把它撑开,而后放手,到恢复原状的过程中。
(2)图:裸铜线在裸金属导轨上向右匀速运动过程中。
(3)图:条形磁铁插入线圈的过程中。
(4)图:闭合线框远离与它在同一平面内通电直导线的过程中。
(5)图:同一平面内的两个金属环A、B,B中通入电流,电流强度I在逐渐减小的过程中。
(6)图:同一平面内的A、B回路,在接通K的瞬时。
(7)图:同一铁芯上两个线圈,在滑动变阻器的滑键P向右滑动过程中。
(8)图:水平放置的条形磁铁旁有一闭合的水平放置线框从上向下落的过程中。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。
如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。
从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。
二、楞次定律:1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。
物理选修3-2-第一章-电磁感应知识点总结及例题剖析
![物理选修3-2-第一章-电磁感应知识点总结及例题剖析](https://img.taocdn.com/s3/m/6db2678ab8f67c1cfad6b8b9.png)
第一章电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流 .(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的方法.(1)磁铁运动。
(2)闭合电路一部分运动。
(3)磁场强度B变化或有效面积S变化。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。
不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
4、分析是否产生感应电流的思路方法.(1)判断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。
②穿过闭合回路的磁通量发生变化。
注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。
(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:①穿过闭合回路的磁场的磁感应强度B发生变化。
②闭合回路的面积S发生变化。
③磁感应强度B和面积S的夹角发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
物理3-2知识点总结
![物理3-2知识点总结](https://img.taocdn.com/s3/m/9f0e33b3f71fb7360b4c2e3f5727a5e9846a275e.png)
物理3-2知识点总结1. 动量守恒定律动量表示物体的运动状态,定义为物体质量与速度的乘积。
动量守恒定律指出,在封闭系统中,物体的总动量在时间上是守恒的。
动量与动量守恒公式•动量(p):动量的大小等于物体的质量(m)乘以其速度(v),即p = m * v。
•动量守恒公式:在封闭系统中,物体的总动量守恒,即总动量的初值等于总动量的末值,表示为m1 * v1 + m2 * v2 = m1’ * v1’ + m2’ * v2’。
2. 能量守恒定律能量守恒定律指出,在封闭系统中,能量总量在时间上是守恒的。
动能与势能•动能:物体由于运动而具有的能量,表示为 K = 1/2 * m * v^2,其中m 是物体的质量,v 是物体的速度。
•势能:物体由于位置而具有的能量,常见的势能有重力势能、弹性势能等。
能量守恒公式•能量守恒公式:在封闭系统中,总能量的初值等于总能量的末值,表示为 K1 + U1 + W = K2 + U2,其中 K1 和 K2 分别表示物体的初速度和末速度的动能,U1 和 U2 分别表示物体的初位置和末位置的势能,W 表示系统对外界做功或外界对系统做的功。
3. 牛顿第二定律牛顿第二定律给出了物体的运动状态与作用力之间的关系。
牛顿第二定律公式牛顿第二定律公式表示为 F = m * a,其中 F 表示物体所受到的力的大小,m 表示物体的质量,a 表示物体的加速度。
动力学方程结合牛顿第二定律和力的合成原理,可以得到动力学方程 F = dp/dt,其中 p 表示物体的动量,t 表示时间。
4. 弹力与弹性势能弹力是指物体在恢复形状或大小时所受到的力,弹性势能是物体由于形变而具有的势能。
弹力的特点•弹力的方向与物体的形变方向相反。
•弹力的大小与物体的形变程度成正比。
弹性势能公式弹性势能表示为 U = 1/2 * k * x^2,其中 k 表示弹簧的劲度系数,x 表示弹簧的形变量。
5. 摩擦力摩擦力是物体相对运动或准备相对运动时所受到的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3-2知识点一、电磁感应现象只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。
这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。
二、感应电流的产生条件1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ·sin(θ是B与S的夹角)看,磁通=B S量的变化∆φ可由面积的变化∆S引起;可由磁感应强度B的变化∆B引起;可由B与S的夹角θ的变化∆θ引起;也可由B、S、θ中的两个量的变化,或三个量的同时变化引起。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。
▲三、法拉第电磁感应定律公式一:。
注意: 1)该式普遍适用于求平均感应电动势。
2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时, 此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。
2)磁感应强度B不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。
严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变化的快慢,公式二: 。
要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l⊥B )。
2)为v与B的夹角。
l为导体切割磁感线的有效长度(即l为导体实际长度在垂直于B方向上的投影)。
公式一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等,, 且AC 上各点的线速度大小与半径成正比, 所以AC 切割的速度可用其平均切割速, 故。
εω=122BL ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为ε。
公式三:εωm n B S =···——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势εm 。
如图所示,设线框长为L ,宽为d ,以ω转到图示位置时,ab 边垂直磁场方向向纸外运动,切割磁感线,速度为v d=ω·2(圆运动半径为宽边d 的一半)产生感应电动势εωω===BL v BL d BS (21)2,a 端电势高于b 端电势。
