9年级上学期期中检测数学试题1

合集下载

第一学期九年级数学期中试题

第一学期九年级数学期中试题

第一学期九年级数学期中试题初中的数学其实开始有一点难度了,所以大家要多花心思去学习哦,今天小编就给大家参考一下九年级数学,仅供参考秋季学期九年级上数学期中试题一、单选题(共 10 题,共 40 分)数学试题卷1.已知⊙O 的半径为 5,若 PO=4,则点 P 与⊙O 的位置关系是( )A.点 P 在⊙O 内B.点 P 在⊙O 上C.点 P 在⊙O 外D.无法判断2.与函数 y = 2( x - 2)2 的图象形状相同的抛物线解析式是( )A. y = 1 + 1x2B. y =(2x +1)2C. y =( x - 2)2D. y = 2x23.如图,在Rt△ABC 中,∠B=30°,∠C=90°,绕点 A 按顺时针方向旋转到△AB1C1 的位置,使得点C,A,B1 在同一条直线上,那么旋转角等于( )A.140°B.120°C.60°D.50°4.已知二次函数 y =( x -1)2 -1(0 ≤ x ≤ 3)的图象如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值 0,有最大值 3B.有最小值-1,有最大值 0C.有最小值-1,有最大值 3D.有最小值-1,无最大值第 3 题图第 4 题图第 5 题图5.图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图2 中①②③④的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是( )A.①B.②C.③D.④6.下列选项中,能使关于 x 的一元二次方程ax2 - 4x + c=0 一定有实数根的是( ) A.a>0 B.a=0 C.c>0 D.c=07.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是 91.设每个枝干长出 x 个小分支,则 x 满足的关系式为( ) A.x+x2=91 B.1+x2=91C.1+x+x2=91D.1+x(x−1)=918.下列各图中,AB 与 BC 不一定垂直的是( )9.对于方程(ax+b)2=c,下列叙述正确的是( )A.不论 c 为何值,方程均有实数根B.方程的根是抛物线 y=(ax+b)2 与直线 y=c 的交点坐标C.当c≥0 时,方程可化为:ax+b=D.若抛物线 y=(ax+b)2 与直线 y=c 没有交点,则 c<010.如图,AC 是⊙O 的直径,BD 是⊙O 的弦,BE=DE,连接 BC,若 BD=8 cm,AE=2cm,则点 O 到 BC 的距离是( )B.2.5 cm D.3 cm二、填空题(共 6 题,共 30 分)11.已知一个二次函数的图象开口向下,且经过原点,请写出一个满足条件的二次函数解析式 .12.如图,A、B、C 为⊙O 上的三点,若∠AOB=138°,则∠C= .13 . 有一边长为 3 的等腰三角形,它的另两边长是方程 x2 - 4x + k = 0 的两根,则k = .14.如图,在△ABC 中,∠CAB=70°,在同一平面内将△ABC 绕A 点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是 .15.如图,已知 AB、CD 为⊙O 的两条弦,OC⊥AB,连接 AD、OB,若∠ADC=29°,则∠ABO = .16.在平面直角坐标系中,直线 y=m 被抛物线 y = x2 + bx + c 截得的线段长为 6,则抛物线顶点到直线 y=m 的距离为 .三、解答题(共 8 题,共 80 分)17.(8 分)解下列方程:(1)3x2-4x-1=0 (2)(x-3)2+4x(x-3)=0.18.(8 分)如图,方格纸中的每个小方格都是边长为1 个单位长度的小正方形,每个小正方形的顶点叫格点.点A、B、C、D、E、F、O 都在格点上.(1)画出△ABC 向上平移 3 个单位长度的△A1B1C1;(2)画出△DEF 绕点 O 按逆时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1 和△D1E1F1 组成的图形是轴对称图形吗?19.(8 分)如图,在Rt△ABC 中,∠BAC=90°.(1)先作∠ACB 的平分线交 AB 边于点 P,再以点 P 为圆心,PA 的长为半径作⊙P(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中 BC 与⊙P 的位置关系,并证明你的结论.20.(8 分)小明的家门前有一块空地,空地外有一面长 10 米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了 32 米长的花圃围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为 1 米的通道(属于花圃一部分)及在左右花圃各留一个1 米宽的门(其他材料).设花圃与围墙平行的一边长为 x 米,(1)花圃与围墙垂直的一边长为米(用 x 表示).(2)如何设计才能使花圃的面积最大?21.(10 分)已知二次函数 y=x2-2x-3.(1)求函数图象的顶点坐标,与 x 轴和 y 轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当 x 满足时,y<0;当-122.(12 分)如图,⊙O 的直径 AB=12 cm,C 为 AB 延长线上一点,CP 与⊙O 相切于点P,过点 B 作弦BD∥CP,连接 PD.(1)求证:点 P 为B⌒D的中点;(2)若∠C=∠D,求四边形 BCPD 的面积.23.(12 分)已知抛物线 C:y1=a(x-h)2-1,直线 l:y2=kx-kh-1(1)试说明:抛物线 C 的顶点 D 总在直线 y2=kx-kh-1 上;(2)当 a=-1,m≤x≤2 时,y1≥x-3 恒成立,求 m 的最小值;(3)当 024.(14 分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC=6,BC=3,∠ACB=30°,试判断△ABC 是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于 BC所在直线的对称图形得到△A'BC,连结AA'交直线BC 于点D.若BC=2BD,求 ACBC的值.(3)应用拓展:如图 3.已知l1∥l2, l1 与 l2 之间的距离为2.“等高底”△ABC 的“等底”BC 在直线 l1 上,点 A 在直线 l2 上,AC= BC.将△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C,A'C 所在直线交 l2 于点 D.求 CD 的值.九年级上期中考试数学试题卷一、单选题(共 10 题,共 40 分)1.二次函数 y = 2( x - 3)2 + 4 的顶点坐标是( )A.(3,4)B.(-2,4)C.(2,4)D.(-3,4)2.投掷一枚质地均匀的硬币两次,对两次朝上一面的描述,下列说法正确的是( )A.都是正面的可能性较大B.都是反面的可能性较大C.一正一反的可能性较大D.上述三种的可能性一样大3.一个直角三角形的两条直角边长的和为14 cm,其中一直角边长为 x (cm),面积为y (cm2),则 y 与 x 的函数的关系式是( )A.y=7xB.y=x(14-x)C.y=x(7-x)D. y = 1 x (14 - x)24.以坐标原点O 为圆心,5 为半径作圆,则下列各点中,一定在⊙O 上的是( ) A.(3,3) B.(3,4) C.(4,4) D.(4,5)5.已知 a = 3 ,则 a + b 的值是( )6.如图,已知BD 是⊙O 的直径,弦BC∥OA,若∠B 的度数是50°,则∠D 的度数是( ) A.50° B.40° C.30° D.25°第 6 题图第 7 题图7.如图,在半径为 13 cm 的圆形铁片上切下一块高为 8 cm 的弓形铁片,则弓形弦 AB 的长为( )A.10 cmB.16 cmC.24 cmD.26 cm8.对于抛物线 y =-( x +1)2 + 3 ,下列结论:①抛物线的开口向下; ②对称轴为直线 x=1;③顶点坐标为(﹣1,3); ④x>1 时,y 随 x 的增大而减小. 其中正确结论的个数为( )A.1B.2C.3D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a<0;②c<0;③a-b+c>0;④b+2a=0.其中正确的结论有( )A.4 个B.3 个C.2 个D.1 个第 9 题图第 10 题图10.如图,C 是以 AB 为直径的半圆 O 上一点,连结 AC,BC,分别以 AC,BC 为斜边向外作等腰直角三角形△ACD,△BCE, AC , BC 的中点分别是 M,N.连接DM,EN,若C 在半圆上由点A 向B 移动的过程中,DM∶EN 的值的变化情况是( )A. 变大B. 变小C. 先变大再变小D. 保持不变二、填空题(共 6 题,共 30 分)11.抛物线 y =-2x2 + 4x +1 的对称轴是直线 .12.将抛物线 y = x2 - 2 向左平移 1 个单位后所得抛物线的表达式为 .13.如图 ABCD 中,E,F 是对角线 BD 上的两点,且 BE=EF=FD,连结 CE 并延长交 AB 于点 G,若 EG=2,则 CG= .第 13 题图第 15 题图14.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为 .15.如图,点 A、B、C、D、O 都在方格纸的格点上,每个方格的长度为 1,若△ COD 是由△ AOB 绕点 O 按逆时针方向旋转90°而得,则线段 AB 扫过的面积(阴影部分面积) 为 .16.已知半径为 3 的⊙O 经过平行四边形 ABCD 的三个顶点 A,B,C,与 AD,CD 分别交于点 E,F,若弧 EF 的度数为40°,则 AE 与CF 的弧长之和为= .三、解答题(共 8 题,共 80 分)17.(8 分)(1)已知 x = y ,求代数式2 3x + y2x - y的值.(2)求比例式 x +1 = 3x - 2 中字母 x 的值.3 418.(8 分)如图⊙O 中弦 AC 与弦 BD 交于点 P,连结 AB,CD,已知 AB=CD,(1)求证 AC=BD(2)已知 AB = BC , BD 的度数为160°,求 AB 的度数.19.(8 分)A 口袋中装有三个相同的小球,它们的标号分别为 1,2 和 3,B 口袋中装有三个相同的小球,它们的标号分别为 4,5,6,从这 2 个口袋中各随机地取出 1 个小球.(1)求取出的 2 个小球的标号之和是奇数的概率是多少?(2)现在将 A 口袋中舍弃一个球剩下 2 个球,B 口袋不变,再从这2 个口袋中各随机地取出1 个小球.发现标号之和为奇数的概率变大,问:A 口袋中舍弃的是哪号球.20.(10 分)已知二次函数的表达式是 y = x2 - 4x + 3 .(1)用配方法把它化成 y =( x + m)2 + k 的形式;(2)在直角坐标系中画出抛物线 y = x2 - 4x + 3 的图象;(3)若 A(x1,y1)、B(x2,y2)是函数 y = x2 - 4x + 3 图象上的两点,且x1” “<” 或“=”);(4)利用函数 y = x2 - 4x + 3 的图象直接写出方程x2 - 4x + 3 =1的近似解(精确到 0.1).21.(10 分)在直角坐标系中有点 A(4,0),B(0,4),(1)画一个△ABC,使点C 在x 轴的负半轴上,且△ABC 的面积为12.(2)找出(1)中△ABC 的外接圆圆心 P,并画出△ABC 的外接圆;并写出点 P 的坐标,△ABC 的外接圆半径 R= .22.(10 分)已知△ABC 中,AB=BC,CH⊥AB 垂足为 H,以AB 为直径作⊙O,交 AC、BC、CH 分别于点 D,E,P,连结 DP,AP.(1)求证:∠APD=∠ACH;(2)若 AB=5,AC=6,求 CH 的长.23.(12 分)某水果商户发现近期金桔的批发价格不断上涨,就以每箱 100 元的价格购进80 箱的金桔,购进后,金桔价格每天都上涨5 元/箱,但每天总有 1 箱金桔因变质而丢弃.且商户还要承担这批金桔的储存费用每天 100 元.(1)若商户在购进这批金桔10 天后立即出售这批金桔可以赚多少钱?(2)设商户在购进这批金桔x 天后立即出售这批金桔,求商户的利润 y 与 x 的函数关系式?(3)问几天后立即出售利润最大,最大利润是多少元?24.(14 分)如图(1),抛物线 y =-x2 + bx + c 与 x 轴相交于点 A、B,与 y 轴相交于点 C,已知 A、C 两点的坐标为 A(-1,0),C(0,3).点 P 是抛物线上第一象限内一个动点,(1)求抛物线的解析式;并求出 B 的坐标;(2)如图(2),抛物线上是否存在点 P,使得△ OBP≌△ OCP,若存在,求点 P 的坐标;(3)如图(2),y 轴上有一点 D(0,1),连结 DP 交 BC 于点 H,若H 恰好平分 DP,求点 P的坐标;(4)如图(3),连结 AP 交 BC 于点 M,以 AM 为直径作圆交 AB、BC 于点 E、F,若 E,F关于直线 AP 轴对称,求点 E 的坐标.九年级数学上学期期中试卷阅读一、选择题(每小题3分,共24分)1.若在实数范围内有意义,则x的取值范围是A. x≥1B. x>1C. x≤1D. x≠12.方程的解是A. B. C. D.3.如图,AD∥BE∥CF,直线a、b与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4,BC=6,DE=3,则EF的长为A.4B. 4.5C. 5D. 6(第3题) (第4题) (第5题)4.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.若CD=4,AC=6,则cosA的值是A. B. C. D.5.如图,学校种植园是长32米,宽20米的矩形.为便于管理,现要在中间开辟一横两纵三条等宽的小道,使种植面积为600平方米.若设小道的宽为x米,则下面所列方程正确的是A. (32-x)(20-x)=600B.(32-x)(20-2x)=600C. (32-2x)(20-x)=600D.(32-2x)(20-2x)=6006.已知点、在二次函数的图象上.若,则与的大小关系是A. B. C. D.7. 如图,在⊙O中,半径OA垂直弦BC于点D.若∠ACB=33°,则∠OBC的大小为A.24°B. 33°C. 34°D. 66°8.如图,△ABC和△ADE均为等边三角形,点D在BC上,DE与AC相交于点F.若AB=9,BD=3,则CF的长为A.1B.2C.3D.4二、填空题(每小题3分,共18分)9.计算:= .10.若关于的一元二次方程有实数根,则的取值范围是 .11.将抛物线向下平移2个单位后,得到的抛物线所对应的函数表达式为 .12.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD =105°,则∠DCE的大小是度.(第12题) (第13题) (第14题)13. 如图,在平面直角坐标系中,线段AB两个端点的坐标分别为(6,6),(8,2).以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点C的坐标为 .14.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C 在抛物线上,且位于点A、B之间(C不与A、B重合).若四边形AOBC 的周长为a,则△ABC的周长为(用含a的代数式表示).三、解答题(本大题共10小题,共78分)15.(6分)计算:.16.(6分)解方程:.17.(6分)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.求2013年到2015年这种产品产量的年增长率.18.(7分)图①、图②均是边长为1的正方形网格,△ABC的三个顶点都在格点上.按要求在图①、图②中各画一个三角形,使它的顶点均在格点上.(1)在图①中画一个△A1B1C1,满足△A1B1C1∽△ABC ,且相似比不为1.(2)在图②中将△AB C绕点C顺时针旋转90°得到△A2B2C,求旋转过程中B点所经过的路径长.19.(7分)如图,AB是半圆所在圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC于E,交⊙O于D,连结BC、BE.(1)求OE的长.(2)设∠BEC=α,求tanα的值.20.(7分) 如图,在平面直角坐标系中,过抛物线的顶点A作x轴的平行线,交抛物线于点B,点B在第一象限.(1)求点A的坐标.(2)点P为x轴上任意一点,连结AP、BP,求△ABP的面积.21.(8分)(8分)某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示. AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为43°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0. 1m)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93;sin31°=0.52,cos31°=0.86,tan31°=0.60】22.(9分)(9分)如图,在Rt△ABC中,∠B=30°,∠ACB=90°,AB=4.延长CA到O,使AO=AC,以O 为圆心,OA长为半径作⊙O交BA延长线于点D,连结OD、CD.(1)求扇形OAD的面积.(2)判断CD所在直线与⊙O的位置关系,并说明理由.23. (10分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)用含t的代数式表示BP、BQ的长.(2)连结PQ,如图①所示.当△BPQ与△ABC相似时,求t的值.(3)过点P作PD⊥BC于D,连结AQ、CP,如图②所示.当AQ⊥CP时,直接写出线段PD的长.图①24.(12分)如图,在平面直角坐标系中,抛物线与x轴交于A(4,0)、B(-3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S 与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC 上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.一、1.A 2. C 3. B 4. D 5. C 6. D 7. A 8. B二、9. 10. 11.(化成一般式也可) 12. 105 13.(3,3) 14. a-4三、15.原式=.(化简正确给2分,计算sin30°正确给1分,结果2分)16. .(1分)∵a=1,b=-3,c=-1,∴.(2分)(最后结果正确,不写头两步不扣分)∴. (5分)∴ (6分)【或,(2分) .(3分),.(5分)(6分)】17.设2013年到2015年这种产品产量的年增长率为x. (1分)根据题意,得. (3分)解得 x1=0.1=10%,x2=﹣2.1(不合题意,舍去). (5分)答:2013年到2015年这种产品产量的年增长率为10%.(6分)18.(1)(2)画图略. (4分)(每个图2分,不用格尺画图总共扣1分,不标字母不扣分)(2)由图得. (5分)(结果正确,不写这步不扣分)旋转过程中B点所经过的路径长:. (7分)(过程1分,结果1分)19. (1)∵OD⊥AC,∴. (1分)在Rt△OEA中,. (3分)(过程1分,结果1分)(2)∵AB是⊙O的直径,∴∠C=90°. (4分)在Rt△ABC中,AB=2OA=10,∴. (5分)∵OD⊥AC,∴. (6分)在Rt△BCE中,tan=. (7分)20. (1).(3分)(过程2分,结果1分)(用顶点坐标公式求解横坐标2分,纵坐标1分)∴点A的坐标为(4,2). (4分)(2)把代入中,解得,(不合题意,舍去). (6分)∴. (7分)∴. (8分)21. 在Rt△ABC中,sin∠ABC=,∴AC=ABsin43°=2×0.68=1.36 (m) . (4分)(过程2分,有其中两步即可,结果2分)在Rt△ADC中,tan∠ADC=,∴(m). (给分方法同上)∴斜坡AD底端D与平台AC的距离CD约为2.3m.(8分)(不答不扣分,最终不写单位扣1分)22. (1)在Rt△ABC中,∠ACB=90°,∠B=30°,∴,(1分)∠BAC=60°. (2分)∴AO=AC=2,∠OAD=∠BAC=60°.∵OA=OD,∴△OAD是等边三角形. (3分)∴∠AOD=60°. (4分)∴. (5分)(2)CD所在直线与⊙O相切.(只写结论得1分)理由:∵△OAD是等边三角形,∴ AO=AD,∠ODA=60°. (6分) ∵AO=AC,∴ AC=AD.∴∠ACD=∠ADC=. (7分)∴∠ODC=∠ODA+∠ADC=60°+30°=90°,即OD⊥CD . (8分) ∵OD为⊙O的半径,∴CD所在直线与⊙O相切. (9分)23. (1)BP=5t,BQ=8-4t. (2分)(2)在Rt△ABC中,. (3分)当△BPQ∽△BAC时,,即.(4分)解得. (5分)当△BPQ∽△BCA时,,即.(6分)解得. (8分)(3). (10分)24. (1)把A(4,0)、B(-3,0)代入中,得解得 (2分)∴这条抛物线所对应的函数表达式为. (3分)(2)当-3当0(每段自变量1分,若加等号共扣1分,解析式2分) (3),,. (12分)。

九年级上学期 期中考试数学试题附答案

九年级上学期 期中考试数学试题附答案

一.精心选一选(每小题4分,共32分)。

1. 下列各式正确的是( ) (A )5323222=+=+(B )32)53(3523++=+(C )94)9()4(⨯=-⨯- (D )212214= 2. 下列图形中不是中心对称图形的是( )。

3.一元二次方程220x x -=的根是( )A :2x =;B :0x =;C :12x =-,20x =;D :12x =,20x = 4.下列命题正确的是( )。

