新数学中考第一次模拟试卷(附答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新数学中考第一次模拟试卷(附答案)
一、选择题
1.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数B.方差C.平均数D.中位数
2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()
A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5
3.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()
A.25°B.75°C.65°D.55°
4.不等式x+1≥2的解集在数轴上表示正确的是()
A.B.
C.
D.
5.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()
A.5B.6C.7D.8
6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()
A.40°B.50°C.60°D.70°
7.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为()
A .61
B .72
C .73
D .86
8.下列计算正确的是( ) A .()
3
473=a b
a b B .(
)2
3
2482--=--b a b
ab b
C .32242⋅+⋅=a a a a a
D .22(5)25-=-a a 9.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )
A .﹣1
B .0
C .1或﹣1
D .2或0
10.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )
A .4个
B .3个
C .2个
D .1个
11.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数
2
4
5
3
1
A .众数是100
B .中位数是30
C .极差是20
D .平均数是30
12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )
A .10
B .12
C .16
D .18
二、填空题
13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则
c=_____.
14.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.
15.不等式组
125
x a
x x
->


->-

有3个整数解,则a的取值范围是_____.
16.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.
17.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2
BC3
=,那么
tan∠DCF的值是____.
18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)
19.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.
20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.
三、解答题
21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC
不动,将△DEF 进行如下操作:
(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.
(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.
22.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)
23.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.
整理情况频数频率
非常好0.21
较好700.35
一般m
不好36
请根据图表中提供的信息,解答下列问题:
(1)本次抽样共调查了名学生;
(2)m=;
(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?
(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.
24.已知抛物线y=ax2﹣1
3
x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发
均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒
(1)求抛物线的解析式;
(2)当BQ=1
3
AP时,求t的值;
(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.
25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:
(1)写出A,C两点的坐标;
(2)画出△ABC关于原点O的中心对称图形△A1B1C1;
(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故本题选:D.
【点睛】
本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 2.C
解析:C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0007=7×10﹣4
故选C.
【点睛】
本题考查科学计数法,难度不大.
3.C
解析:C
【解析】
【分析】
依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.
【详解】
如图,∵∠1=25°,∠BAC=90°,
∴∠3=180°-90°-25°=65°,
∵l1∥l2,
∴∠2=∠3=65°,
故选C.
【点睛】
本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.
4.A
解析:A
【解析】
试题解析:∵x+1≥2,
∴x≥1.
故选A.
考点:解一元一次不等式;在数轴上表示不等式的解集.
5.B
解析:B
【解析】
【分析】
根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】
解:∵半径OC垂直于弦AB,
∴AD=DB=1
2
7
在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)27 )2,解得,OA=4
∴OD=OC-CD=3,
∵AO=OE,AD=DB,
∴BE=2OD=6
故选B
【点睛】
本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键6.D
解析:D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
【点睛】
掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.
7.C
解析:C
【解析】
【分析】
设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.
【详解】
设第n个图形中有a n个点(n为正整数),
观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),
∴a9=×92+×9+1=73.
故选C . 【点睛】
本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n =n 2+n+1(n 为正整数)”是解题的关键.
8.C
解析:C 【解析】 【分析】
根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案. 【详解】
A.43123()a b a b =,故该选项计算错误,
B.(
)2
3
2482b a b
ab b --=-+,故该选项计算错误,
C.32242⋅+⋅=a a a a a ,故该选项计算正确,
D.22(5)1025a a a -=-+,故该选项计算错误, 故选B. 【点睛】
本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.
9.A
解析:A 【解析】 【分析】
把x =﹣1代入方程计算即可求出k 的值. 【详解】
解:把x =﹣1代入方程得:1+2k +k 2=0, 解得:k =﹣1, 故选:A . 【点睛】
此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
10.A
解析:A 【解析】 【分析】
①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB ≌△OEB 得△EOB ≌△CMB ;
③先证△BEF 是等边三角形得出BF=EF ,再证▱DEBF 得出DE=BF ,所以得DE=EF ;④由
②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.
【详解】
试题分析:
①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,
∵FO=FC,∴FB垂直平分OC,故①正确;
②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,
∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;
③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,
∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;
④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴
BE=2AE,
∴S△AOE:S△BOE=1:2,
又∵FM:BM=1:3,
∴S△BCM =3
4
S△BCF=
3
4
S△BOE
∴S△AOE:S△BCM=2:3
故④正确;
所以其中正确结论的个数为4个
考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质
11.B
解析:B
【解析】
分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.
详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;
该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;
该组数据的平均数是102204305503100100
245313
⨯+⨯+⨯+⨯+
=
++++
不是30,所以选项D不
正确.
故选B.
点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概
念.
12.C
解析:C
【解析】
【分析】
首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP
= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.
【详解】
作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN
∴S矩形EBNP= S矩形MPFD ,
又∵S△PBE=1
2
S矩形EBNP,S△PFD=
1
2
S矩形MPFD,
∴S△DFP=S△PBE=1
2
×2×8=8,
∴S阴=8+8=16,
故选C.
【点睛】
本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
二、填空题
13.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c 的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣7
解析:7
【解析】
【分析】
根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.
【详解】
∵a,b满足|a﹣7|+(b﹣1)2=0,
∴a﹣7=0,b﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A
解析:3
【解析】
【分析】
分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.
【详解】
如图,分别延长AE 、BF 交于点H .
∵∠A=∠FPB=60°,
∴AH ∥PF ,
∵∠B=∠EPA=60°,
∴BH ∥PE ,
∴四边形EPFH 为平行四边形,
∴EF 与HP 互相平分.
∵G 为EF 的中点,
∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN .
∵CD=10-2-2=6,
∴MN=3,即G 的移动路径长为3.
故答案为:3.
【点睛】
本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.
15.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得
解析:﹣2≤a<﹣1.
【解析】
【分析】
先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式x﹣a>0,得:x>a,
解不等式1﹣x>2x﹣5,得:x<2,
∵不等式组有3个整数解,
∴不等式组的整数解为﹣1、 0、1,
则﹣2≤a<﹣1,
故答案为:﹣2≤a<﹣1.
【点睛】
本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
16.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40
解析:1320132030
4060
x x
-=
-