cd 边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势εω=12BS 。
c 端电势高于e 端电势。
bc 边,ae 边不切割,不产生感应电动势,b .c 两端等电势,则输出端M .N 电动势为εωm BS =。
如果线圈n 匝,则εωm n B S =···,M 端电势高,N 端电势低。
参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值εm ,如从图示位置转过一个角度θ,则圆运动线速度v ,在垂直磁场方向的分量应为v cos θ,则此时线圈的产生感应电动势的瞬时值即作最大值εεθ=m .cos .即作最大值方向的投影,εωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。
当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。
●总结:计算感应电动势公式:εεε=BLvv v 如是即时速度,则为即时感应电动势。
如是平均速度,则为平均感应电动势。
εφε=→n t t t o ∆∆∆∆是一段时间,为这段时间内的平均感应电动势。
,为即时感应电动势。
εω=122BLεωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。
()()⎩⎨⎧==夹角是线圈平面与磁场方向瞬时值公式,····有感应电动势最大值线圈平面与磁场平行时··θθωεωεcos S B n BS nm 注意:区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在内迁移的电量(感应电量)为Rn t t R n t R t I q φφε∆=∆∆∆=∆=∆=, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。
▲四、楞次定律:1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。
即磁通量变化产生−→−−感应电流建立−→−−感应电流磁场阻碍−→−−磁通量变化。
2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。
楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。
●(口诀:增反减同,来拒去留,近躲离追)楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程: (1)阻碍原磁通的变化(原始表述);(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动; (3)使线圈面积有扩大或缩小的趋势;(4)阻碍原电流的变化(自感现象)。
如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。
若按常规方法,应先由楞次定律判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。
若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。
因此环将向右摆动。
显然,用第二种方法判断更简捷。
3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。
运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。
用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。
反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。
如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。
(“因电而动”用左手,“因动而电”用右手)五、互感自感涡流1、互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中激发了感应电动势。
这种现象叫互感。
2、自感:由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现象。
在自感现象中产生感应电动势叫自感电动势。
自感现象分通电自感和断电自感两种, 其中断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题, 如图2所示, 原来电路闭合处于稳定状态, L与并联, 其电流分别为, 方向都是从左到右。
在断开S的瞬间, 灯A中原来的从左向右的电流立即消失, 但是灯A 与线圈L构成一闭合回路, 由于L的自感作用, 其中的电流不会立即消失, 而是在回路中逐断减弱维持暂短的时间, 在这个时间内灯A中有从右向左的电流通过, 此时通过灯A的电流是从开始减弱的, 如果原来, 则在灯A熄灭之前要闪亮一下; 如果原来, 则灯A是逐断熄灭不再闪亮一下。
原来哪一个大, 要由L的直流电阻和A的电阻的大小来决定, 如果, 如果。
由上例分析可知:自感电动势总量阻碍线圈(导体)中原电流的变化。
自感电动势的大小跟电流变化率成正比。
ε自=LIt∆∆L是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L越大。
单位是亨利(H)。
3、涡流及其应用1.变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。
一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流2.应用:(1)新型炉灶——电磁炉。
(2)金属探测器:飞机场、火车站安全检查、扫雷、探矿。
▲六、交变电流描述交变电流的物理量和图象一)交流电的产生及变化规律:(1)产生:强度和方向都随时间作周期性变化的电流叫交流电。
矩形线圈在匀强磁场中,绕垂直于匀强磁场的线圈的对称轴作匀速转动时,如图5—1所示,产生正弦(或余弦)交流电动势。
当外电路闭合时形成正弦(或余弦)交流电流。
图5—1(2)变化规律:(1)中性面:与磁力线垂直的平面叫中性面。
线圈平面位于中性面位置时,如图5—2(A)所示,穿过线圈的磁通量最大,但磁通量变化率为零。
因此,感应电动势为零。
图5—2当线圈平面匀速转到垂直于中性面的位置时(即线圈平面与磁力线平行时)如图5—2(C)所示,穿过线圈的磁通量虽然为零,但线圈平面内磁通量变化率最大。
因此,感应电动势值最大。
(伏)(N为匝数)(2)感应电动势瞬时值表达式:若从中性面开始,感应电动势的瞬时值表达式:(伏)如图5—2(B)所示。
感应电流瞬时值表达式:(安)若从线圈平面与磁力线平行开始计时,则感应电动势瞬时值表达式为:(伏)如图5—2(D)所示。
感应电流瞬时值表达式:(安)二)表征交流电的物理量:(1)瞬时值、最大值和有效值:交流电的有效值是根据电流的热效应规定的:让交流电和恒定直流分别通过同样阻值的电阻,如果二者热效应相等(即在相同时间内产生相等的热量)则此等效的直流电压,电流值叫做该交流电的电压,电流有效值。
正弦(或余弦)交流电电动势的有效值和最大值的关系为:●交流电压有效值;交流电流有效值。
●注意:通常交流电表测出的值就是交流电的有效值。
用电器上标明的额定值等都是指有效值。