A 经过三点一定可以作圆B 三角形的外心到三角形各边距离相等C 平分弦的直径垂直于弦D 同圆或等圆中,相等的圆心角所对的弧相等5.圆心在原点O ,半径为5的⊙O ,点P (-3,4)与⊙O 的位置关系是( )。

A. 在⊙O 内B. 在⊙O 上C. 在⊙O 外D. 不能确定 6、如图,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ). A .1对B .2对C .3对D .4对7. 如图,PA ,PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,∠P =400,则∠BAC 的度数是( )A 100B 200C 300D 4008.如图所示,AB 是⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB .∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,则点P ( ) 。

A .到CD 的距离保持不变 B. 等分C .随C 点的移动而移动D .位置不变 二.细心填一填(每小题4分,共32分)。

9.当x_______10.与2是同类二次根式,则a 的值为____________。

11. 点(-2,5)关于原点对称的点的坐标是 _____________. 12.点A 的坐标为()02,,把点A 绕着坐标原点顺时针旋转135°到点B,那么点B 的坐标是13.若是关于x 的一元二次方程,则a=________.14.已知⊙O 和⊙O '相切,它们的半径分别为3和4,则OO '=________。

九年级上学期 期中考试数学试题 附答案

九年级上学期 期中考试数学试题 附答案

秋九年级期中检测数学试题一、填空题(每题3分,共30分)1、函数12-+=x x y 的自变量的取值范围是 . 2、若m<0,则332||m m m ++= .3、在半径是2的⊙O 中,弦AB 的长为2,则弦AB 所对的圆心角∠AOB = .4、如图,AB 是⊙O 的直径CD 是弦,若AB =10㎝,CD =8㎝,那么A 、B 两点到直线CD 的距离之和为 .5、已知最简二次根式b a 34+与32+-b b a 能合并成一个二次根式,则()2012b a +的值为 .6、如图在⊙O 中,∠BAC =35°,则∠OBC = .7、已知一直角三角形的两条直角边的长恰好是方程07822=+-x x 的两个根,则这个直角三角形的斜边长是 .8、已知一次函数()m x m y -+-=32的图象经过第一、二、四象限,化简226944m m m m +-++-的结果是 .9、某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长率为x ,则根据题意所列方程 为 . 10、如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△P AC '重合,如果3=AP ,那么 线段P P '的长等于 .二、选择题(每题3分,共24分)11、下列各式中成立的是( ) A 、x x3412-=- B 、101.010=- C 、b a b a 2)2(2-=- D 、)0(2〈-=a b a b a12、一元二次方程()0122=+++m x m mx 有实数根,则m 的取值范围是( )A 、 41-≥m B 、 41-≥m 且0≠m C 、41-≤m D 、41-≤m 且0≠m 13、如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF =( )A PxB CPA 、80°B 、 50°C 、 40°D 、20°14、已知,x+y=-5,xy=3,则yxyx y x+的结果是( ) A 32 B -32 C 23 D -2315、如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在的平面内,可作为旋转中心的点有( )A 、1个B 、2个C 、3个D 、4个 16、如图所示,在直角坐标系中,A 点的坐标为(-3,-2),⊙A 的半径为1,P 为x 轴 上以动点,PQ 切⊙A 与点Q ,则当PQ 最小时,P 点的坐标为( )A 、(-4,0)B 、(-2,0)C 、(-4,0)或(-2,0)D 、(-3,0) 17、两边长分别为8㎝、6㎝的直角三角形的内切圆的半径长是( )㎝ A 2 B 4 C 7-1 D 2或7-118、如图,⊙O 是四边形ABCD 的内切圆,切点依次是E 、F 、G 、H ,下列结论一定正确的 有( )个①AF=BG ②CG=CH ③AB+CD=AD+BC ④BG <CGA 、1B 、2C 、3D 、4三、解答题(共72分)19、计算(5分)()()25.02123112012+⎪⎭⎫⎝⎛+---- 20、、先化简,再求值。

西南大学附属中学校2024届九年级上学期期中数学试卷(含解析)

西南大学附属中学校2024届九年级上学期期中数学试卷(含解析)

重庆市西南大学附属中学2023-2024学年九年级上学期期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1. 下列各数中,不是无理数的是()A. B. C. D.答案:A解析:解:.属于有理数,不是无理数,符合题意;B.属于无理数,不合题意;C.属于无理数,不合题意;D.属于无理数,不合题意;故选:A.2. 观察下列图形,是中心对称图形的是( )A. B. C. D.答案:B解析:解:选项A、C、D的图形都不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:B.3. 如图,和是以点O为位似中心的位似图形,,的周长为8,则的周长为()A. 12B. 18C. 20D. 50答案:C解析:解:和是以点为位似中心的位似图形,,,,,,,,故选:C.4. 估计2×(﹣1)的运算结果应在( )A. 7到8之间B. 8到9之间C. 9到10之间D. 10到11之间答案:B解析:2×(﹣1)=2×(2﹣1)=12﹣2,∵9<12<16,∴3<<4,∴3<2<4,∴8<12﹣2<9.故选:B.5. 下列说法正确的是( )A. 对角线相等的四边形一定是矩形B. 顺次连接矩形各边中点形成的四边形一定是正方形C. 对角线互相平分且相等的四边形一定是菱形D. 经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分答案:D解析:解:对角线相等的平行四边形才是矩形,故A错误;顺次连接矩形各边中点形成的四边形一定是菱形,故B错误;对角线互相平分且相等的四边形一定是矩形,故C错误;经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,故D正确;故选:D.6. 自11月以来,万州疫情越来越严峻.万州二中决定分高中部和初中部同时开展全员核酸检测,初中部比高中部每小时少检测300人,高中部检测800人所用时间是初中部检测600人所用时间的一半.设高中部每小时检测人,根据题意,可列方程为()A. B.C. D.答案:A解析:设高中部每小时检测人,则初中部每小时检测人,高中部检测完需要:小时,初中部检测完需要:,又高中部检测800人所用时间是初中部检测600人所用时间的一半,则,故选:A.7. 用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑩个图案中正方形的个数为()A. 32B. 33C. 37D. 41答案:D解析:解:由题知,第①个图案中有个正方形,第②个图案中有个正方形,第③个图案中有个正方形,第④个图案中有个正方形,…,第个图形中有个正方形,∴第⑩个图案中正方形的个数为,故选:D.8. 如图,AB是⊙O的直径,弦CD⊥AB于点E,AC=CD,⊙O的半径为2,则△AOC的面积为( )A. B. 2 C. 2 D. 4答案:C解析:∵AB是⊙O的直径,弦CD⊥AB于点E,∴直径AB平分弦CD,E为CD中点,∴CE=CD=AC,∴∠CAO=30°,∴∠ACE=60°,又∵OC=OA=,∴∠CAO=∠ACO=30°,∴∠OEC=30°,∴Rt△OCE中有OE=OC=,CE=OE=,则△AOC的面积为:,故选:C.9. 如图,在正方形中,点E,G分别在,边上,且,,连接、,平分,过点C作于点F,连接,若正方形的边长为4,则的长度是( )A. B. C. D. 答案:C解析:解:如图:延长交于H,∵平分,∴,∵,∴,在和中,,∴,∴,,而,∴,∵,正方形的边长为4,∴,,,在中,,在中,,∴,∴.故选:C.10. 若定义一种新运算:,例如:,,下列说法:①;②若,则,;③的解集为或;④函数与直线(为常数)有3个交点,则.其中正确的个数是()A. 4B. 3C. 2D. 1答案:B解析:因为,且,所以,故①正确;当时,,解得,,符合题意;当即时,,所以,此时即,显然不成立,所以②正确;当即时,,得到,解得,所以不等式的解集是;当即时,,得到,解得,所以不等式的解集是或;所以③不正确;当即时,此时因,图像为抛物线上的一部分;当即时,此时或,因为,图像为抛物线上的一部分,且当时,;当时,;符合题意的整体图象如下:故当时,函数与直线(为常数)有3个交点.所以④正确;故选B.二.填空题(共8小题,满分32分,每小题4分)11. ﹣tan60°=_____.答案:﹣1.解析:解:原式=2﹣×=2﹣3=﹣1.故答案为﹣1.12. 在,,3,0四个数中,随机选取一个数作为二次函数中的值,则该二次函数的对称轴在轴右侧的概率是______.答案:或0.5解析:解:二次函数的对称轴为,当对称轴在y轴右侧时,,得到,而-2,-1,3,0这四个数中,小于0的个数有2个,∴该二次函数的对称轴在轴右侧的概率为,故答案为:.13. 若多边形的内角和比外角和大540°,则该多边形的边数是______.答案:七或7解析:解:设这个多边形的边数是n,则(n-2)•180°=360°+540°,解得n=7.故答案为:七.14. 已知关于x的方程x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,则k=_____.答案:﹣2解析:解:设方程的两根分别为x1,x2,∵x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,∴x1+x2,=﹣(k2﹣4)=0,解得k=±2,当k=2,方程变为:x2+1=0,△=﹣4<0,方程没有实数根,所以k=2舍去;当k=﹣2,方程变为:x2﹣3=0,△=12>0,方程有两个不相等的实数根;∴k=﹣2.故答案为﹣2.15. 如图,在平行四边形ABCD中,,E为BC上一点,连接AE,将沿AE翻折得到,交AC于点G,若,,则AG的长度为______.答案:##解析:如图,过点F作交于点H,∵平行四边形ABCD,∴,∵,∴设,∴,∵,∴,∴,∵沿AE翻折得到,∴,,∴,∴是等腰直角三角形,∴,即,解得:,∴,∴,在中,,∴,即.故答案为:.16. 如图,在平面直角坐标系中,点A是反比例函数图象上的一点,连接,平移得到,当点落在y轴上时,点恰好落在反比例函数(,)的图象上,若,则k的值为______.答案:解析:解:过点A、分别作y轴的垂线,垂直分别为B、C,如图所示:由题意可知:,∴四边形是平行四边形,∴,∴,∵,∴,∵,∴,根据反比例函数k的几何意义可知:,∴,∴,∵反比例函数的图象在第二象限,∴;故答案为.17. 若关于y的不等式组的解集为,且关于x的分式方程的解是非负整数,则所有满足条件的整数a的值之和是_______.答案:19解析:解:由得:,由得:,∵不等式组的解集为,∴,∴,∵,,∴,∵方程的解是非负整数,∴是3的倍数,∵,∴,∴a的取值为,5,8,11,∴所有满足条件的整数a的值之和是19.故答案为:19.18. 若一个四位数的个位数字与十位数字的和与它们的差之积恰好是去掉个位数字与十位数字后得到的两位数,则这个四位数称为“和差数”,令的千位数字为,百位数字为,十位数字为,个位数字为,记,且,则____________________;当,均为整数时,的最大值为_________.答案:①. ②. 6318解析:解:,且,,,;四位数为“和差数”,,,,是整数,是整数,由为整数可知,,设(为整数且),,,或8,当时,①若,则,此时,不符合题意;②若,则,此时,;③若,则,此时,;④若,则,此时,;⑤若,则,不符合题意;当时,①若,则,此时,;②若,则,不符合题意.综上,符合条件的有1224,2736,4848,6318,其中最大值为6318.故答案为:;6318.三.解答题(共8小题,满分78分)19. 计算:(1);(2).答案:(1)(2)小问1解析:解:;小问2解析:解:.20. 如图,已知平行四边形ABCD.(1)用尺规完成以下基本作图:在CB的延长线上取点E,使CE=CD,连接DE交AB于点F,作∠ABC 的平分线BG交CD于点G.(保留作图痕迹,不写作法)(2)在第(1)问所作的图形中,求证:四边形BFDG为平行四边形.证明:∵BG平分∠ABC∴∠ABG=∠CBG∵四边形ABCD为平行四边形∴AB∥CD∴∠ABG=∠CGB,∠CDE=∠BFE∴∠CGB=① ∴CB=CG.∵CE=CD,CB=CG∴CE﹣CB=CD﹣CG,即BE=② ∵CD=CE∴∠CDE=③ ∵∠CDE=∠BFE,∠CDE=∠BEF∴∠BFE=④ ∴BE=BF∵BE=DG,BE=BF∴DG=⑤ ∵AB∥CD,DG=BF∴四边形BFDG为平行四边形.(推理根据:⑥ )答案:(1)见解析(2)①,②,③,④,⑤,⑥一组对边平行且相等四边形是平行四边形小问1解析:解:尺规作图结果如下:小问2解析:证明:平分,,∵四边形为平行四边形,,,,.,,即,,,,,,,,,四边形为平行四边形.(推理根据:一组对边平行且相等的四边形是平行四边形)21. 《中国诗词大会》以“赏中华诗词,寻文化基因,品生活之美”为宗旨,通过演播室比赛的形式,重温经典诗词,继承和发扬中华优秀传统文化,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣.现已成功播出7季,深受观众的喜欢和热捧.《中国诗词大会》第8季正在各地火热选拔.某校为了选择优秀同学参加《中国诗词大会》第8季选拔,在七、八年级所有同学中进行了初赛.现从七、八年级中各随机抽取20名初赛成绩的数据(单位:分)进行整理和分析,共分为四个分数段(表示初赛成绩,取整数):.;.;.;.,初赛成绩不低于90分进入下一轮复赛,下面给出部分信息:七年级抽取20名同学初赛成绩数据为:45,48,50,55,56,60,60,60,63,64,72,75,77,77,78,81,83,88,92,96.八年级抽取20名同学初赛成绩在分数段的所有数据为:71,71,72,74,76.年级平均数中位数众数七年级6968八年级6966根据以上信息,解答下列问题:(1)填空:______,______,七年级抽取同学初赛成绩扇形统计图中分数段对应扇形的圆心角度数为______度,并补全统计图;(2)根据以上数据分析,初赛成绩哪个年级更好?请说明理由(写出一条即可);(3)该校七年级有人,八年级有人,估计七、八年级能进入复赛的同学共有多少人?答案:(1),,,见解析(2)八年级,理由见解析(3)人小问1解析:解:七年级抽取20名同学初赛成绩数据中,分出现的次数最多,则;由八年级抽取20名同学初赛成绩统计图知,A分数段的人数有8人,则位于最中间的两个数分别是,其平均数为,故;七年级抽取同学初赛成绩扇形统计图中分数段对应扇形的圆心角度数为;(人),即八年级中位于C分数段的学生有4人,补充的统计图如下:小问2解析:解:八年级成绩更好;八年级学生的中位数高于七年级.小问3解析:七八两个年级抽取的学生中进入复赛的百分比分别为:,,七八两个年级抽取的学生中进入复赛的人数分别为:(人),(人),估计七、八年级能进入复赛的同学共有(人).22. 在全民健身运动中,骑自行车越来越受到市民青睐,从A地到B地有一条自行车骑行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.(1)小明和小军相约在上午8时同时从各自出发地出发,匀速前行,到上午10时,他们还相距,到中午12时,两人又相距.求A、B两地间的自行车道的距离.(2)因骑自行车的市民越来越多,政府决定重新改建一条自行车道,改建的自行车道比A、B两地的距离多,某工程队由于采用了更加先进的修路技术和修路机器,每天可以比原计划的改建里程多,结果完成此项修路工程比原计划少用了5天.若每天付给工程队的施工费用为4万元,则完成工程后,一共付给工程队的费用是多少?答案:(1)A、B两地间的自行车道的距离(2)一共付给工程队的费用是100万元小问1解析:解:设两人的速度和为,第一次相距时用时:,第二次相距时用时:,,解得:,∴,答:A、B两地间的自行车道的距离.小问2解析:解:设实际用了天,则原计划用天,改建的自行车道距离:,,解得:,经检验,是原分式方程的根,∴付给工程队的费用:(万元),答:一共付给工程队的费用是100万元.23. 如图,在矩形中,,,动点P,Q分别从点B,A同时出发,P点以每秒1个单位长度的速度沿着运动,到达A点停止运动,点Q以每秒个单位长度的速度由运动,P点运动时间为t秒,令的面积为,的面积为,回答下列问题:(1)请直接写出,与t之间的函数关系式以及对应的t的取值范围;(2)请在平面直角坐标系中画出,的图象,并写出的一条性质;(3)求当时,t的取值范围.答案:(1);;(2)图见解析;当时,取得最大值,最大值为6(答案不唯一)(3)小问1解析:解:在矩形中,,,∴,∴,当点P在边上时,,此时,∴;当点P在上时,,此时,过点B作于点E,∵,∴,解得:,∴;∴与t之间的函数关系式为;根据题意得:,∴;小问2解析:解:对于当时,,对于当时,,当时,,对于,当时,,当时,,画出图象如下:观察图象得:当时,取得最大值,最大值为6;小问3解析:解:观察图象得:与相交,联立得:,解得:,∴当时,t的取值范围.24. 如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:)答案:(1)观测站A、B之间的距离为海里.(2)补给船能在83分钟之内到达C处,理由见解析.(2)过点B作,垂足为F,根据题意得:,,从而求出,然后在中,利用锐角三角函数定义求出的长,再在中,利用锐角三角函数的定义求出的长,进行计算即可解答.小问1解析:解:过点P作于D点,∴,在中,,海里,∴(海里),(海里),在中,,∴(海里),∴海里,∴观测站A,B之间的距离为海里;小问2解析:补给船能在82分钟之内到达C处,理由:过点B作,垂足为F,∴,由题意得:,,∴,在中,,∴海里,在中,,∴海里,∴补给船从B到C处的航行时间(分钟)分钟,∴补给船能在83分钟之内到达C处.25. 如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交点C,抛物线过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线上方的抛物线上有一动点E,连接,与直线相交于点F,当时,求E 点坐标.(3)在(2)的条件下,若点E位于对称轴左侧,点M是抛物线对称轴上一点,点N是抛物线上一点,当以M,N,E,B为顶点的四边形是菱形时,直接写出点M的坐标.答案:(1)(2),(3)M的坐标为或)或或或小问1解析:在中,当时,当时,∴、,∵抛物线的图象经过A、C两点,∴,解得,∴抛物线的解析式为;小问2解析:令,解得,,∴,设点E的横坐标为t,则,如图,过点E作轴于点H,过点F作轴于点G,则,∴,∵,∴,∵,∴,∴点F的横坐标为,∴,∴,∴,解得,,当时,,当时,,∴,,小问3解析:∵抛物线的解析式为,抛物线顶点坐标为,对称轴方程为,在(2)的条件下,∵点E位于对称轴左侧,∴,∵点M是抛物线对称轴上一点,∴设,∵,∴,,,①当为菱形的边时,,即,,∴,∴,∴或;②当为菱形的对角线时,,即,∴,解得,∴;③当,即,∴,∴或,∴或;综上所述,M的坐标为或)或或或26.如图,在等腰中,,,垂足为,点为边上一点,连接并延长至,使,以为底作等腰.(1)如图1,若,,求的长;(2)如图2,连接,,点为的中点,连接,过作,垂足为,连接交于点,求证:;(3)如图3,点为平面内不与点重合的任意一点,连接,将绕点顺时针旋转得到,连接,.直线与直线交于点,为直线上一动点,连接并在的右侧作且,连接,为边上一点,,,请直接写出的最小值.答案:(1)(2)证明见解析部分(3)小问1解析:解:如图1中,过点作于点.,,,,,,,,,,,.小问2解析:证明:如图2中,连接,.是等腰直角三角形,,,,,,,,,,,,,,,,,,,,,,,,,;小问3解析:解:如图3中,设交于.,,,,,,,,点的运动轨迹是以为直径的,,,,,,点在运动轨迹是直线,如图4中,作点关于的对称点,连接,,,.是定值,,,,当,,,共线时,的值最小,如图5中,过点作于点,交的延长线于点.,,,,,,,四边形是矩形,,,,,,,,.的最小值为.。