【解析】
【分析】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.
【详解】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,
根据题意得:1320132030
4060
x x
-=
-

故答案为:1320132030
4060
x x
-=
-

【点睛】
本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.
17.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD
=2xCF=3x∴∴tan∠DCF=故答案为:【点
解析:
2

【解析】
【分析】
【详解】
解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,
∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,
∵AB2
BC3
=,∴
CD2
CF3
=.∴设CD=2x,CF=3x,
∴.
∴tan∠DCF
=DF
CD
=.
故答案为:
2

【点睛】
本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.
18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合
解析:2160
【解析】
【分析】
根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为
1 2a ,乙的效率应该为
1
a
,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运
相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.
【详解】
设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,
∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,
由题意列方程:
180270 180270
T T
t t
--
=
甲乙

t乙=2t甲,

180270
180135
T T
--
=,解得T=540.
∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,
∴甲车车主应得运费
1
540202160
5
⨯⨯= (元),
故答案为:2160.
【点睛】
考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.
19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-
2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=
解析:10
【解析】
【分析】
试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.
【详解】
(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)
=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)
=(-2)2+2×3
=10
故答案为10
【点睛】
本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形
解析:4 3
【解析】【分析】
连接BD,根据中位线的性质得出EF//BD,且EF=1
2
BD,进而根据勾股定理的逆定理得
到△BDC是直角三角形,求解即可.【详解】
连接BD
,E F
Q分别是AB、AD的中点
∴EF//BD,且EF=1
2
BD
4
EF=
Q
8
BD
∴=
又Q 8106BD BC CD ===,,
∴△BDC 是直角三角形,且=90BDC ∠︒
∴tanC=BD DC =86=43
. 故答案为:43
.
三、解答题
21.(1)过点C 作CG ⊥AB 于G
在Rt △ACG 中 ∵∠A =60°
∴sin60°=∴……………1分
在Rt △ABC 中 ∠ACB =90°∠ABC =30°
∴AB=2 …………………………………………2分