湖北省部分学校2023-2024学年九年级上学期期中数学试题(含答案解析)

湖北省部分学校2023-2024学年九年级上学期期中数学试题(含答案解析)

湖北省部分学校2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________A .点AB .点8.如图,在⊙О中,弦AB A .2B .329.如图,P 为等边三角形ABC 4,5,则△ABC 的面积为(A .25394+B .10.如图,已知二次函数交点B 在(0,2)-和(0,1)C -①0abc >;②42a b c ++>A.1个B.2个C.3个D.4个二、填空题16.将二次函数223y x x=-++的图象在=+与新函数的图象恰有象如图所示.当直线y x b三、解答题17.按要求解方程:(1)x 2﹣x ﹣2=0(公式法);(2)2x 2+2x ﹣1=0(配方法).18.某商场一种商品的进价为每件30元,售价为每件40元.每天可销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求每次降价的百分率;(2)经调查,若该商品每降价1元,每天可多销售8件.若每天要想获得504元的利润且尽快减少库存,每件应降价多少元?19.如图,点E 为正方形ABCD 外一点,90AEB ∠=︒,将Rt ABE 绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由;(2)已知7,13BH BC ==,求DH 的长.20.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD AB ⊥于点E .(1)求证:BCO D ∠=∠(2)若42CD =,OE =21.在58⨯的网格中建立如图的平面直角坐标系,四边形(0,0)O ,(3,4)A ,(8,4)B 图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段(2)在线段AB 上画点E ,使45BCE ∠=(3)连接AC ,画点E 关于直线AC 的对称点22.某区某水产养殖户利用温棚养殖技术养殖白虾,并从原来的每年养殖两季提高至每年三季.市周期的70天里,销售单价P (元/千克)与时间第()()120140415040702t t P t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩,,(t 都为整数)函数关系如图所示.(1)求日销售量y 与时间t 的函数关系式;备用图(1)求该抛物线的解析式;(2)点P是抛物线上一点,且位于第一象限,当参考答案:【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点8.D【分析】由圆周角定理可得∠【详解】解:∵∠ACB=45°,∴∠O=2∠ACB=90°,∵OA=OB,25+12)∵∠90,30ABC ACB ︒︒=∠=,AC 2,AB ∴=由勾股定理得:2BC AC AB =-∵将△BCP 绕点B 顺时针旋转60°∴△BPC BHG≅∆∴,60BP BH PBH ︒=∠=,HG =∴△PBH 是等边三角形,∴PH BP=∴PA PB PC PA PH HG++=++∴当点A ,点P ,点G ,点H 共线时,∵∠ABP PBH GBH ABP +∠+∠=∠∴∠150ABG ︒=∴∠30GBN ︒=∵GN AB⊥∴1123322GN BG ==⨯=,由勾股定理得,2BN BG NG =-∴235AN AB BN =+=+=∴22253AG AN NG =+=+=∴PA PB PC ++最小值为27∴3+b =0,解得b =-3;当直线y =x +b 与抛物线(y x =恰好有三个公共点,即()214x x b --=+有相等的实数解,整理得b =214-,所以b 的值为-3或214-,(2)∠BCE 为所求的角,点E 为所求的点(3)连接(5,0)和(0,5)点,与AC 的交点为【点睛】本题考查了作图-旋转变换,正方形的性质,全等三角形的性质和轴对称的性质,熟悉相关性质是解题的关键.22.(1)()2200170y x x =-+≤≤(2)第26天利润最大,最大利润为2738元∴∠QEP =∠QCP =60°.故答案为60;(2)∠QEP =60°.以∠DAC 是锐角为例.证明:如图2,∵△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∵线段CP 绕点C 顺时针旋转60°得到线段CQ ,∴CP =CQ ,∠PCQ =60°,∴∠ACB +∠BCP =∠BCP +∠PCQ ,即∠ACP =∠BCQ ,在△ACP 和△BCQ 中,CA CB ACP BCQ CP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BCQ (SAS ),∴∠APC =∠Q ,∵∠1=∠2,∴∠QEP =∠PCQ =60°;(3)连结CQ ,作CH ⊥AD 于H ,如图3,与(2)一样可证明△ACP ≌△BCQ ,∴AP =BQ ,由于A(4,0),B(1,3)∴3=32ABPPMS=△,∴3=32ABPPNS=△,易得∠BAC=45°,若BAG OBC BAO ∠+∠=∠则∠OBC=∠GAE,∴△BOC∽△AGE,即∠+∠=∠,若BAG OBC BAO则∠OBC=∠GAO,。

九年级上学期人教版期中测试题(数学试题)及答案

九年级上学期人教版期中测试题(数学试题)及答案

九年级上学期期中测试题数学一、选择题、 1、使11-x 有意义的x 的取值范围是( ) A .x >1 B .x ≥1 C .x ≠1 D .x ≥0且x ≠12、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B 。

1k >-且0k ≠ C.。

1k < D 。

1k <且0k ≠3、直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针 旋转90°后得到△AO B '',则点B '的坐标是( )A . (3,4)B .(4,5)C .(7,4)D .(7,3)4、ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙ 的内接正方形的面积为( ) A .2 B .4C .8D .165、下列事件是随机事件的是( )A .在一个标准大气压下,加热到100℃,水沸腾B .购买一张福利彩票,中奖C .有一名运动员奔跑的速度是30米/秒D .在一个仅装着白球和黑球的袋中摸球,摸出红球 6、AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠=( )A .70°B .60°C .50°D .40°7、方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12B .12或15C .15或12D .不能确定8、从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.下列事件的概率:抽取2名,恰好是1名男生和1名女生( )。

A .1/5B .2/5C .3/5D .4/59、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米, 则拱桥的半径为( )A .6.5米B .9米C .13米D .15米10.某商场根据市场销售变化,将A 商品连续两次提价20%,同时将B 商品连续两次降价20%,结果都以每件23.04元出售,此时商场若同时售出A 、B 两商品各一件的盈亏情况为( ).A .不亏不盈B .盈6.12元C .亏6.02元D .亏5.92元二、填空题11、随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________。

河北省石家庄市正定县2023-2024学年九年级上学期期中数学试题(含答案)

河北省石家庄市正定县2023-2024学年九年级上学期期中数学试题(含答案)

正定县2023-2024学年度第一学期期中质量检测九年级数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.服装销售商在进行市场占有情况的调查时,最应该关注的是已售出服装型号的( )A .中位数B .平均数C .众数D .最小数2.方程的解为( )A .B .C .D .,3.已知线段a ,b ,c ,其中c 是a ,b 的比例中项,若,,则线段c 的长为( )A .B .C .D .4.如图,在中,,,则()4题图A.B .3CD5.某社区青年志愿者小分队队员的年龄情况如下表:年龄岁1819202122人数25221则这12名队员年龄的众数、中位数分别是( )A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁6.用配方法解一元二次方程,将其化成的形式,则变形正确的是( )A .B .C .D .7.若关于x 的方程存在实数根,则a 的取值范围是( )A .B .C .D .8.如图,,直线m ,n 与直线a ,b ,c 分别交于点A ,C ,E 及点B ,D ,F ,,,,则的长为( )223x x =0x =32x =32x =-10x =232x =3cm a =27cm b =81cm9cm9cm-9cm±Rt ABC △90C ∠=︒3BC AC =tan B =132810x x -+=()2x a b +=()2415x +=()2417x -=()2815x -=()2415x -=220x x a ++=1a <1a >1a ≤1a ≥////abc 4AC =6CE =2.4BD =BF8题图A .5B .5.6C .6D .6.59.如图,在中,D ,E ,F 分別是边,,上的点,,,且,那么等于( )9题图A .B .C .D .10.某校举办了以“展礼仪风采,树文明形象”为主题的比赛.已知某位选手的礼仪服装、语言表达、举止形态这三项的得分分别为90分,80分,80分,若依次按照30%,45%,25%的百分比确定成绩,则该选手的成绩是( )A .86分B .85分C .84分D .83分11.方程的两根和是,则k 的值是( )A .2B .C .3D .412.如图,一块材料的形状是锐角三角形,边长,边上的高为,把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,则这个正方形零件的边长是()12题图A .B .C .D .13.某一时刻,与地面垂直的长的木杆在地面上的影长为.同一时刻,树的影子一部分落在地面上,一部分落在坡角为45°的斜坡上,如图所示.已知落在地面上的影长为.落在斜坡上的影长为.根据以上条件,可求出树高为().(结果精确到)ABC △AB AC BC //DE BC //EF AB :1:2AD DB =:CF CB 1:22:12:32:5()2160x k x ++-=3-4-ABC BC 12cm BC AD 6cm BC AB AC 4cm5cm6cm7cm2m 1m AB AC 2m CD 2m AB 0.1m13题图A .B .C .D .14.如图,,,,利用此图可求得的值为()14题图A .B .CD15.如图1,中,,点以每秒的速度从点出发,沿折线运动,到点停止,过点作,垂足为,的长与点的运动时间(秒)的函数图像如图2所示.当的长是时,点运动的时间为()图1图2A .1.5秒B .3秒C .5秒D .1.5秒或5秒16.对于不相等的两实数p ,q,我们用符号表示p ,q 两数中较小的数,如;.若,则( )A .3B .C .D .3或二、填空题(本大题共4小题,17-18每小题3分,19题每空1分,20题每空2分,共13分,请把答案填在题中的横线上)17.已知等腰三角形的一边长为5,另一边长为一元二次方程的根,则该等腰三角形的周长为______.18.如图,,是两堵高度不同的墙,两墙之间的距离为.小明将一架木梯故在距处的处,当他将木梯靠向墙时,木梯有部分伸出强外;当他将木梯绕点旋转90°靠向墙时,木梯刚好达到墙的顶端.若墙高,则墙高______,4.0m4.2m8.0m8.2m90C ∠=︒30DBC ∠=︒AB BD =tan75︒2-2+21+Rt ABC △90ACB ∠=︒P 1cm A AC CB -B P PD AB ⊥D PD ()cm y P x PD 1.2cm P {}min ,p q {}min 1,21={min =(){}22min 1,4x x --x =1-2-2-2680x x -+=AB CD BD 7m B 2m E AB E CD AB 2.5m CD m18题图19.如图是钉板示意图,每相邻4个钉点是边长为1个单位长度的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点,则(1)与是否垂直?______(填“是”或“否”).(2)______.(3)______.19题图20.如图,,,,,点是线段上一动点,若点从点开始向点运动.(1)当时,______;(2)设为线段的中点,在点的运动过程中,的最小值是______.20题图三、解答题(本大题共6小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本题共10分,每小题5分)(1)(222.(本小题满分8分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现.满意度从低到高为1分、2分、3分、4分、5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图所示为根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)监榃人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数E AB CD cos ACE ∠=AE =ABC ADE ∽△△90BAC DAE ∠=∠=︒3AB =4AC =D BC D B C 2BD =CE =P DE D CP ()2353x x x -=-26tan30cos 45-︒-︒︒的平均数大于3.55分,则监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.如图,在中,,于,作于,是中点,连接交于点.(1)求证:;(2)若,,求的值.24.(本小题满分8分)超速行驶被称为“马路第一杀手”.为了让驾驶员自觉遵守交通规则,公路检测中心在一事故多发地段安装了一个测速仪器,如图所示.已知检测点设在距离公路20m 的A 处,测得一辆汽车从B 处行驶到C 处所用时间为.已知,.(1)求B ,C 之间的距离(结果保留根号).(2)如果此地限速为,那么这辆汽车是否超速?请说明理由.)25.(本小题满分10分)“阳光攻瑰”是一种优质的葡萄品种.正定县某葡萄种植基地2020年年底已经种植“阳光玫瑰”300亩,到2022年年底“阳光玫瑰”的种植面积达到432亩.(1)求该基地“阳光玫瑰”种植面积的年平均增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/kg 时,每天能售出300kg ;销售单价每降低1元,每天可多售出50g ,为了减少库存,该基地决定降价促销.已知该基地“阳光玫瑰”的平均成本为10元/kg ,若要使销售“阳光玫瑰”每天获利3150元,则销售单价应降低多少元?26.(本小题满分11分)ABC △AB AC =AD BC ⊥D DE AC ⊥E F AB EF AD G 2AD AB AE =⋅4AB =3AE =DG 2.7s 45B ∠=︒30C ∠=︒70km/h 1.7≈ 1.4≈如图,在四边形中,,,,,,点在边上,且.将线段绕点按顺时针方向旋转到,的平分线所在直线交折线于点,设点在该折线上运动的路经长为,连接,.(1)如图①,当点在上时,若点到的距离为1,求的值.(2)当时,在图②中画出图形,并求的值;(3)当时,请直接写出点到直线的距离(用含的式子表示).图① 图②备用图ABCD 4AB=BC =6CD =3DA =90A ∠=︒M AD 1DM =MA M ()0180n n ︒<≤MA 'A MA ∠'MP AB BC -P P ()0x x >A P 'BD P AB P BD tan A MP ∠'180n =x 04x <≤A 'AB x九年级数学参考答案一、选择题1-5CDBAD6-10DCCCD11-16AADBDD二、填空题17.12或13或14 18.419.(1)是(2(320.(1)(2)2三、解答题:21.(本题共10分)解:(1)……(2分)……(3分)或……(5分)(2……(8分)……(9分)83()2353x x x -=-()()3530x x x ---=()()350x x --=30x -=50x -=13x =25x =2606tan 30cos 45︒-︒-︒26=-3122=--……(10分)22.(本题共8分)解:(1)中位数为:(分)……(2分)平均数为:(分)……(3分)∴该部门不需要整改……(4分)(2)设监督人员抽取的问卷评分为x 分∴监督人员抽取的问卷评分为5分……(6分)中位数发生了变化,……(7分)因为加入这个数据后新的中位数为4分……(8分)23.(本题共8分)(1)证明:∵,∴∵∴∴……(2分)∴∴……(4分)(2)连接DF∵,∴D 为BC 中点……(5分)∵F 为AB 中点∴DF 为△ABC 中位线∴,∴∴……(7分)由(1)得∴∴(8分)1=-343.52+=()1123364555 3.520+⨯+⨯+⨯+⨯=3.520 3.55201x⨯+>+4.55x >AB AC =AD BC ⊥BAD DAE ∠=∠DE AC⊥90ADB AED ∠=∠=︒ABD ADE ∽△△AB ADAD AE=2AD AB AE =⋅4AB AC ==AD BC ⊥//DF AC 122DF AC ==DGF AGE ∽△△23DG DF AG AE ==23412AD AB AE =⋅=⨯=AD =25DG AD ==24.(本题共8分)解:(1)作,则……(1分)在Rt △ABD 中,∴……(2分)在中,∴∴……(4分)∴……(5分)(2)这辆汽车超速……(6分)……(7分)∴这辆汽车超速……(8分)25.(本题共10分)(1)设年平均增长率为x……(2分)(舍去)答:年平均增长率为20%……(4分)(2)设销售单价应降低y 元……(7分)……(9分)∵要减少库存∴取……(10分)答:销售单价应降低3元.26.(本题共11分)解:(1)作,则∵∴……(2分)∴AD BC ⊥20AD =45B ∠=︒20BD AD ==Rt ACD △30C ∠=︒20tan 30AD CD CD ︒===CD =(20m BC BD CD =+=+()2020 1.720m/s 2.7+⨯≈=20m/s 72km/h 70km/h=>()23001432x +=10.2x =2 2.2x =-()()2010300503150y y --+=2430y y -+=11y =23y =3y =PQ BD ⊥1PQ =90BQP BAD ∠=∠=︒PBQ DBA∠=∠BPQ BDA ∽△△BP PQ BD DA=即∴……(3分)∴……(4分)(2)当时,如图,设PM 交BD 于点N ……(5分)∵MP 平分 ∴∴ ∴∴即 ∴,∴……(6分)∵ ∴ ∴即 ……(7分)∴……(8分)(4)……(11分)153BP =53BP =57433AP =-=773tan tan 26AP A MP AMP AM '∠=∠===180n =A MA '∠90PMA A '∠=︒=∠//PM AB DNM DBA∽△△DN DM MNDB DA AB ==1534DN MN ==53DN =43MN =510533BN =-=90PBN DMN ∠=∠=︒PNB DNM∠=∠PBN DMN △∽△PB BNDM MN=103413PB=52PB =513422x AB PB =+=+=2244x x +。

广西壮族自治区百色市2023-2024学年九年级上学期期中数学试题(含答案)

广西壮族自治区百色市2023-2024学年九年级上学期期中数学试题(含答案)

2023~2024学年度上学期阶段质量调研试题九年级 数学(考试时间:120分钟 满分:120分)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效.第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.抛物线的顶点坐标是( )A .(-2,0)B .(2,0)C .(0,2)D .(0,-2)2.已知双曲线,下列各点在该双曲线上的是( )A .(1,4)B .(-1,-4)C .(-2,2)D .(-2,-2)3.若5y =4x ,下列比例式正确的是( )A.B .C .D .4.将抛物线向右平移3个单位,再向下平移1个单位,得到的抛物线是( )A .B .C .D .5.如图,BC 与AD 相交于点O ,且AB ∥CD ,BC =3OB ,AB =6,则CD 的长为()第5题图A .8B .12C .16D .186.如图,点E 是平行四边形ABCD 的边BC 延长线上的一点,AE 与CD 相交于点F ,则图中相似三角形共有()第6题图22y x =-4y x=-45x y =54x y =45x y =49x y =22y x =()2231y x =--()2231y x =+-()2213y x =+-()2213y x =--A .2对B .3对C .4对D .5对7.如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线上的一个动点,当点B 的横坐标逐渐增大时,△BOA 的面积将会()第7题图A .逐渐减小B .不变C .逐渐增大D .先增大后减小8.如图是二次函数和一次函数的图象,当时,x 的取值范围是()第8题图A .B .C .D .或9.如图,反比例函数与正比例函数相交于点和点B ,则点B 的坐标为()第9题图A .B .C .D .10.铅球运动员掷铅球的高度y (m )与水平距离x (m )之间的函数关系式为,则该运动员此次掷铅球的成绩是( )A.m B .8m C .10mD .12m()50y x x=>21y ax bx c =++2y kx t =+12y y <1x <-2x >12x -<<1x <-2x >()0ky k x =≠()0y ax a =≠31,2A ⎛⎫ ⎪⎝⎭31,2⎛⎫--⎪⎝⎭3,12⎛⎫-- ⎪⎝⎭21,3⎛⎫--⎪⎝⎭2,13⎛⎫-- ⎪⎝⎭21251233y x x =-++10311.如图,∠ACB=∠ADC=90°,AD=4.要使△ABC与△ACD相似,则AB的长为()第11题图A.5B.10C.5或10D.6或1012ABCD,分别取AD,BC的中点E,F,连结EF;如图②,以点F为圆心,以FD为半径画弧,交BC的延长线于点G,作GH⊥AD,交AD的延长线于点H,则在图中是黄金矩形的是()第12题图A.矩形ABFE B.矩形ABGH C.矩形EFGH D.矩形DCGH第Ⅱ卷二、填空题(本大题共6小题,每小题2分,共12分.请将答案填在答题卡上.)13.在比例尺为1∶2500000的地图上,一条路的长度约为6cm,那么这条路它的实际长度约为______km.14.如图,已知点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,AD=6,AC=8,AE=4,AB=12,则△ABC与△ADE的相似比是______.第14题图15.一个长方形的面积为12,一边长为x,另一边长为y,则y与x的函数关系式是______.16.二次函数的最小值是______.17.如图,在平行四边形ABCD中,E是AD延长线上一点,BE交AC于点F,交CD于点G,,则的值为______.AC=223y x x=--35DEDA=CFFA第17题图18.如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数的图象上,则点E 的坐标是______.第18题图三、解答题(本大题共8小题,满分72分,解答应写出文字说明、证明过程或演算步骤.)19.(本题满分6分)王芳同学在一次做电学实验时,记录下电流I (A )与电阻R (Ω)的一些对应值,通过描点连线,画出了I 关于R 的函数图象如图,求I 与R 之间的函数关系式,并求当电阻为4Ω时,电流的值是多少.第19题图20.(本题满分6分)如图,点D 在△ABC 内,连接BD 并延长到点E ,连接AD ,AE .若,∠CAE =32°,求∠BAD 的度数.第20题图21.(本题满分10分)如图,已知AD ∥BE ∥CF ,它们依次交直线、于点A 、B 、C 和点D 、E 、F ,AG ∥DF 交BE 于点H ,交CF 于点G,若.(1)如果EF =10,求DE 、DF 的长;(2)如果AD =5,CF =12,求BE 的长.()40y x x=>AD DE AEAB BC AC==1l 2l 27AB AC =第21题图22.(本题满分10分)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F 处.(1)求证:△ABF ∽△FCE ;(2)若AB =8,AD =10,求EC 的长.第22题图23.(本题满分10分)如图,在平面直角坐标系中,抛物线经过x 轴上的两点A 、B ,与y 轴交于点C ,直线AC 的解析式为.(1)求点A ,C 的坐标;(2)求抛物线的解析式;(3)若点P 为直线AC 上方的抛物线上的一点,过点P 作PQ ⊥x 轴于M ,交AC 于Q ,求PQ 最大时,点P 的坐标及PQ 的最大值.第23题图24.(本题满分10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y =-x +120.(1)当销售单价为80元时,求商场获得的利润;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?25.(本题满分10分)【探究与应用】2114y x bx c =-++2122y x =-+问题:如图①所示,AD 是△ABC的角平分线.求证:.【解决问题的方法】(1)善于思考的小安发现:过点B 作BE ∥AC 交AD 的延长线于点E ,如图②,通过证三角形相似,可以解决问题.请证明:.【应用提升】(2)请你利用上述结论,解决下列问题:如图③,在四边形ABCD 中,AB =2,BC =4,BD 平分∠ABC ,CD ⊥BD 于点D ,AE ⊥BD 于点E ,AC 与BD 相交于点O .求的值.26.(本题满分10分)【阅读与思考】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,有助于把握数学问题的本质,使用数形结合的方法,很多问题便迎刃而解,且解法简便.在解决函数类型的问题时,我们常常使用数形结合的方法,所以我们要先画出函数的图象.例如:画函数的图象.我们知道当时,得到函数y =x ;当时,得到函数y =-x ,所以函数的图象为如图1.第26题图1第26题图2【类比探究】(1)在图2中画出函数的图象,并解答下列问题.列表,描点,连线:x …-3-2-1-0.5-0.250.250.51234…x y…0.51m44210.5n0.25…y其中,m =______,n =______;(2)观察函数图象,写出这个函数的两条性质.性质1:______;性质2:______;BD ABCD AC=BD ABCD AC=AECDy x =0x ≥0x <y x =1y x=131y x=(3)根据图象直观判断:函数的图象与函数图象的交点坐标为______.【延伸拓展】(4)在图2中画出函数y =x 的图象,平移直线y =x 得到直线y =x +b ,观察并直接回答:当b 为何值时,直线y =x +b 与函数的图象只有一个交点?当b 为何值时,直线y=x +b 与函数的图象有两个交点?当b 为何值时,直线y =x +b 与函数的图象有三个交点?2023~2024学年度上学期阶段质量调研试题九年级 数学 参考答案一、选择题题号123456789101112答案DCBABBADACCD二、填空题13.150 14.2 15. 16.-4 17. 18.三、解答题19.解:由图可知I 与R 之间是反比例函数关系,设将(8,3)代入得:k =24,当R =4Ω时,∴20.解:∵,∴△ADE ∽△ABC ∴∠DAE =∠BAC ,∴∠DAE -∠DAC =∠BAC -∠DAC ∴∠BAD =∠CAE =32°第20题图y x =1y x=1y x=1y x=1y x=12y x =58)1+-kI R=24I R=()246A 4I ==AD DE AEAB BC AC==21.解:(1)∵AD ∥BE ∥CF,∴,∴∴DE =4.∴DF =DE +EF =4+10=14;(2)∵AD ∥BE ∥CF ,AD=5,AG ∥DF ,∴AD =HE =GF =5,∵CF =12,∴CG =12-5=7,∵BE ∥CF ,∴△ABH ∽△ACG ∴,∴BH =2,∴BE =2+5=7.第21题图22.解:(1)∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°由翻折的性质得:∠AFE =∠D =90°∴∠AFB +∠EFC =90°,∠FEC +∠EFC =90°,∴∠AFB =∠FEC ∴△ABF ∽△FCE第22题图(2)由翻折的性质得:AF =AD =10,∴∵四边形ABCD 是矩形,∴BC =AD =10,∴CF =BC -BF =4,由(1)△ABF ∽△FCE ,∴,∴CE =3.23.(1)解:在中,当x =0,y =2;当y =0,x =4∴A (4,0),C (0,2)(2)∵点A (4,0)、C (0,2)在抛物线上27AB DE AC DF ==2107DE DE =+27AB BH AC CG ==6BF ===AB BF CF CE =864CE=122y x =-+2114y x bx c =-++∴,∴∴抛物线的解析式为第23题图(3)设,则,∴∵∴当m =2时,PQ 最大,最大值为1,这时点P 的坐标为(2,2).24.解:(1)把x =80代入y =-x +120得,y =40(元)答:当销售单价为80元时,商场获得利润为800元.(2)∵抛物线的开口向下,∴当时,W 随x 的增大而增大,而∴当x =84时,元∴当销售单价定为84元时,商场可获得最大利润,最大利润是864元.25.解:(1)证明:∵BE ∥AC ,BE 交AD 的延长线于点E ,∴△BDE ∽△CDA ,∠E =∠DAC.∴.又∵AD 是∠BAC 的平分线,∴∠DAC =∠BAD ,∴∠E =∠BAD ,∴EB =AB ,∴.(2)∵BO 平分∠ABC ,∴∵CD ⊥BD ,AE ⊥BD ,∴AE ∥CD ∴△AEO ∽△CDO2144042b c c ⎧-⨯++=⎪⎨⎪=⎩122b c ⎧=⎪⎨⎪=⎩2111242y x x =-++211,242P m m m ⎛⎫-++ ⎪⎝⎭1,22Q m m ⎛⎫-+ ⎪⎝⎭211122422PQ m m m ⎛⎫=-++--+ ⎪⎝⎭211122422m m m =-+++-214m m =-+()21214m =--+104-<()408060800-⨯=()()()2260120180720090900W x x x x x =-⋅-+=-+-=--+90x <6084x ≤≤()28490900864W =--+=BD EBCD AC=BD ABCD AC=2142AO AB CO BC ===∴第25题图26.解:(1)2,画出函数的图象如图,(2)观察函数图象,性质1:当时,y 随x 的增大而增大;性质2:当时,y 随x 的增大而减小.(答案不唯一,其他答案仿照给分)(3)(-1,1),(1,1)(4)在同一坐标系画出直线y =x ,当时,直线y =x +b 与函数的图象只有一个交点.当b =2时,直线y =x +b 与函数的图象有两个交点.当时,直线y =x +b 与函数的图象有三个交点.12AE AO CD CO ==131y x=0x <0x >2b <1y x=1y x=2b >1y x=。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

山东省青岛市九年级上学期期中考试数学试题及答案

山东省青岛市九年级上学期期中考试数学试题及答案

九年级上学期期中数学试题第Ⅰ卷(选择题 共36分)一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共36分 1.把方程2103x x 左边化成含有x 的完全平方式,下列做法正确的是A .2210+-528xx ()B .2210+-522xx ()C .22+10+522x xD .210+52x x2.a,b,c,d 是四条线段,下列各组中这四条线段成比例的是A .a =2cm ,b =5cm ,c =5cm ,d =10cmB .a =30cm ,b =2cm ,c =0.8cm ,d =2cmC .a =5cm ,b =3cm ,c =10cm ,d =6cmD .a =5cm ,b =0.02cm ,c =7cm ,d =0.3cm 3.在一个不透明的袋中装着2个红球和1个黄球,它们除颜色外其他均相同,随机从袋中摸出2个小球,两球恰好都是红球的概率为 A .12B .13C .14D .164.已知四边形ABCD 是平行四边形,下列结论中不正确的是 A .当AB =BC 时,它是菱形B .当AC =BD 时,它是正方形C .当AC ⊥BD 时,它是菱形 D .当∠ABC=90°时,它是矩形5.枣庄某工厂生产的某种产品,今年产量为200件,计划通过改进技术,使明、后两年的产量都比前一年增长一个相同的百分数,三年的总产量将达到1400件,若设这个百分数为x ,根据题意可列方程A .200+200(1+x )+200(1+x )2=1400B .200+200(1+x )2=1400C .200(1+x )2=1400D .200(1+x )+200(1+x )2=1400 6.如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是A .△AFD ≌△DCEB .AB =AFC .AF =21AD D .BE =AD ﹣DF 7.如果关于x 的方程240x x m 有两个不相等的实数根,那么在下列数值中,m 可以取的值是第6题图A .3B .5C .6D .88.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A .15°或30°B .30°或45°C .45°或60°D .30°或60°9.乐器上的一根琴弦AB =60厘米,两个端点A ,B 固定在乐器板面上,支撑点C 是AB 的黄金分割点(AC >BC ),则AC 的长为A .(90-305)厘米B .(30+305)厘米C .(305-30)厘米D .(305-60)厘米 10.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是A. B.C.D.11.若x 1,x 2是方程22210x mx m m 的两个根,且12121x x x x ,则m 的值为A .﹣1或2B .1或﹣2C .﹣2D .112.如图,点E 为边长为2的正方形ABCD 的对角线上一点,BE =BC ,点P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值为 A .22 B .12C .32D .2二、填空题(每小题4分,共24分)13.一元二次方程(1+3x )(x -3)=22x +1化为一般形式为 . 14.若3ac e bd f,且b +d +f =4,则a +c +e = .第8题图第10题图第12题图15.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE = . 16.现定义运算“★”,对于任意实数a,b ,都有a ★b =23aa b ,如:3★5=32-3×3+5,若x ★2=6,则实数x 的值是 . 17.如图,矩形ABCD 的边长AB =3cm ,BC =6cm.某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动,同时动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动.若以A 、M 、N 为顶点的三角形与△ACD 相似,则运动的时间t 为 秒.18.如图,已知正方形ABCD 边长为1,∠EAF =45°,AE =AF ,则有下列结论: ①∠1=∠2=22.5°;②点C 到EF 的距离是1-2; ③BE +DF >EF ;④△ECF 的周长为2. 其中正确的结论是 . (写出所有正确结论的序号)三、解答题(本题共7道大题 满分60分) 19. 解方程(每小题5分,本题满分10分)(1)03722=+-x x (2)()2224x x -=-第15题图第17题图第18题图20.(本题满分6分)如图,已知AB BC AC AD DE AE,求证:△ABD∽△ACE.21.(本题满分8分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(-1,2)、B(2,1)、C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2,并求出△A2B2C2的面积.第20题图22.(本题满分8分)在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m ,再从乙袋中摸出一个小球,记下数字为n .(1)请用列表或画树状图的方法表示出所有(m ,n )可能的结果;(2)若m ,n 都是方程25+6=0x x 的解时,则小羽获胜;若m ,n 都不是方程25+6=0x x 的解时,则小利获胜,你认为这个游戏规则对二人公平吗?请说明理由.23.(本题满分8分)如图,在▱ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 的相同长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点E ,连接EF ,则所得四边形ABEF 是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF 是菱形;第21题图(2)若菱形ABEF 的周长为16,AE =43,求∠C 的大小.24.(本题满分10分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的8017. (1)求配色条纹的宽度;第23题图(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.第24题图25.(本题满分10分)如图,正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕点M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.第25题图答案13. 2840x x ; 14.12 ; 15.4.5;16. -1或4; 17. 2.4或1.5; 18.①②④. 19.解:(1)∵2,7,3a b c ……………………………………………………2分224(7)423250bac ………………………………………3分∴127254x ………………………………………………………………4分∴x 1=21,x 2=3…………………………………………………………………5分 (2)()2224x x -=-22)2(2)x x (………………………………………………………………7分2)220x x (……………………………………………………………9分∴x 1=4,x 2=2 ……………………………………………………………………10分20.证明:∵AB BC ACADDEAE, ∴△ABC ∽△ADE .………………………………………………………………2分 ∴∠BAC =∠DAE .∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE . …………………4分 又∵AB AC AD AE ,即ABADAC AE………………………………………………5分 ∴△ABD ∽△ACE ………………………………………………………………6分21.(本题满分8分)解:(1)如图所示,△A 1B 1C 1就是所求三角形………………………………………………3分 (2)如图所示,△A 2B 2C 2就是所求三角形.……………………………………………6分 ∵A (-1,2),B (2,1),C (4,5),△A 2B 2C 2与△ABC 位似,且相似比为2,∴A 2(-2,4),B 2(4,2),C 2(8,10), ∴S △A B C=8×10-12×6×2-12×4×8-12×6×10=28………………………………………8分22.(本题满分8分)解:(1)树状图如图所示:……3分结果:(1,2)(1,3)(1,4) (2,2)(2,3)(2,4) (3,2)(3,3)(3,4) (4,2)(4,3)(4,4)…4分(2)该游戏规则公平. ……………………………………………………………5分 ∵m ,n 都是方程25+6=0xx 的解,∴m =2,n =3,或m =3,n =2,…………………………………6分 由树状图得:共有12个等可能的结果,m ,n 都是方程25+6=0xx 的解的结果有2个,m ,n 都不是方程25+6=0xx 的解的结果有2个,小羽获胜的概率为=,小利获胜的概率为=,……………………7分∴小羽、小利获胜的概率一样大,该游戏规则公平.………………………………8分23.(本题满分8分)解:(1)由作图知,连接BP ,FP ,则AB =AF , AP =AP , BP =FP ∴△ABP ≌△AFP (SSS ),……………………2分 ∴∠EAB =∠EAF ,∵AD ∥BC ,∴∠EAF =∠AEB =∠EAB ,∴BE =AB =AF . ∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AB =BE ,∴平行四边形ABEF 是菱形……………4分 (2)连接BF ,交AE 于G.∵菱形ABEF 的周长为16,AE =43,∴AB =BE =EF =AF =4,AG =12AE =23,∠BAF =2∠BAE ,AE ⊥BF . ………6分在Rt △ABG 中,∵∠AGB =90°,∴BG =2,BF =4,∴△ABF 是等边三角形,∴∠BAG =30°,∴∠BAF =2∠BAE =60°.∵四边形ABCD 是平行四边形,∴∠C =∠BAF =60°………………………………8分第23题图24.解:(1)设配色条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,…………………………………………………3分解得:x1=(不符合,舍去),x2=.…………………………………5分答:配色条纹宽度为米.…………………………………………………6分(2)条纹造价:×5×4×200=850(元)……………………………………7分其余部分造价:(1﹣)×4×5×100=1575(元)………………………8分∴总造价为:850+1575=2425(元)…………………………………………9分答:地毯的总造价是2425元.………………………………………………10分25.证明:(1)在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,AB=BC∠ABC=∠CBM=CP∴△ABM≌△BCP(SAS).…………………………1分∴AM=BP,∠BAM=∠CBP,………………………2分∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP.…………………………………………3分∵AM并将线段AM绕点M顺时针旋转90°得到线段MN,∴AM⊥MN,且AM=MN,又∵AM BP,AM=BP,∴MN∥BP,MN=BP……………………………………………………………………4分∴四边形BMNP是平行四边形;………………………………………………………5分(2)解:BM=MC.……………………………………………………………………6分理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,……………………………………………………………………7分又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,∴AB AMMC MQ,…………………………………………………………………………8分∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴AB AMBM MQ,∴AB ABMC BM,∴BM=MC………………………………………………………………………………10分第25题图。