………3分 (2)菱形………………………………………4分
∵D 是AB 的中点 ∴AD=DB=CF=1
在Rt △ABC 中,CD 是斜边中线 ∴CD=1……5分
同理 BF=1 ∴CD=DB=BF=CF
∴四边形CDBF 是菱形…………………………6分
(3)在Rt △ABE 中
∴……………………………7分 过点D 作DH ⊥AE 垂足为H
则△ADH ∽△AEB ∴
即∴ DH=……8分
在Rt△DHE中
sinα==…=…………………9分
【解析】
(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;
(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;
(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.
22.人民英雄纪念碑MN的高度约为36.5米.
【解析】
【分析】
在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.
【详解】
由题意得四边形ABDC、ACEN是矩形,
∴EN=AC=1.5,AB=CD=15,
在Rt△MED中,∠MED=90°,∠MDE=45°,
∴ME=DE,
设ME=DE=x,则EC=x+15,
在Rt△MEC中,∠MEC=90°,∠MCE=35°,
∵ME=EC•tan∠MCE,
∴x≈0.7(x+15),
解得:x≈35,
∴ME≈35,
∴MN=ME+EN≈36.5,
答:人民英雄纪念碑MN的高度约为36.5米.
【点睛】
本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.
23.(1)200;(2)52;(3)840人;(4)1 6
【解析】
分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;
(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;
(3)利用总人数乘以对应的频率即可;
(4)利用树状图方法,利用概率公式即可求解.
详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);
(2)非常好的频数是:200×0.21=42(人),
一般的频数是:m=200﹣42﹣70﹣36=52(人),
(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)
=840(人);
(4)根据题意画图如下:
∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,
其中两次抽到的错题集都是“非常好”的情况有2种,
∴两次抽到的错题集都是“非常好”的概率是
21
= 126

点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
24.(1)y=-2
3
x2-
1
3
x+2;(2)当BQ=
1
3
AP时,t=1或t=4;(3)存在.当t=
13
-+M(1,1),或当t=333
+M(﹣3,﹣3),使得△MPQ为等边三角形.
【解析】
【分析】
(1)把A(﹣2,0),B(0,2)代入y=ax2-1
3
x+c,求出解析式即可;
(2)BQ=1
3
AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP
关于t的表示,代入BQ=1
3
AP可求t值.
(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.
【详解】
(1)∵抛物线经过A(﹣2,0),B(0,2)两点,

2
40,
3
2.
a c
c

++=


⎪=

,解得
2
,
3
2.
a
c

=-


⎪=

∴抛物线的解析式为y=-
2
3
x2-
1
3
x+2.
(2)由题意可知,OQ=OP=t,AP=2+t.
①当t≤2时,点Q在点B下方,此时BQ=2-t.
∵BQ=
1
3
AP,∴2﹣t=
1
3
(2+t),∴t=1.
②当t>2时,点Q在点B上方,此时BQ=t﹣2.
∵BQ=
1
3
AP,∴t﹣2=
1
3
(2+t),∴t=4.
∴当BQ=
1
3
AP时,t=1或t=4.
(3)存在.
作MC⊥x轴于点C,连接OM.
设点M的横坐标为m,则点M的纵坐标为-
2
3
m2-
1
3
m+2.当△MPQ为等边三角形时,MQ=MP,
又∵OP=OQ,
∴点M点必在PQ的垂直平分线上,
∴∠POM=
1
2
∠POQ=45°,
∴△MCO为等腰直角三角形,CM=CO,
∴m=-
2
3
m2-
1
3
m+2,
解得m1=1,m2=﹣3.
∴M点可能为(1,1)或(﹣3,﹣3).
①如图,
当M 的坐标为(1,1)时,
则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,
PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ ,
∴t 2﹣2t +2=2t 2,
解得t 1=1+3-,t 2=13--(负值舍去).
②如图,
当M 的坐标为(﹣3,﹣3)时,
则有PC =3+t ,MC =3,
∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ , ∴t 2+6t +18=2t 2,
解得t 1=333+t 2=333-
∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.
【点睛】
本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.
25.(1)A 点坐标为(﹣4,1),C 点坐标为(﹣1,1);(2)见解析;10. 【解析】
【分析】
(1)利用第二象限点的坐标特征写出A,C两点的坐标;
(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.
【详解】
解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);
(2)如图,△A1B1C1为所作;
(3)如图,△A2B2C2为所作,
OC22
13
+10,
点C旋转至C29010
π⋅⋅10
π.
【点睛】
本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.。

相关文档
最新文档