2024—2025学年度第一学期期中学业质量检测九年级数学试题

2024—2025学年度第一学期期中学业质量检测九年级数学试题

2024—2025学年度第一学期期中学业质量检测九年级数学试题(满分分值: 150分 考试时间: 120分钟)一、选择题(本大题共8小题,每小题3分,共24分. 在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上........) 1.下列方程中,是关于x 的一元二次方程的是 ( ▲ ) A. 2x=72.下列图形中,既是中心对称图形、又是轴对称图形的是 ( ▲ )3.O 是ABC ∆的内切圆,则点O 是ABC ∆的( )A .三条边的垂直平分线的交点B .三条中线的交点C .三条角平分线的交点D .三条高的交点4.已知O 的半径为3,点P 在O 外,则OP 的长可以是( )A .1B .2C .3D .45.习近平总书记强调:“青年一代有理想、有本领、有担当,国家就有前途,民族就有希望”.如图①是 一块弘扬“新时代青年励志奋斗”的扇面宣传展板,该展板的部分示意图如图②所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3OA m =, 1.5OB m =,则阴影部分的面积为( )A .294m πB .23mC .2174m πD 225π 6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .10080100807644x x ⨯--=B .2(100)(80)7644x x x --+=C .(100)(80)7644x x --=D .10080356x x +=7.如图,在ABC ∆中,90C ∠=︒,25B ∠=︒.若以点C 为圆心,CA 长为半径的圆与AB 交于点D ,则AD 的度数为( )A .25︒B .50︒C .60︒D .65︒8.有两个一元二次方程:2:0A ax bx c ++=,2:0B cx bx a ++=,其中 a-c ≠0, 下列四个结论中,错误的是 ( )A. 如果方程A 有两个不相等的实数根,那么方程B 也有两个不相等的实数根;B. 如果方程A 两根符号相同,那么方程B 的两根符号也相同;C. 如果2是方程A 的一个根,那么12是方程B 的一个根D. 如果方程A 和方程B 有一个相同的根,那么这个根必是1.二、填空题 (本大题共10小题,每小题3分,共30分. 不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.写出一个解为2的一元二次方程: ▲ .10.已知圆锥的底面半径是1cm ,母线长为3cm ,则该圆锥的侧面积为 2cm .11.如图,四边形ABCD 内接于O ,110A ∠=︒,则C ∠= ︒,依据是 .12.如图,点A ,B ,C 在O 上,54BAC ∠=︒,则BOC ∠的度数为 .13.如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为 厘米.14.某药品由原售价连续两次降价,每次下降的百分率相同,每瓶零售价由150元降为96元,那么下降的百分率是 .15.如图,点O 是正五边形ABCDE 的中心,连接BD 、OD ,则BDO ∠= ︒.16.若x m =是一元二次方程2310x x ++=的一个解,则22023412m m --的值为 .17.如图,点A ,B ,C 在O 上,90AOC ∠=︒,22AB =,1BC =,则O 的半径为 .18.如图,在平面直角坐标系xOy 中,O 的半径是1.过O 上一点P 作等边三角形PDE ,使点D ,E 分别落在x 轴、y 轴上,则PD 的取值范围是 .三、解答题 (本大题共9小题,共96分. 请在答题卡上指定区域内作答. 解答时写出必要的文字说明、证明过程或演算步骤...............)19. (本题满分8分) 解方程:20.关于x的方程22(2)0+++=.x m x m(1)求证:方程总有两个实数根;(2)请你选择一个合适的m的值,使得方程的两个根都是整数,并求此时方程的根.21.已知ABC∆在平面直角坐标系中位置如图.(1)利用格点画出ABC∆的外接圆P,并写出圆心P的坐标为.(2)画出ABC';∆绕点C按顺时针方向旋转90︒后的△A B C'(3)求(2)中点A旋转到点A'所经过的路线长(结果保留)π.22.如图,在ABCBAC∠=︒.∆中,90(1)请你画一个半圆使得圆心O在边BC上,并与AB、AC都相切(保留画图痕迹);(2)已知4AB=,3AC=,求(1)中所画圆的半径.23.如图,在Rt ABCBAC∠=︒,BD是角平分线,以点D为圆心,DA为半径的D与AC相交∆中,90于点E(1)求证:BC是D的切线;(2)若5BC=,求CE的长.AB=,1324.某水果商场销售一种高档水果,若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,(1) 若每千克涨价2元,则每天可售▲千克.(直接写出答案);(2) 现该商场要保证这种水果每天盈利6000元,且尽可能减轻顾客负担,那么每千克应涨价多少元?(3) 商场每天能盈利7000元吗? 为什么?(4) 请直接写出商场这种水果每天盈利的最大值为▲元.25.“转化”是一种重要的数学思想,回顾我们学过的各类方程的解法:解二元一次方程组,把它利用消元法转化为一元一次方程;解一元二次方程,利用直接开平方法或因式分解法,将它转化为解两个一元一次方程;解分式方程,利用去分母的方法,将它转化为整式方程,由于“去分母”可能产生增根,所以解分式方程必须检验,用“转化”的数学思想,我们还可以解一些新的方程,例如:解无理方程12x+=解:方程两边同时平方,得:14x+=,解这个一元一次方程,得:3x=,检验:当3=+==右边,x=时,左边312所以,3x=是原方程的解.通过“方程两边平方”,有可能产生增根,必须对解得的根进行检验.通过上面的学习,请解决以下两个问题:(1)解无理方程:23+=;x x(2)如图,在平面直角坐标系xOy中,点(5,3)B,90+=,求点C的坐标.OC BCOAB B∠=∠=︒,726.由两个全等的Rt△ABE和构成如图①所示的四边形ABCD,已知直角三角形的直角边长分别为m、n,斜边长为q.分别以m、q、n为二次项系数、一次项系数和常数项构造的一元二次方程称为勾股方程.(1) 方程(填“是”或“不是”)“勾股方程”;(2)若勾股方程220mx qx n++=有两个相等的实数根,求mq的值.27.某数学活动小组对一个数学问题作如下探究:(1)【问题发现】如图①, 正方形ABCD的四个顶点在⊙O上, 点E在AB上, 连接AE、BE、DE, 若在 DE上取一点F, 使得DF=BE, 连接AF, 发现与△ABE全等,请说明理由;(2)【变式探究】如图②, 正方形ABCD的四个顶点在⊙O 上, 若点E在AD上,过点A作AG⊥BE, 探究线段BE、DE 、AG间的数量关系, 并说明理由;(3)【结论运用】如图③,在 Rt△ABC中, ∠ACB=90°,∠ABC=60°,BC=4.点D为AB边上一动点, 连接CD, 点E为CD边上一动点, 连接BE, 以BE为边, 在BE右侧作等边△BEF,连接CF. 当点 D从AB的四等分点(靠近点B) 出发,向终点A 运动,同时,点E从点 D 出发,向终点C运动,运动过程中,始终保持∠BEC=90°,则CF的最小值为▲,点F所经过的路径长为▲ .(直接写出结果)。

九年级上学期数学期中考试卷及答案精选全文

九年级上学期数学期中考试卷及答案精选全文

可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。

13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。

山东省泰安市新泰市2023-2024学年九年级上学期期中数学试题(含答案)

山东省泰安市新泰市2023-2024学年九年级上学期期中数学试题(含答案)

九年级上学期期中检测数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,满分150分.考试时间120分钟.注意事项:1.答题前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.2.考试结束后,监考人员将本试卷和答题卡一并收回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1的值等于()A .BC .3D2.若点是反比例函数图象上一点,则此函数图象一定经过点( )A .B .C .D .3.如图,在Rt 中,于点,下列结论正确的是()A .B .C .D .4.已知二次函数,则关于该函数的下列说法正确的是( )A .该函数图象与轴的交点坐标是B .当时,的值随值的增大而减小C .当取0和2时,所得到的的值相同D .当时,有最大值是15.已知三个点在反比例函数的图象上,其中,下列结论中正确的是()A .B .C .D .60︒32(2,3)ky x=(2,3)-(3,2)-(1,6)-(1,6)--ABC △90,BAC AD BC ∠=︒⊥D sin CD C AC=sin AB C BC=sin AD C DC=sin AD C AB=2(1)1y x =-+y (0,1)1x >y x x y 1x =y ()()()112233,,,,,x y x y x y 6y x=1230x x x <<<312y y y <<123y y y <<132y y y <<213y y y <<6.如图,一次函数与反比例函数的图象交于点,过点作轴于点,连接OP ,下列结论错误的是()A .B .C .的面积是3D .点在上,当时,7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为31°,缆车速度为每分钟40米,从山脚下A 到达山顶B 缆车需要15分钟,则山的高度BC 为()A .米B.米C .米D .米8.已知二次函数的图象如图所示,则一次函数的图象大致为()A .B .C .D .9.函数的共同性质是( )A .它们的图象都经过原点B .它们的图象都不经过第二象限C .在的条件下,都随的增大而增大D .在的条件下,都随的增大而减小10.如图,一辆小车沿着坡度为的斜坡向上行驶了100米,则此时该小车上升的高度为()1y kx =+6(0)y x x=>(2,)P t P PA x ⊥A 3t =1k =OAP △(,)B m n 6(0)y x x=>2m >n t >600si *n 31︒600tan 31︒600*tan 31︒600sin 31︒2(0)y ax bx a =+≠(0)y ax b a =+≠212,,y x y y x x=-==-0x >y x 0x >y x 1:i =A .50米B .米C .米D .100米11.如图,在中,,则的长为( )A .3BC .D .412.新定义:在平面直角坐标系中,对于点,当点满足时,称点是点的“关联点”.已知点,有下列结论:①点都是点的“关联点”;②若直线上的点是点的“关联点”,则点的坐标为;③抛物线上存在两个点是点的“关联点”;其中,正确结论的个数是( )A .0B .1C .2D .3第Ⅱ卷(非选择题 102分)二、填空题(每小题4分,共24分,只要求填最后结果)13.若则锐角∠A =_______°.14.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强p (kPa )与汽缸内气体的体积V (mL )成反比例,p 关于V 的函数图象如图所示,若压强由75kPa 加压到100kPa ,则气体体积压缩了_______mL .15.如图,在Rt △ABC 中,∠ABC =90°,BD ⊥AC 于点D ,AC =10,,那么AD =_______.ABC △35,2,sin 5AB BC B ===AC ()11,P x y ()22,Q x y ()12122x x y y +=+()22,Q x y ()11,P x y 1(1,0)P 12(4,10),(2,4)Q Q --1P 2y x =+A 1P A (0,2)223y x x =--1P 1cos 2A =3cos 5C =第15题图16.如图,点A 是反比例函数的图象上的一点,过点A 作AB ⊥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为6,则k 的值是_______.第16题图17.某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降_______元.18.如图,抛物线与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式的解集是_______.三、解答题(本题共7个小题,共78分,解答题写出文字说明、证明过程或推演步骤)19.(9分)如图,在△ABC 中,BD ⊥AC ,AB =6,,∠A =30°.①求BD 和AD 的长;ky x=2y ax c =+2ax mx c n -+>AC =②求tan C 的值.20.(10分)求二次函数在范围内的最小值和最大值.21.(10分)在一座小山山顶建有与地平线垂直的电视发射塔AB .为测量该小山的铅直高度,某数学兴趣小组在地平线上的C 处测得电视发射塔顶A 的仰角为45°,后沿地平线向山脚方向行走20米到达D 处,在D 处测得电视发射塔的底部B 的仰角为30°,如图,若电视发射塔的高度AB 为60米,测角仪的高度忽略不计,求小山的铅直高度(精确到1米))22.(10分)如图,一次函数y =ax +b 与反比例函数的图象交于点A (1,3),B (m ,-1).(1)求反比例函数和一次函数的表达式.(2)根据图象,当x 取何值时,一次函数的值大于反比例函数的值?23.(12分)2023年杭州亚运会在我国成功举办.如图,城市广场上一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,,从A 处向外喷出的水流在各个方向上沿形状相同的抛物线路径落下,王芳同学根据题意在图中建立如图所示的坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式是y =ax 2+bx +c (x >0),已知水流的最高点到OA 的水平距离是,最高点离水面是.(1)求二次函数表达式;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?24.(13分)小明在阅读了九上数学课本21页“读一读”《换一个角度看》后,组织了数学建模小组在综合实践课上探究面积为4,周长为m 的矩形问题.发现矩形的面积与周长存在一定的关系,在解决此问题时既可以采用“代数”的方法解决,但也可以从“图形”的角度来研究它.构建模型223y x x =--03x ≤≤ 1.41= 1.73=ky x=1m 2OA =1m 49m 16(1)当m =10时,设矩形的长和宽分别为x ,y ,则xy =4,2(x+y )=10,满足要求的(x ,y )可以看成反比例函数(x >0)的图象与一次函数y =-x +5在第一象限内的交点坐标,从图①中观察到,交点坐标为_______,即满足当矩形面积为4时,周长是10的矩形是存在的;问题探究(2)根据(1)的结论,当xy =4,2(x +y )=m 时,满足要求的(x ,y ),可以看成反比例函数(x >0)的图象与一次函数的_______交点坐标,而此一次函数图象可由直线y =-x 平移得到,请在图②的平面直角坐标系中直接画出直线y =-x .当直线平移到与反比例函数的图象有唯一交点时,周长m 的值为_______;拓展应用(3)写出周长m 的取值范围.图① 图②25.(14分)如图,在平面直角坐标系中,直线l 与x 轴交于点A (6.0),与轴交于点B (0,-6),抛物线经过点A ,B ,且对称轴是直线x =1.(1)求直线l 的解析式;(2)求抛物线的解析式;(3)点P 是直线l 下方抛物线上的一动点,过点P 作PC ⊥x 轴,垂足为C ,交直线l 于点D ,过点P 作PM ⊥l ,垂足为M的最大值及此时P 点的坐标.九年级上学期期中检测数学参考答案1.C 2.D 3.B 4.C 5.C 6.D 7.A 8.C 9.D 10.A 11.B 12.D 13.60 14.20 15. 16. 17.5 18.x <-1或x >319.(9分)解:(1)∵BD ⊥AC ,∠ADB =90°,在Rt △ADB 中,AB =6,∠A =30°,4y x=4y x=PD +32512-∴,;(2),在Rt 中,20.(10分)解:,∴抛物线的对称轴为x =1,顶点坐标为(1,4),∵,∴当x =1时,取得最小值y =-4;当x =3时,取得最大值y =021.(10分)解:延长AB 交直线CD 于点E ,由题意得,CD =20米,AB =60米,∠ACE =45°,∠BDE =30°,∠AEC =90°,设BE =x 米,则AE =(60+x)米,在Rt △BDE 中,,经检验,是原方程的解且符合题意,∴米,在Rt △ACE 中,∵∠ACE =45°,∴AE =CE ,∴,解得.∴小山的铅直高度约为55米.22.(10分)解:(1)将代入得:,则反比例解析式为,将代入,得:,,将与坐标代入中,得:,解得:,则一次函数解析式为;(2)观察图象,当或时,一次函数的值大于反比例函数的值.23.(12分)解:(1)水流的最高点到OA 的水平距离是,最高点离水面是,132BD AB ==AD ∴==CD AC AD =-=-=BCD △tan BD C CD ∠===2223(1)4y x x x =--=-- 03x ≤≤tan 30BE x DE DE ︒===DE =DE =()20CE =6020x +=55x =≈(1,3)A ky x=3k =3y x =(,1)B m -3y x=3m =-(3,1)B ∴--A B y ax b =+331a b a b +=⎧⎨-+=-⎩12a b =⎧⎨=⎩2y x =+30x -<<1x > 1m 491m,m 162OA =拋物线的顶点坐标为故设抛物线的解析式为,,解得,拋物线的解析式为,拋物线的解析式为.(2)令得到,解得(舍去),故水池的半径至少为1米.24.(13分)解:(1)根据图象可得,交点为,故答案为:;(2),当时,,,解得,反比例函数的图象与一次函数有一个交点,故答案为:,8;(3)由(2)可得.图②25.(14分)解:(1)设直线的解析式为,∵直线l 与x 轴交于点A (6.0),与y 轴交于点B (0,-6),,解得:,∴191,,0,4162A ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭219416y a x ⎛⎫=-+ ⎪⎝⎭211902416a ⎛⎫∴=-+ ⎪⎝⎭1a =-∴219416y x ⎛⎫=--+ ⎪⎝⎭∴21122y x x =-++0y =211022x x -++=12112,x x ==(1,4)(4,1)、(1,4)(4,1)、2()x y m += 1, 2y x m ∴=-+142x x m -+=21402x mx -+=211604m ∴∆=-=8m =± 4(0)y x x =>12y x m =-+8,m ∴=12y x m =-+8m ≥l (0)y mx n m =+≠606m n n +=⎧∴⎨=-⎩16m n =⎧⎨=-⎩直线的解析式为;(2)设抛物线的解析式为,抛物线的对称轴是直线,,抛物线经过点,解得:,抛物线的解析式为;(3)∵A (6,0),B (0,-6),∴OA =OB =6,在△AOB 中,∠AOB =90°,∴∠OAB =∠OBA =45°∵PC ⊥x 轴,PM ⊥l ,∴∠PCA =∠PND =90°,在Rt △ADC 中,∵∠PCA =90°,∠OAB =45°,∴∠ADC =45°,∴∠PDM =∠ADC =45°,在Rt △PMD 中,∠PMD =90°,∠PDM =45°,设点,,当时,有最大值是最大,的最大值为,当时,的最大值为,此时点.∴l 6y x =-2()(0)y a x h k a =-+≠ 1x =2(1)y a x k ∴=-+ 250,,6a k A B a k +=⎧∴⎨+=-⎩14254a k ⎧=⎪⎪⎨⎪=-⎪⎩∴2125(1)44y x =--sin 45,, 2 PD. PM PM PD PD PD ∴︒=∴=+=2212511(1)6,4442y x x x =--=--∴ 211,6,(,6)42P t t t D t t ⎛⎫--∴- ⎪⎝⎭22211131966(3)424244PD t t t t t t ⎛⎫∴=----=-+=--+ ⎪⎝⎭10,4-<∴ 3t =PD 94PD +PD +923t =211112121,6936,3,424244t t P ⎛⎫--=⨯-⨯-=-∴- ⎪⎝⎭PD +92213,4P ⎛⎫- ⎪⎝⎭。

2023-2024学年湖北省武汉市青山区九年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年湖北省武汉市青山区九年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年湖北省武汉市青山区九年级上学期期中数学质量检测模拟试题第I 卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.一元二次方程223x x -=化成一般形式后,二次项系数和常数项分别是()A.2,3B.2,-3C.-2,-3D.2,-12.搭载神舟十六号载人飞船的长征二号F 遥十六运载火箭于2023年5月30日成功发射升空,景海鹏、朱杨柱、桂海潮3名航天员开启“太空出差”之旅,展现了中国航天科技的新高度,下列图标中,其文字上方的图案是中心对称图形的是()A. B.C. D.3.用配方法解一元二次方程2890x x ++=,此方程可化为()A.()249x +=- B.()247x +=- C.()2425x += D.()247x +=4.将抛物线2y x =向下平移3个单位长度,再向左平移5个单位长度,得到新抛物线的解析式为()A.()235y x =-+ B.()253y x =+-C.()235y x =+- D.()253y x =-+5.一元二次方程2250x x --=的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定6.如图,点A ,B ,C 在O 上,若90C ∠=︒,则ABO ∠的度数为()A.30°B.40°C.50°D.60°7.如图,在64⨯的方格纸中,格点ABC △(三个顶点都是格点的三角形)经过旋转后得到格点DEF △,则其旋转中心是()A.格点MB.格点NC.格点PD.格点Q8.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降价的百分率为x ,根据题意列出的方程是()A.()2250013200x += B.()2500123200x +=C.()2320012500x -= D.()3200122500x -=9.如图,四边形ACBD 是O 内接四边形,延长BC ,DA 交于点E ,延长CA ,BD 交于点F ,30E F ∠=∠=︒,CD 是ACB ∠的角平分线,若CD =AF 的长为()+ B.2+ C.3 D.410.关于x 的二次函数2221y x mx m m =-+++,在12x -≤≤时的最大值与最小值的差大于15,则m 的取值范围是()A.5m > B.2m <-或3m >C.23m -<< D.2m <-第II 卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卡的指定位置.11.点()4,5A -关于原点成中心对称的点的坐标为_______.12.已知一元二次方程2280x x --=的两根为1x ,2x ,则12x x +=_______.13.如图,AB 为O 的直径,弦CD AB ⊥于点E ,若6CD =,2EB =,则OA 的长为_______.14.如图,在一幅长为60cm ,宽为40cm 的亚运会吉祥物图画的四周镶一条相同宽度的纸边,制成一幅矩形挂图,若要使整个挂图的面积是23500cm ,则纸边的宽为________cm.15.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()1,0x ,()2,0,且101x <<.下列四个结论:①0abc <;②0a b c ++>;③230b c +<;④不等式22cax bx c x c ++<-+的解集为02x <<.其中一定正确的是_________.(填写序号).16.如图,在菱形ABCD 中,120BAD ∠=︒,E 、F 分别为AD 、CD 边上的点,30EBF ∠=︒,CF m =,AE n =.则EF =_______.(用含m ,n 的代数式表示)三、解答题(共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分8分)解方程.2240x x --=18.(本题满分8分)如图,在ABC △中,108BAC ∠=︒,将ABC △绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在边BC 上,且AB CB ''=,求C '∠的度数.19.(本题满分8分)某商店以每件20元的价格购进一批商品,若每件商品售价a 元,则每天可卖出()80010a -件,如果商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大......,求每件商品的售价是多少元?20.(本题满分8分)如图,四边形ABCD 内接于O ,AC 为O 的直径,B 为 AC 的中点.(1)试判断ABC △的形状,并说明理由;(2)若6AD CD +=,求BD 的长.21.(本题满分8分)如图,是由边长为1的小正方形组成的77⨯网格,每个小正方形的顶点叫做格点,BC ,AC 是O 的两条弦,且点A ,B ,C 都是格点,点D 是O 与格线的交点.仅用无刻度的直尺在给定的网格中完成画图,画图过程用虚线表示,画图结果用实线表示.图1图2(1)在图1中,先画出圆心O ,再画 AC 的中点E ;(2)在图2中,先在O 上画点F (异于点C ),使BF BC =,再过点D 作//DG CF 交O 于点G.22.(本题满分10分)要修建一个圆形喷水池,在池中心O 处竖直安装一根水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之上下平移,水柱落地点A 与点O 在同一水平面,安装师傅调试发现。

福建省宁德市福鼎市2024届九年级上学期期中质量检测数学试卷(含答案)

福建省宁德市福鼎市2024届九年级上学期期中质量检测数学试卷(含答案)

2023—2024学年第一学期九年级期中质量检测数学试题(考试时间:120分钟满分:150分)第Ⅰ卷一、选择题:每小题4分,共40分.每小题只有一个正确的选项,请用2B铅笔在答题卡的相应位置填涂.1.下列方程中,是一元二次方程的是( )A.B.C.D.2.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为450次,凸面向下的次数为550次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为( )A.0.45B.0.50C.0.55D.0.753.已知,则下列比例式成立的是( )A.B.C.D.4.如图,要使平行四边形成为矩形,需要添加的条件是()A.B.C.D.5.下列各组图形中一定是相似图形的是()A.两个等边三角形B.两个矩形C.两个直角三角形D.两个等腰三角形6.下列各组图形中的两个三角形均满足,这两个三角形不是位似图形的是()A.B.C.D.7.一元二次方程的根的情况是( )A.有两个相等的实数根B.只有一个实数根C.有两个不相等的实数根D.没有实数根8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.D.9.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示以线段为边作正方形,取的中点,连接,延长至,使得,以为边作正方形,则点即是线段的黄金分割点.若记正方形的面积为,矩形的面积为,则与的比值是()A.B.C.D.10.如图,在矩形中,,E,G分别是边的五等分点,F,H分别是边的三等分点,若四边形的面积为1,则矩形的面积是()A.B...第注意事项:.用毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效..如图,两条公路,互相垂直,公路的中点与点被湖隔开,若测得的长为,则,两点间的距离为.12.两个相似三角形面积比为,则对应高的比为13.如图,,,则14.一个不透明的箱子里装有三个完全相同的小球,分别标有数字放回,再从中随机摸出一个,则两次摸出的小球数字和为奇数的概率为15.已知a,b是方程的两根,则的值为16.如图,在矩形中,,,M为对角线上一点(不与,连接,过作交边于点N,连接.若,则三、解答题:本题共17.解方程:18.如图,已知四边形ABCD小丽同学准备测量学校教学楼的高度.镜,镜子与教学楼的距离为24米,然后在射线上调整自己与镜子的距离,直到刚好能从镜子中看,此时她与镜子的距离为米,若小丽的眼睛距离地面高度为米,请你帮小丽利用这些数据求出教学楼的高度.(1)如图1,在正方形中,点F是上的一点,将绕点旋转,使与重合,此时点的对应点E在的延长线上,则四边形“直等补”四边形;不是”)(2)如图2,已知四边形是“直等补”四边形,,,作于点作于点F.试探究线段,和的数量关系,并说明理由;22.第19届亚运会于2023年9月23日至10月8日在杭州举行,杭州亚运会的三个吉祥物分别取名月份起,商场决定降价促销回馈顾客,经调查发现,该吉祥物挂坠每降价元,月销售量就会增加为圆心,大于的长为半径在两侧画弧,四段弧分别交于点连接,作射线;为圆心,的长为半径画弧,交射线于点连接,交于点即为的三等分点(即)求证:四边形是菱形;为的三等分点;(3)尺规作图:如图2,请利用尺规再设计一种方法,作线段的三等分点.(保留作图痕迹)24.已知关于x的方程有两个实数根,其中.(1)若,求的值;(2)一次函数的图像上有两点,若,求m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为和,求该直角三角形的面积.25.在中,,,,如图1,将绕点A顺时针旋转某个角度得到,其中D是点B的对应点,E是点C的对应点,连接,.(1)求证:;(2)如图2,当点D在线段上时,求线段的长;(3)连接,,在旋转过程中,是否为定值?若是,求出这个定值,若不是,请说明理由.参考答案与解析1.B2.A3.C4.B5.A6.B7.C8.D9.D10.C11.12.13.614.15.716.##17.,.解:∵,∴,则,即,∴,∴,.18.见解析证明:∵四边形ABCD是菱形,,∴△ABE≌△ADF(∴BE=DF..教学大楼的高度是米由题意得,,,∴,∴,即,解得:,答:教学大楼的高度是米.(1)(2)1)解:从北校区随机抽取一人是女生的概率;2)解:列表如下:由表可知,共有9种等可能结果,其中抽取的两位反诈知识宣传负责人恰好是一男一女的有5种结果,所以抽取的两位反诈知识宣传负责人恰好是一男一女的概率为.21.(1)是(2),理由见解析(1)∵将绕B点旋转,使与重合,此时点F的对应点E在的延长线上,∴,,∵四边形是正方形,∴,∴,∴,即,∴,∵,,∴四边形是“直等补”四边形.故答案为:是(2)∵四边形是“直等补”四边形,,,∴,,∴,∵,,∴,∴四边形是矩形,∴,,∵,,∴,∵,,∴,∴,∵,∴.22.(1)该款吉祥物4月份到6月份销售量的月平均增长率为;(2)应将每件的售价定为12元,(1)解:设该款吉祥物4月份到6月份销售量的月平均增长率为a,由题意得,,解得:,(舍),答:该款吉祥物4月份到6月份销售量的月平均增长率为;(2)解:设每件吉祥物挂坠降价x元,则每件的销售利润为元,由题意得,,整理得:,解得:,(舍),元,答:应将每件的售价定为12元.23.(1)见解析(2)见解析(3)见解析(1)证明:由作图可得,∴四边形是菱形;(2)由(1)得,.由作图可知:,∴,.∴,,,∴,,即,(3)如图,任意作一条射线,截取,连接,分别作,即可得出线段的三等分点、,∴点N点G是所求作的.24.(1)(2)(3)该直角三角形的面积为30或24(1)当时,方程为,,,即;(2)将代入可得,又,故,,即,,,,,;(3)∵直角三角形两直角边为整数,为平方数,不妨令(为正整数),,,,当①∴,解得(不合题意舍去);当②,解得,∴方程,,则斜边为13,即;当③,解得,∴方程,,则斜边为10,即,综上所述:该直角三角形的面积为30或24.25.(1)见解析(2)(3)是定值,定值为50(1)证明:∵将绕点A顺时针旋转得到,∴,,,∴,,即,,∴;(2)解:法一:如图,过点A作于F,∵,,,∴,∵将绕点A顺时针旋转得到,∴,,,∵,∴,∴,∵∴,∵,∴,即∴;法二:如图,过点A作于F,∵,∴,∵,∴,∴即∴;∵,∴.(3)解:如图,设和相交于点G,和相交于点H,∵,∴,∵,∴,∴,∴,∵,∴∵,∴∴是定值,定值为50.。

河南省南阳市宛城区2023-2024学年九年级上学期期中数学试题(含答案)

河南省南阳市宛城区2023-2024学年九年级上学期期中数学试题(含答案)

2023年秋期期中质量评估检测九年级数学试题卷注意事项:1.本试卷满分120分,考试时间100分钟.2.答题前,考生务必先将自己的姓名、考号、学校等填写在试题卷和答题卡相应的位置.3.考生作答时,将答案涂、写在答题卡上,在本试题卷上答题无效,4.考试结束,将答题卡和试题卷一并交回.一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1.下列关于的方程中,一定是一元二次方程的为( )A .B .C .D .2.下列二次根式中,最简二次根式是( )ABCD3.下列各组中的四条线段成比例的是( )A .B .C .D .4.下列运算正确的是()AB .C . D5.关于的方程的根的情况是( )A .有两个相等实数根B .有两个不相等实数根C .没有实数根D .有一个实数根6.在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点与成位似关系,则位似中心的坐标为( )A .B .C .D .x 2220x xy y ++=2230x x -+=210x x-=20ax bx c ++=4,6,5,10a b c d ====3,2,a b c d ====2,3,4,1a b c d ====2,a b c d ====+=3-=11÷==x 2320x kx --=ABC △DEF △()1,0-()0,0()0,1()1,07.若关于的方程配方后得到方程,则的值为( )A .B .0C .3D .98.如图,在四边形中,,则添加下列条件后,不能判定和相似的是()A .平分 B .C.D .9.在毕业季,3班同学互赠一寸相片留念,据统计,全班送出的相片共计2256张,则这个班有同学( )A .45位B .46位C .47位D .48位10.如图,在等边三角形中,是边上一点,且是边上一动点(两点均不与端点重合),作交边于点.若,当满足条件的点有且只有一个时,则的值为()A .2B .2.5C .3D .4二、填空题(每小题3分,共15分)11有意义,则的取值范围是____________.12.若是一元二次方程的根,则代数式的值为____________.13.用一个的值说明等式”不成立,这个的值可以是____________.14.如图,在某小区内拐角处的一段道路上,有一儿童在处玩要,一辆汽车从被楼房遮挡的拐角另一侧的处驶来(与相交于点),已知米,米,米,米,则汽车从处前行的距离____________米时,才能发现处的儿童.x 260x x c ++=2(3)2x c +=c 3-ABCD ADC BAC ∠=∠ADC △BAC △CA BCD ∠DAC ABC ∠=∠AC CD BC AC =AD CDAB AC=ABC 4,AB D =AB 1,BD P =BC D P 、60,DPE PE ∠=︒AC E CE a =P a x m 2210x x --=22m m -x x =x C A ,,CM DM BD DM BC ⊥⊥DM O 4OM =5CO =3DO =AO =A AB =C15.如图,中,,,点分别为上的动点,将沿折叠,使点们对应点恰好落在边上,当与相似时,的长为____________.三、解答题(共75分)16.(10分)计算:(12.17.(9分)解方程:(1);(2).18.(9分)已知关于的一元二次方程,其中分别为三边的长.(1)如果是方程的根,试判断的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断的形状,并说明理由:(3)如果是等边三角形,试求这个一元二次方程的根.19.(9分)如图,四边形为菱形,在的延长线上,.Rt ABC △90,4C AC ︒∠==3BC =P Q 、AB BC 、PQB PQ B D AC APD △ABC △AP -+(-+-2260x x -=2314x x +=x ()()220a c x bx a c +++-=a b c 、、ABC △1x =-ABC △ABC △ABC △ABCD E AC ACD ABE ∠=∠(1)求证:;(2)当时,求的长.20.(9分)为了满足初中学业水平体育与健康考试的需求,某体育用品专卖店从厂家以单价40元进购了一种排球,如果以单价60元出售,那么每月可售出400个,根据销售经验,销售单价每提高1元,销售量相应减少5个.(1)设销售单价提高x 元,则每个排球获得的利润是____________元,这种排球这个月的销售量是____________个;(2)若该专卖店准备在这种排球销售上一月获利10500元,同时又要使顾客得到实惠,则售价应定为多少元?21.(9分)某校项目式学习小组开展项目活动,过程如下:【项目主题】测量旗杆高度【问题驱动】能利用哪些科学原理来测量旗杆的高度?【组内探究】由于旗杆较高,需要借助一些工具来测量,比如自制的直角三角形硬纸板,标杆,镜子,甚至还可以利用无人机,…,确定方法后,先画出测量示意图,然后实地进行测量,并得到具体数据,从而计算旗杆的高度.【成果展示】下面是同学们进行交流展示时的部分测量方案:方案一方案二测量工具标杆,皮尺自制直角三角板硬纸板,皮尺ABC AEB △∽△6,4AB AC ==AE测量示意图及说明说明:线段表示旗杆,小明的眼睛到地面的距离,点都在同一竖直平面内,测点在同一水平直线上,三点在同一直线上.说明:线段表示旗杆,小明的身高,点都在同一竖直平面内,测点与在同一水平直线上,三点与三点分别在同一直线上.之间的距离之间的距离之间的距离的长度测量数据的长度的长度……请同学们根据上述材料.完成下列任务:任务一:根据上述方案及数据,请你选择一个方案,求出学校旗杆的高度.(结果精确到);任务二:(1)小字选择的测工具是镜子和皮尺,图③是该方案的示意图.其中线段表示学校旗杆,请直接写出需要测量长度的线段有哪些?(2)请写出一条利用小字设计的方案进行测量时的注意事项.22.(10分)阅读与思考:阅读下列材料并完成相应的任务.倍根方程如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.例如,一元二次方程的两个根是3和6,该方程可化简为,则方程就是“倍根方程”.任务:(1)请你再写出一个“倍根方程”____________(要求化成一般形式);AB 1.7m CD =A B C D E F 、、、、、F B D 、、A C E 、、AB 1.7m CD =A B C D E F G 、、、、、、D B A C E 、、C F G 、、B D 、16.8m B D 、16.8m D F 、 1.35m EF 0.50m EF 2.60mCE 0.75mAB 0.1m AB x ()200ax bx c a ++=≠()()360x x --=29180x x -+=29180x x -+=(2)研究发现了此类方程的一般性结论:设其中一根为,则另一个根为,因此,比较系数可得,,且,消去可得倍根方程中系数满足的关系式是____________.(3)若是倍根方程,求的值.23.(10分)【综合与实践】如图1,若顺次连接四边形各边中点所得四边形是矩形,则称原四边形为“中点矩形”,即如果四边形的对角线互相垂直,那么这个四边形称为“中点矩形”.图1 图2 图3 图4(1)如图2,在直角坐标系中,已知.①请在图中标出格点位罚(一点即可),使四边形是中点矩形;②写出(1)中点的坐标____________;③通过计算发现中点矩形的两组对边的平方和之间的数趣关系是____________.(2)如图3,以的边为边,向三角形外作正方形及,连接相交于点.判断四边形是否中点矩形?并说明理由;(3)如图4,在中,分别是的中点,连接.当四边形是中点矩形时,直接写出边的长.2023年秋期期中质量评估检测试卷九年级数学参考答案一、1~10BBDDB ACCDD二、11.; 12.-; 13.(任意负数都可以); 14.即5.75; 15.或.三、16.解:(1)原式t 2t ()()222232ax bx c a x t x t ax atx t a ++=--=-+3b at =-22c at =t 20ax bx c ++=,,a b c ()()()2100x mx n m --=≠222mnm n+ABCD EFGH ABCD xOy ()()()4,0,1,2,4,6A B C D ABCD D ABC △AB AC 、ABDE ACFG CE BG 、O BEGC ABC △3,4,BC AC D E ==、AC BC 、AE BD 、ABED AB 1x ≥-1-1-2342582073=-+;(2)原式17.解:(1)方程左边分解因式,得,所以或,得;(2)整理,得,,,即.18.解:(1)是等腰三角形;(若没写判断结果,但后续说明正确,不扣分)理由:是方程的根,,,是等腰三角形;(2)是直角三角形(注:若没写判断结果,但后续说明正确,不扣分);理由:方程有两个相等的实数根,,是直角三角形;(3)当是等边三角形时,,,可整理为,,解得:.19.(1)证明:四边形为菱形,,,;==22⎡⎤=--⎣⎦()1218=--165=-+=()230x x -=0x =30x -=120,3x x ==23410x x -+=23,4,3,Δ(4)43116124a b c ==-=∴=--⨯⨯=-= 426x ±∴==1211,3x x ==ABC △1x =- ()()2(1)20a c b a c ∴+⨯--+-=20,0,a c b a c a b a b ∴+-+-=∴-=∴=ABC ∴△ABC △ ()()2(2)40b a c a c ∴-+-=2222224440,,b a c a b c ABC ∴-+=∴=+∴△ABC △a b c ==()()220a c x bx a c ∴+++-=2220ax ax +=20,0a x x ≠∴+= 120,1x x ==- ABCD ACD BCA ∴∠=∠,ACD ABE BCA ABE ∠=∠∴∠=∠ ,BAC EAB ABC AEB ∠=∠∴ △∽△(2)解:,.20.解:;.(2)依题意得:,整理得:,解得:.又要使顾客得到实惠,,答:售价应定为70元.21.解:任务一:方案一:过作交于,交于,则四边形,四边形都是矩形,,,即:,解得:; 图① 图②方案二:,,即:,解得:;(1);(2)测量时的注意:多测两次,取其平均数,减小误差.22.解:(答案不唯一);(2);(3),,AB ACABC AEB AE AB∴= △∽△646,4,,96AB AC AE AE ==∴=∴= ()()120x +()4005x -()()20400510500x x +-=2605000x x -+=1210,50x x == 10x ∴=60601070.x ∴+=+=C CH BD ∥EF Q AB H CDFQ CDBH 1.35m,16.8m CQ DF CH BD ∴====,,CQ EQEQ AH CEQ CAH CH AH∴∴= ∥△∽△1.35 2.6 1.716.8 1.7AB -=-12.9m AB =,90.ACG ACG CGA AEF CEF CGA ∠=∠∠=∠=︒∴ △∽△CE EF CG AG ∴=0.750.516.8 1.7AB =-12.9m AB =CD BE DE 、、()21320x x -+=2902b ac -=()()()2100x mx n m --=≠或,解得,方程是倍根方程,或,或.当时,;当时,.综上所述,的值为或.23.解:(1)①图略;②或或;③相等;(2)四边形是中点矩形,理由如下:如图3,连接,设与交于点与交于点,正方形及,,,在和中, 图3,,四边形是中点矩形;(3210x ∴-=0mx n -=121,2n x x m== ()()()2100x mx n m --=≠111224n m ∴=⨯=1212n m =⨯=4m n ∴=m n =4m n =222224221629mn n m n n n ==++m n =22221233mn n m n n ==+222mn m n +2913()5,2D ()6,2()7,2BEGC ,,CG BE EG AC BG ,O AB CE H ABDE ACFG 90,,EAB GAC AG AC AE AB ︒∴∠=∠===EAC EAB BAC GAB GAC BAC ∴∠=∠+∠=∠=∠+∠EAC △BAG △,,.GA AC EAC GAB AE AB =⎧⎪∠=∠⎨⎪=⎩(),EAC BAG SAS ABG AEC ∴∴∠=∠△≌△,90,AHE OHB BOH EAH EC BG ∠=∠∴∠=∴︒∠=⊥ ∴BEGC。

福建省福州市福清市2023-2024学年九年级上学期期中数学试题(含解析)

福建省福州市福清市2023-2024学年九年级上学期期中数学试题(含解析)

2023-2024学年度第一学期九年级校内期中质量检测数学试卷第Ⅰ卷注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.一、选择题(共10小题,每题4分,满分40分,每小题只有一个正确选项)1.各学科的图形都蒀含着对称美,下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.用配方法解方程时,结果正确的是( )A .B .C .D .3.下列一元二次方程中,没有实数根的是( )A .B .C .D .4.抛物线可以由抛物线平移得到,下列平移方法中正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位5.如图,⊙O 是△ABC 的外接圆,若∠ABC=40°,则∠AOC 的度数为( )2410x x -+=()225x -=()223x -=()225x +=()223x +=()()120x x +-=2510x x +-=2(3)1x -=2210x +=()2+21y x =-2y x =A .B 8.如图,抛物线A .B 9.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题何?”其意思是“今有直角三角形的圆形(内切圆)直径是多少?30︒y ax =1x >15.已知抛物线16.如图,在中,!则的长是三、解答题(共9小题,满分17.解方程:18.已知关于的一元二次方程19.福州是一座蕴存着绚丽风光,并拥有深厚人文底蕴的城市.她散落分布着很多历史悠久的古村落.现福州某乡镇景区需要复原一个古代圆抰形木门(示意图)2y ax =-Rt ABC △AD AD 247x x +-x20.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某快递公司今年九月份与十一月份的投递总件数分别为10万件和率.21.高尔夫球是一项具有特殊魅力的运动,该二次函数图象上部分点的横坐标,纵坐标的对应值如下表;1234(1)写出的值________,并画出函数图象;(2)当飞行时间________时,高尔夫球高度达到最高;(3)求高尔夫球飞行高度为时所用的时间.x y x a x =s 15m(1)求作的外接圆:(要求,尺规作图,不写作法.保留作图痕迹)(2)在(1)的条件下,补全图形并证明,连接,过作,交的延长线于点.求证:是的切线.23.如图,在平面直角坐标系中,点的坐标是,在轴上任取一点,完成以下操作步骤:①连接,作线段的垂直平分线,过点作轴的垂线,记,的交点为.②在轴上多次改变点的位置,用(1)的方法得到相应的点,把这些点用平滑的曲线连接起来.观察画出的曲线,猜想它是我们学过的哪种曲线.某数学兴趣小组在探究时发现在轴上取几个特殊位置的点,可以求出相对应的点的坐标;例如:取点,过作轴于点.,在中,根据勾股定理得.________;在的垂直平分线上,解得:________.(1)请帮忙完成以上填空;ABC O OB C CD OB ∥AB D CD O A ()0,2x M AM AM 1l M x 2l 1l 2l P x M P L x M P ()4,0M -P PB y ⊥B ()4,P y ∴-22PM y ∴=Rt PAB 222PA PB AB =+=P AM PA PM ∴=22PM PA ∴=y =()4,5P ∴-(1)求抛物线的解析式;(2)若点为线段上的一个动点,过点时.①求证:四边形是平行四边形:②连接,在抛物线上是否存在,使25.如图,在中,.(1)如图,当时,求证;(2)当点为边的中点时,连接,求的最大值;(3)如图,若,时,求的面积.P AC OCPD AD Q ABC 90ACB ∠=︒1045α︒<<︒BM AE ⊥Q AC MQ MQ 2105α=︒2AE =BCF △参考答案与解析1.C【分析】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【详解】解: A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意,故选:C .2.B【分析】根据完全平方公式,结合等式的性质,进行配方即可.【详解】解:∵,∴,∴,∴,故选:B .【点睛】本题考查了配方法,熟练掌握配方法的求解步骤是解题的关键.3.D【分析】本题考查了一元二次方程 (为常数)的根的判别式,根据一元二次方程根的判别式进行判断即可求解.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.【详解】解:A. ,即,,则原方程有实数根,故该选项不符合题意;B. ,,则原方程有实数根,故该选项不符合题意;C. ,即,,则原方程有实数根,故该选项不符合题意;D. ,,则原方程没有实数根,故该选项符合题意;故选:D .4.B【分析】根据平移的规律“左加右减,上加下减”,将向左平移2个单位再向上平移1个单位即可得,即可求得答案2410x x -+=24133x x -++=2443x x -+=()223x -=20ax bx c ++=0a a b c ≠,,,24b ac ∆=-0∆>Δ0=Δ0<()()120x x +-=220x x --=241890b ac ∆=-=+=>2510x x +-=24254290b ac ∆=-=+=>2(3)1x -=2680x x -+=24364840b ac ∆=-=-⨯=>2210x +=24042180b ac ∆=-=-⨯⨯=-<2y x =()2+21y x =-【详解】解:根据题意将向左平移2个单位再向下平移1个单位即可得,故选B【点睛】本题考查了二次函数的平移,掌握平移规律是解题的关键,理解题意确定平移的方向和距离是关键.5.D【详解】试题分析:由⊙O 是△ABC 的外接圆,若∠ABC=40°,根据圆周角定理,∴∠AOC=2∠ABC=80°.考点:圆周角定理点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.A【分析】本题考查了旋转的性质、坐标与图形变化,得到点和点关于原点对称,熟知关于原点对称的点横坐标和纵坐标相反是解答的关键.【详解】解:点绕原点逆时针方向旋转得到点,点和点关于原点对称,,故选:A .7.C【分析】本题考查了圆的切线的性质、等腰三角形的性质,连接,先根据圆的切线的性质可得,由,再根据等腰三角形的性质可得,即可求得的度数.【详解】解:如图,连接,,,,是的切线,切点为,,,故选:C .8.C【分析】本题考查了二次函数和不等式、二次函数与一次函数的交点,由A 、B 两点的横坐标可知在到1之间直2y x =()2+21y x =-P Q ()1,3P -O 180 Q ∴P Q ()1,3Q ∴-OC 90OCD ∠=︒40BAC ∠︒=40ACO ∠=︒ACD ∠OC OA OC = 40BAC ∠︒=∴40ACO BAC ∠=∠=︒ CD O C ∴90OCD ∠=︒50ACD OCD ACO ∴∠=∠-∠=︒4-所以点是该抛物线上一点,则故④是正确的,故选:C11.或【分析】利用因式分解法求解即可.【详解】解:,因式分解得:,∴或,解得:或,故答案为:或.【点睛】本题考查了解一元二次方程,能够根据方程特点灵活选用不同的解法是解题关键.12.【分析】本题考查了旋转性质,涉及周角为,据此作答,观察出该图形被平分成五部分,这五部分完全重合是解题的关键.【详解】解:因为该图形被平分成五部分,这五部分完全重合,所以每个部分形成的角度:。

2023-2024学年北京市海淀区九年级上学期期中数学试卷和答案解析

2023-2024学年北京市海淀区九年级上学期期中数学试卷和答案解析

2023-2024学年北京市海淀区九年级(上)期中数学试卷一、选择题(共16分,每题2分)A.1,3,1B.1,3,-1C.0,-3,1D.0,-3,-1 1.(2分)一元二次方程x2+3x-1=0的二次项系数、一次项系数和常数项分别是( )解:一元二次方程x2+3x-1=0的二次项系数、一次项系数、常数项分别是1,3,-1.故选:B.【解答】A.B.C.D.2.(2分)下列图形中,是中心对称图形的是( )解:选项A、B、C的图形不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项D的图形能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:D.【解答】A.y1>y2B.y1<y2C.y1=y2D.不能确定大小关系3.(2分)已知A(-1,y1),B(-2,y2)都在抛物线y=3x2上,则y1与y2之间的大小关系是( )解:∵函数y=3x2上的对称轴为y轴,∴A(-1,y1)、B(-2,y2)在对称轴左侧,∴抛物线开口向上,对称轴左侧y随x的增大而减小.∵-1>-2∴y1<y2.故选:B.【解答】A.-3B.-7C.1D.74.(2分)一元二次方程x2-4x+3=0经过配方变形为(x-2)2=k,则k的值是( )解:x2-4x+3=0,x2-4x=-3,x2-4x+4=-3+4,(x-2)2=1,∴k=1,故选:C.【解答】A.开口方向改变B.开口大小改变C.对称轴不变D.顶点位置不变5.(2分)将抛物线y=ax2+bx+c(a≠0)向下平移,关于平移前后的抛物线,下列说法正确的是( )解:将抛物线y=ax2+bx+c(a≠0)向下平移后,抛物线对称轴不变,开口方向和大小不变,顶点位置改变,【解答】故选:C .A .30B .45C .60D .1056.(2分)陀螺是一款常见的玩具.图1为通过折纸制作的一种陀螺,图2为这种陀螺的示意图.若将图2中的图案绕点O 旋转x °可以与自身重合,则x 的值可以是( )解:该图形内部是八边形,那么最小的旋转角度为x =3608=45,故选:B .【解答】A .2×150x =216B .150x 2=216C .150+150x 2=216D .150(1+x )2=2167.(2分)小明热爱研究鸟类,每年定期去北京各个湿地公园观鸟.从他的观鸟记录年度总结中摘取部分数据如下:观鸟记录年度总结2020年:观测鸟类150种2021年:观测鸟类2022年:观测鸟类216种设小明从2020年到2022年观测鸟类种类数量的年平均增长率为x ,则下列方程正确的是( )解:由题意得:150(1+x )2=216.故选:D .【解答】A .若α=30°,则b =12a B .若α=45°,则b =2aC .若α=60°,则b =aD .若α=90°,则b =2a 8.(2分)如图,在正方形ABCD 中,AC 为对角线,将AC 绕点A 逆时针旋转α(0°<α≤90°),得到线段AE ,连接CE ,设AB =a ,CE =b ,下列说法正确的是( )√解:当α=30°时,过点C 作CF ⊥AE ,如图:∵四边形是正方形,∴AC =2a ,【解答】√二、填空题(共16分,每题2分)根据旋转的性质可得AE =2a ,∴CF =22a ,AF =62a ,EF =2a −22a ,在Rt △CEF 中,根据勾股定理可得b 2=(3-2)a 2,∴b ≠12a ,故A 不合题意;当α=45°时,如图,AE =AC =2a ,CD =a ,根据勾股定理b 2=a 2+(2a )2=3a 2,∴b =3a ,故B 不合题意;当α=60°时,如图,∵AE =AC 2a ,∴△ACE 是等边三角形,∴b =2a ,故C 不合题意;当α=90°时,如图,∴AC =AE =2a ,∴CE =2a ,∴b =2a .故选:D .√√√√√√√√√√√√9.(2分)方程x 2-4=0的解是.解:x 2-4=0,移项得:x 2=4,两边直接开平方得:x 1=2,x 2=-2,故答案为:x 1=2,x 2=-2.【解答】10.(2分)在平面直角坐标系xOy 中,点A (3,4)与点B 关于原点对称,则点B 的坐标是.解:∵点A (3,4)与点B 关于原点对称,∴点B 的坐标是(-3,-4).故答案为:(-3,-4).【解答】11.(2分)写出一个顶点在坐标原点,开口向下的抛物线的表达式 .解:顶点在坐标原点,开口向下的抛物线的表达式可为y =-x 2.故答案为:y =-x 2.(答案不唯一)【解答】12.(2分)若关于x 的一元二次方程x 2-2x +m =0有两个相等的实数根,则实数m 的值为.解:∵关于x 的一元二次方程x 2-2x +m =0有两个相等的实数根,∴Δ=0,∴(-2)2-4m =0,∴m =1,故答案为:1.【解答】13.(2分)如图,在△ABC 中,AB =AC ,∠BAC =50°,将△ABC 绕点A 逆时针旋转到△ADE .若AD ⊥BC ,则旋转角的度数是 .解:∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =12∠BAC ,∵∠BAC =50°,∴∠BAD =25°,故答案为:25°.【解答】14.(2分)如图,在平面直角坐标系xOy 中,以某点为中心,将右上方图形“”旋转到图中左下方的阴影位置,则旋转中心的坐标是 .解:如图,点Q 即为旋转中心,Q (3,2).故答案为:(3,2).【解答】15.(2分)如图,二次函数y =2(x -1)2+k 的图象与y 轴的交点坐标为(0,1),若函数值y <1,则自变量x 的取值范围是 .解:∵二次函数y =2(x -1)2+k 的图象与y 轴的交点坐标为(0,1),对称轴为直线x =1,∴当x =2时,y =1,∵抛物线开口向上,【解答】三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.∴函数值y <1,自变量x 的取值范围是0<x <2,故答案为:0<x <2.16.(2分)在平面直角坐标系xOy 中,点P 的坐标为(m ,n ),称关于x 的方程x 2+mx +n =0为点P 的对应方程.如图,点A (-1,0),点B (1,1),点C (-2,2).给出下面三个结论:①点A 的对应方程有两个相等的实数根;②在图示网格中,若点P (m ,n )(m ,n 均为整数)的对应方程有两个相等的实数根,则满足条件的点P有3个;③线段BC 上任意点的对应方程都没有实数根.上述结论中,所有正确结论的序号是.解:①∵点A (-1,0),∴点A 的对应方程为x 2-x =0,解得x =0或x =1,故①错误;②∵点P (m ,n )(m ,n 均为整数)的对应方程有两个相等的实数根,∴方程x 2+mx +n =0有两个相等的实数根,∴Δ=m 2-4n =0,∴m 2=4n ,∵m ,n 都为整数,∴在图示网格中,m ,n 的整数解有V W X m =2n =1、V W X m =−2n =1、V W X m =0n =0共3个;故②正确;③∵点B (1,1),点C (-2,2),∴线段BC 的解析式为y =-13x +43(-2≤x ≤1),∴线段BC 上任意点的坐标为(m ,-13m +43),其对应方程为x 2+mx -13m +43=0,∴Δ=m 2-4(-13m +43)=m 2+43m -163=(m +23)2-529,∵-2≤m ≤1,∴-43≤m +23≤53,∴Δ=(m +23)2-529<0,∴线段BC 上任意点的对应方程都没有实数根,故③正确.故答案为:②③.【解答】17.(5分)解方程:x 2-6x +2=0(用配方法).解:x 2-6x +2=0移项,得x 2-6x =-2,即x 2-6x +9=-2+9,∴(x -3)2=7,解得x -3=±7,即x =3±7.∴x 1=3+7,x 2=3-7.【解答】√√√√18.(5分)如图,⏥ABCD 的对角线AC ,BD 交于点O ,EF 过点O 且分别与AD ,BC 交于点E ,F .(1)求证:△AOE ≌△COF ;(2)记四边形ABFE 的面积为S 1,⏥ABCD 的面积为S 2,用等式表示S 1和S 2的关系.(1)证明:∵四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,∴AD ∥BC ,OA =OC ,∴∠OAE =∠OCF ,【解答】在△AOE 和△COF 中,V Y Y W Y Y X ∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ).(2)在△ABC 和△CDA 中,V Y Y W Y Y X AB =CD BC =DA AC =CA,∴△ABC ≌△CDA (SSS ),∴S △ABC =S △CDA =12S ⏥ABCD ,∵△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △四边形ABFO +S △AOE =S △四边形ABFO +S △COF =S △ABC =12S ⏥ABCD ,∴S 1=12S 2.19.(5分)已知m 是方程x 2-x -2=0的根,求代数式 m (m -1)+5 的值.解:∵m 是方程x 2-x -2=0的根,∴m 2-m -2=0,∴m 2-m =2,∴m (m -1)+5=m 2-m +5=2+5=7.【解答】20.(5分)已知二次函数y =x 2-2x .(1)在如图所示的平面直角坐标系中画出该二次函数的图象;(2)点P (-2,7) 该函数的图象上(填“在”或“不在”).解:(1)列表:x …-10123…y …30-103…描点、连线,画出函数图象如图:;(2)∵当x =-2时,y =x 2-2x =8,∴点P (-2,7)不在该函数的图象上.故答案为:不在.【解答】21.(6分)已知关于x 的一元二次方程x 2+(m -1)x +m -2=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根是正数,求m 的取值范围.(1)证明:∵一元二次方程x 2+(m -1)x +m -2=0,∴Δ=(m -1)2-4(m -2)=m 2-2m +1-4m +8=(m -3)2.∵(m -3)2≥0,∴Δ≥0.∴该方程总有两个实数根.(2)解:∵x 2+(m -1)x +m -2=0,∴(x +m -2)(x +1)=0,∴x 1=2-m ,x 2=-1.∵该方程有一个根是正数,∴2-m >0,∴m <2.【解答】22.(5分)如图,在平面直角坐标系xOy 中,A (-2,4),B (-2,0),将△OAB 绕原点O 顺时针旋转90°得到△OA 'B '(A ',B '分别是A ,B 的对应点).(1)在图中画出△OA ′B ′,点A '的坐标为 ;(2)若点M (m ,2)位于△OAB 内(不含边界),点M '为点M 绕原点O 顺时针旋转90°的对应点,直接写出M '的纵坐标n 的取值范围.解:(1)如图,△OA ′B ′即为所求.由图可得,A '(4,2).故答案为:(4,2).(2)由题意得,-2<m <-1,∴点M '在线段CD 上,且不与点C ,D 重合,∴1<n <2.【解答】23.(5分)阅读下面的材料并完成解答.《田亩比类乘除捷法》是我国南宋数学家杨辉的著作,其中记载了这样一个数学问题:“直田积八百六十四步,只云长阔共六十步,欲先求阔步,得几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽之和为60步,问它的宽是多少步?书中记载了这个问题的几何解法:①将四个完全相同的面积为864平方步的矩形,按如图所示的方式拼成一个大正方形,则大正方形的边长为步;②中间小正方形的面积为平方步;③若设矩形田地的宽为x 步,则小正方形的面积可用含x 的代数式表示为 ;④由②③可得关于x 的方程 ,进而解得矩形田地的宽为24步.解:①∵矩形田地的长与宽之和为60步,∴按如图所示的方式拼成一个大正方形,则大正方形的边长为60步.故答案为:60;②根据题意得:中间小正方形的面积为60×60-864×4=144(平方步).故答案为:144;③若设矩形田地的宽为x 步,则长为(60-x )步,中间小正方形的边长为(60-x -x )=(60-2x )步,【解答】∴小正方形的面积为(60-2x )2平方步.故答案为:(60-2x )2平方步;④由②③可得关于x 的方程:(60-2x )2=144.故答案为:(60-2x )2=144.24.(6分)在平面直角坐标系xOy 中,二次函数y =x 2+bx +c 的图象经过点(1,0),(3,0).(1)求该二次函数的解析式;(2)当x >3时,对于x 的每一个值,函数y =x +n 的值小于二次函数y =x 2+bx +c 的值,直接写出n 的取值范围.解:(1)∵二次函数y =x 2+bx +c 的图象经过点(1,0),(3,0),∴二次函数解析式为y =(x -1)(x -3),即y =x 2-4x +3;(2)当直线y =x +n 经过点(3,0)时,3+n =0,解得n =-3,此时函数y =x +n 的值等于二次函数y =x 2+bx +c 的值,所以当n ≤-3时,数y =x +n 的值小于二次函数y =x 2+bx +c 的值,即n 的取值范围为n ≤-3.【解答】25.(6分)在投掷实心球时,球以一定的速度斜向上抛出,不计空气阻力,在空中划过的运动路线可以看作是抛物线的一部分.如图,建立平面直角坐标系xOy ,实心球从出手到落地的过程中,它的竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系,记出手点与着陆点的水平距离为投掷距离.(1)小刚第一次投掷时水平距离x 与竖直高度y 的几组数据如下:水平距离x /m01234竖直高度y /m 1.6 2.1 2.42.5 2.4①根据上述数据,实心球运行的竖直高度的最大值为m ;②求小刚第一次的投掷距离;(2)已知第二次投掷出手点竖直高度与第一次相同,且实心球达到最高点时水平距离与第一次也相同.若小刚第二次投掷距离比第一次远,则实心球第二次运行过程中竖直高度的最大值比第一次 (填“大”或“小”).解:(1)①由表格数据可知,抛物线的对称轴为直线x =2+42=3,当x =3时,y =2.5,故答案为:2.5;②设抛物线的解析式为:y =a (x -3)2+2.5,∵当x =0时,y =1.6,∴1.6=a ×32+2.5,解得a =−110,∴抛物线的解析式为:y =−110(x -3)2+2.5,当y =0时,0=−110(x -3)2+2.5,解得x 1=-2(舍去),x 2=8,答:小刚第一次的投掷距离为8m ;(2)∵第二次投掷实心球达到最高点时水平距离与第一次也相同,∴第二次投掷抛物线对称轴与第一次对称轴相同,又∵第二次投掷出手点竖直高度与第一次相同,第二次投掷距离比第一次远,∴实心球第二次运行过程中竖直高度的最大值比第一次小,故答案为:小.【解答】26.(6分)已知二次函数y =12x 2+bx +1.(1)若b =-1,求该二次函数图象的对称轴及最小值;(2)若对于任意的0≤x ≤2,都有y ≥-1,求b 的取值范围.解:(1)当b =-1时,y =12x 2+bx +1=12x 2-x +1=12(x -1)2+12,∴二次函数图象的对称轴为直线x =1,最小值为12;(2)∵y =12x 2+bx +1,∴对称轴为直线x =-b 2×12=-b ,①当x =-b ≤0,即b ≥0时,∴当0≤x ≤2时,y 随x 的增大而增大,∴当x =0时,y 最小,最小值为1>-1,∴b ≥0;②当0<-b <2时,即-2<b <0,此时对称轴在0~2段内,∴当x =-b 时y 有最小值,∴y min =12×(-b )2+b ×(-b )+1=-12b 2+1,令-12b 2+1≥-1,解得-2≤b ≤2,∴-2<b <0;③当x =-b ≥2时,即b ≤-2,∴当0≤x ≤2时,y 随x 的增大而减小,∴当x =2时,y min =12×22+2b +1=2b +3≥-1,解得b ≥-2,∴b =-2,综上所述,b 的取值范围为b ≥-2.【解答】27.(7分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在AB 上(BD <AD ),过点D 作DE ⊥BC 于点E ,连接AE ,将线段EA 绕点E 顺时针旋转90°,得到线段EF ,连接DF .(1)依题意补全图形;(2)求证:FD =AB ;(3)DF 交BC 于点G ,用等式表示线段CE 和FG 的数量关系,并证明.(1)解:如图所示:(2)证明:∵AC =BC ,∠ACB =90°,∴∠B =∠BAC =45°,∵DE ⊥BC ,∴∠B =∠BDE =45°,∴BE =DE ,∵将线段EA 绕点E 顺时针旋转90°,得到线段EF ,∴AE =EF ,∠AEF =90°=∠BED ,∴∠BEA =∠DEF ,∴△BEA ≌△DEF (SAS ),∴FD =AB ;(3)FG =2CE ,理由如下:如图,过点D 作DH ⊥AC 于H ,又∵DE ⊥BC ,AC ⊥BC ,∴四边形DECH 是矩形,∴EC =DH ,∵DH ⊥AC ,∠BAC =45°,∴△ADH 是等腰直角三角形,∴AD =2DH =2EC ,∵△BEA ≌△DEF ,∴∠B =∠EDG =45°,∴DE =DG ,∵∠AEF =∠DEC =90°,∴∠DEA =∠CEF ,又∵AE =EF ,∴△DEA ≌△GEF (SAS ),∴FG =AD ,∴FG =2CE .【解答】√√√√28.(7分)在平面直角坐标系xOy 中,已知点M 不与原点重合.对于点P 给出如下定义:点P 关于点M 的对称点为P ′,点P ′关于直线OM 的对称点为Q ,称点Q 是点P 关于点M 的“转称点”.(1)如图,已知点M (t ,0),P (t +1,1),点Q 是点P 关于点M 的“转称点”.①当t =2时,在图中画出点Q 的位置,并直接写出点Q 的坐标;②PQ 的长度是否与t 有关?若无关,求PQ 的长;若有关,说明理由;(2)已知点A (3,4),△ABC 是边长为2的等边三角形(点A ,B ,C 按逆时针方向排列),点N 是点B 关于点C 的“转称点”,在△A BC 绕点A 旋转的过程中,当BN 最大时,直接写出此时OB 的长.解:(1)①当t =2时,点M (2,0),P (3,1),如图:∵点Q 是点P 关于点M 的“转称点”.∴P ′(1,-1),Q (1,1);②∵点M (t ,0),P (t +1,1),∴P ′(t -1,-1),Q (t -1,1),∴PQ ∥x 轴,∴PQ =t +1-(t -1)=2;∴PQ 的长度与t 有无关,PQ 的长为2;(2)如图:由“转称点”的定义得C 为BB ′的中点,D 为NB ′的中点,∴CD ∥BN ,CD =12BN ,∴当CD 最大时,BN 最大,由图得在△ABC 绕点A 旋转的过程中,当O 、B ,C 、B ′共线时,BN 最大,如图:∵△ABC 是边长为2的等边三角形【解答】∴BC =CB ′=2,AH =3,BH =1,∵点A (3,4),∴OA =32+42=5,∴OH =OA 2−AH 2=52−(3)2=22,∴OB =22-1.√√√√√√√。

浙江省联盟校2024—2025学年上学期九年级期中阶段性评数学试题(含答案)

浙江省联盟校2024—2025学年上学期九年级期中阶段性评数学试题(含答案)

联盟校2024学年第一学期九年级期中阶段性评价考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟.2.全卷分为卷I (选择题)和卷Ⅱ(非选择题)两部分,全部在答题卡上作答,卷I 的答案必须用2B 铅笔填涂;卷II 的答案必须用黑色字迹的钢笔或签字笔写在“答题卡”相应位置上.3.请用黑色字迹的钢笔或签字笔在“答题卡”上先填写姓名和准考证号.4.作图时,请使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.卷I说明:本卷共1大题,10小题.请用2B 铅笔在“答题卡”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本大题有10小题,每小题3分,共30分)1.下列函数中,是二次函数的是( )A. B. C. D.2.下列说法正确的是( )A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.下列现象不是旋转的是( )A.飞速旋转的电风扇 B.坐电梯从1楼到10楼C.言言在荡秋千D.关上教室门4.已知,,是抛物线上的点,则( )A. B. C. D.5.给出下列说法:①半径相等的圆是等圆;②长度相等的弧是等弧;③以2cm 长为半径的圆有无数个;④平面上任意三点能确定一个圆.其中正确的有( )A.②④B.①③C.①③④D.①②③④6.已知二次函数的部分自变量和函数的对应值表如下:x-2-12y 0012则下列各点在函数图象上的是( )2y x =()1y ax x =-21y x =-()221y x x =-+()11,y -()22,y -()34,y -24y x x n =--+123y y y <<321y y y <<213y y y >>231y y y >>()20y ax bx c a =++≠3232-578A. B. C. D.7.任意抛掷一枚均匀的骰子两次,记两次朝上的点数的和为m ,则下列m 的值中,概率最大的是( )A.5B.6C.7D.88.抛物线的图象如图所示,根据图象可知,抛物线的函数表达式可能是( )A. B.C. D.9.如图,在中,,,,P 为边BC 上的一点,以P为圆心,长为半径作圆,则当点C 在圆内,点A 在圆外时,线段CP 的取值范围为( )B. C. D.10.如图1,在矩形ABCD 中,P 为边AD 上一点,连结BP ,将矩形沿BP 折叠,记与矩形重叠部分的面积为S ,设AP 的长为x ,S 关于x 的函数图象如图2所示,则下列说法错误的是( )13,24⎛⎫-- ⎪⎝⎭()4,12-31,2⎛⎫ ⎪⎝⎭3,44⎛⎫ ⎪⎝⎭22y x x =--211222y x x =--+()()12y x x =-+22y x x =-++Rt ABC △90C ∠=︒3AC =4BC =7272CP <<702CP <<35CP <<1522CP <<A PB '△图1图2A.当,S 为关于x 的一次函数B.,C.当,S 为关于x 的二次函数D.图象过点卷Ⅱ说明:本卷共2大题,14小题.请用黑色字迹的钢笔或者签字笔将答案写在“答题卡”相应的位置上.二、填空题(本大题有6小题,每小题3分,共18分)11.写出一个开口向下,并经过原点的二次函数:____________________.12.如图1,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m ,宽为4m 的矩形将不规则图案围起来,然后在适当位置随机地朝矩形区域内扔小球,并记录小球落在不规则图案内的次数,将若干次有效试验的结果绘制成了如图2所示的折线统计图.若每次投掷,小球落在矩形内每个点的可能性相同,由此他可以估计不规则图案的面积为_____________.图1 图213.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是___________.14.如图,MN 是的直径,,点A 在上,,B 为的中点,P 是直径MN 上一动点,则的最小值是_____________.01x ≤≤2a =12b =1x a ≤≤313,224⎛⎫⎪⎝⎭2m 22y x =O 6MN =O 30AMN ∠=︒ AN PA PB +15.已知二次函数的值恒大于0,则m 的取值范围是__________.16.如图,在每个小正方形的边长均为1的网格图中,一段圆弧经过格点A ,B ,C ,格点A ,D 的连线交圆弧于点E ,则AE 的长为____________.三、解答题(本大题有8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本题满分8分)请利用骰子设计一个双人游戏,要求游戏对两人公平,并说明游戏公平的理由.18.(本题满分8分)已知函数的图象经过点.(1)求这个函数的表达式.(2)当时,求x 的取值范围.19.(本题满分8分)如图,有甲、乙两个完全相同的转盘均被分成A ,B 两个区域,甲转盘中A 区域的圆心角是120°,乙转盘中A 区域的圆心角是90°,自由转动转盘(如果指针指向区域分界线则重新转动).甲 乙(1)转动甲转盘一次,求指针指向A 区域的概率.(2)自由转动两个转盘各一次,利用列表或画树状图的方法,求两个转盘指针同时指向B 区域的概率.20.(本题满分8分)已知某二次函数的部分自变量和函数的值如下表:x -4-3-2-10y-133(1)请画出该函数的图象.(2)请写出以上函数的性质.(不少于两条)21.(本题满分8分)如图,的直径AB 垂直弦CD 于点E ,F 是圆上一点,D 是的中点,连结CF 交OB 于点G ,连结BC .()2223y x m x m =-+++21y x bx =+-()3,22y ≥3272O BF(1)求证:.(2)若,,求CD 的长.22.(本题满分10分)某学校操场使用羽毛球发球机进行辅助训练,假设发球机每次发球的运动轨迹是抛物线,在第一次发球时,球与发球机的水平距离为x (米)(),离地面的高度为y (米),y 与x 的对应数据如下表所示.x (米)00.41 1.6···y (米)22.162.252.16···(1)球经发球机发出后,最高点离地面________米;求y 关于x 的函数表达式.(2)发球机在地面的位置不动,调整发球口后,在第二次发球时,y 与x ()之间满足函数关系.①为确保在米高度时能接到球,求球拍的接球位置与发球机的水平距离.②通过计算判断第一、二次发出的球在飞行过程中,当两球与发球机的水平距离相同时,两球的高度差能否超过1米.23.(本题满分10分)如图1,抛物线经过点,,并交x 轴于点E ,F (点F 在点E 的右边).图1图2(1)求该抛物线的函数表达式.(2)如图2,为y 轴上一动点,点D 的坐标为,过三点P ,E ,F 作抛物线,连结BD .GE BE =6AG =4BG =0x ≥0x ≥2113882y x x =-++5421:C y x bx c =++()0,3A -()4,5B ()0,P t ()0,32C①当抛物线的顶点落在线段BD 上时,求此时t 的值.②当抛物线与线段BD 只有一个交点时,直接写出t 的取值范围.24.(本题满分12分)如图,已知AB 为半圆O 的直径,C 为半圆O 上一点,连结AC ,作点O 关于AC 的对称点,直线交半圆O 于点D.图1图2(1)求证:.(2)若点与点D 重合,求此时的度数.(3)如图2,过点C 作,交直线AD 于点F ,判断点D 能否为的中点.若能,求出此时的值;若不能,请说明理由.2C 2C O 'AO '//CO AO 'O 'AOC ∠CF AD ⊥FO 'ACAO联盟校2024学年第一学期九年级期中阶段性评价答案一、选择题(本大题有10小题,每小题3分,共30分)1-5:ABBCB6-10:BCDAC二、填空题(本大题有6小题,每小题3分,共18分)11.(答案不唯一)12.713.14.15.三、解答题(本大题有8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解:投掷骰子,当朝上一面的数字小于等于3时甲胜;反之乙胜.(4分)此时,则此游戏对双方公平.(答案不唯一,符合题意即可)(4分)18.解:(1)将代入,得,解得.∴.(4分)(2)或.(4分,每个2分)19.解:(1).(2分)(2)将甲转盘中的B 区域平均分成两份,分别记为,,将乙转盘中的B 区域平均分成三份,分别记为,,,(1分)则两个转盘指针指向区域的所有可能性可列表如下:甲乙A AAA2y x =-()2223y x =--22m -<<+()()12P P ==甲胜乙胜()3,221y x bx =+-22331b =+-2b =-221y x x =--1x ≤-3x ≥()13P A =指针指向区域1B 2B 1B 2B 3B 1B 2B 3B 1AB 2AB 3AB(3分)所以.(2分)20.解:(1)如图所示:(4分)(2)当时,y取得最大值;当时,y 随x 的增大而减小.(4分)(每个2分,答案不唯一)21.(1)证明:∵D 是的中点,∴.(1分)∵,∴,∴,(1分)∴.(1分)∵,∴.(1分)(2)解:如图,连结OC ,∵,,∴,∴,(1分)∴.由(1)知,1B 1B A 11B B 12B B 13B B 2B 2B A21B B 22B B 23B B ()61122P B ==指针指向区域1x =-721x ≥- BFECG ECB ∠=∠CD AB ⊥90CEG CEB ∠=∠=︒CGE CBE ∠=∠CG CB =CE BG ⊥EG EB =6AG =4BG =6410AB =+=152OC CB AB ===541OG OB BG =-=-=122GE BE BG ===∴(1分)∴.(1分)∵直径,∴.(1分)22.解:(1)2.25∵顶点坐标为,设抛物线的表达式为,当时,,代入得,∴.故y 关于x 的函数表达式为.(3分)(2)①令,即,解得,(舍去),故球拍的接球位置与发球机的水平距离为2米.(3分)②两球的高度差为.(2分)∵,123OE OG GE =+=+=4CE ==AB CD ⊥2248CD CE ==⨯=()1,2.25()21 2.25y a x =-+0x =2y = 2.252a +=0.25a =-()22110.251 2.25242y x x x =--+=-++54y =211358824x x -++=12x =21x =-221211113242882y y x x x x ⎛⎫-=-++--++ ⎪⎝⎭2131882x x =-++213258232x ⎛⎫=--+⎪⎝⎭18a =-∴在时,有最大高度差米,(1分)∴两球的高度差不能超过1米.(1分)23.解:(1)把,代入,得解得∴.(3分)(2)①在中,令,解得,.设,把,代入,解得,,∴.把代入,得.(2分)设的函数表达式为,把,代入,解得,∴.∵点P 在抛物线上,∴.把代入,得.(2分)②,或.(3分)24.(1)证明:∵点O ,关于AC 对称,∴,,,∴,.又∵,∴,∴.(4分)(2)解:连结,若点与点D 重合,则,∴为等边三角形,32x =2532()0,3A -()4,5B 2y x bx c =++35164c b c =-⎧⎨=++⎩3,2,c b =-⎧⎨=-⎩223y x x =--223y x x =--0y =11x =-23x =BD y kx n =+()4,5B ()0,3D 12k =3n =132BD y x =+1x =72y =2C ()()13y a x x =+-1x =72y =78a =-()()7138y x x =-+-2C 0x =218t =3t >3t ≤-t =O 'AO AO '=CO CO '=AC AC =AOC AO C '≅△△O CA OCA '∠=∠OA OC =CAO OCA O CA '∠=∠=∠//CO AO 'OO 'O 'OO OC O C ''==OCO '△∴.同理,,∴.(4分)(3)解:能.如图,过点O 作,由(1)知,∴四边形为菱形,∴.∵,∴.∵,∴四边形HOCF 为矩形,∴,∴,∴.(4分)∵D 为的中点,∴.∵,∴,∴.不妨设,则,∴.(4分)60OO C '∠=︒60AOO '∠=︒120AOC ∠=︒OH AF ⊥AO AO CO CO ''===AOCO '//CO AO 'OH AF ⊥OH OC ⊥CF AD ⊥OH CF =Rt AOH Rt O CF '≅△△AH O F '=O F '22AH O D DF '==OH AF ⊥AH HD =222AH HO O D DF ''===2222AH HO O D DF ''====3AO AO O C ''===CF ==AC ==AC AO =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期中检测初三数学试卷
审题要仔细 书写要工整 答题要规范 态度要认真
一、选择题:(A, B, C, D 四个答案中有且只有一个是正确的, 请将题中唯一正确答案的序号填入后面的表格内, 不填、填错或多填均不得分, 本题每小题2分, 共22分) 1.在下列实数中, 无理数是( ) A .
13 B .π C .16 D .227
2.已知:EFG ABC ∆≅∆, 有∠B=70°, ∠E=60°, 则=∠C ( )。

A . 60°
B . 70°
C . 50°
D . 65°
3.两个三角形只有以下元素对应相等, 不能判定两个三角形全等的是( )
A . 两角和一边
B . 两边及夹角
C . 三个角
D . 三条边 4.下列图案中, 有且只有三条对称轴的是( )
5.如图5, △ABC 中, ∠C =90°, ∠A =30°, CD ⊥AB 于D, 则AD 是BD 的( )倍。

A .2
B .1
C .3
D .4
6.在△ABC 中, ∠B=∠C, 与△ABC 全等的三角形有一个角是1000
, 那么△ABC 中与这个角对应的角是( ) A .∠A B . ∠B C .∠C D . ∠D
7.已知点P (-2, 1), 那么点P 关于x 轴对称的点P '的坐标是( )
A .(-2, 1)
B .(-2, -1)
C .(-1, 2)
D .(2, 1) 8.当
41a +的值为最小值时, a 的取值为( )
A 、-1
B 、0
C 、1
4
-
D 、1 9.在下列各数:3.1415926、49100
、0.2、1π、7、13111、3
27、中无理数的个数是 ( )
A 、2
B 、3
C 、4
D 、5
10.下列说法中正确的是( )
A.实数2
a -是负数 B. a a =2
C. a -一定是正数
D.实数a -的绝对值是a
11.下列各组数中互为相反数的是( ) A 、()
2
2-与
-2 B 、3
28--与 C 、()2
2与-2
D 、22-

二、多项选择题:(共3个小题, 每小题3分, 共9分, 每小题至少有两个答案是正确的, 请将题中正确答案的序号填入后面的表格内, 全部选对得4分, 对而不全的酌情给分, 有对有错或不选均得0分)
12.下列命题错误的是( )
A .有一个角是100°, 腰长相等的两个等腰三角形全等;
B .有两条边和一个角对应相等的两个三角形全等;
A
B C
D 图5
C .两全等三角形的周长和面积都相等;
D .两全等三角形的边都相等。

13.下列图形中, 一定是轴对称图形的是( )
A .线段
B .角
C .正方形
D .有一个内角为45°的三角形 14.下列说法正确的是( )
A .-9是81的一个平方根;
B .数轴上的点与无理数一一对应
C .算术平方根等于它本身的数只有1;
D .立方根等于它本身的数有3个:-1, 0, 1. 三、填空题:(每空3分, 共33分)
15.16的平方根是______. 16.已知()2
250a b -++=, 那么a+b 的值为______. 17.设3对应数轴上的点是A, -5对应数轴上的点是B, 则A, B 两点间的距离是___ _. 18.如图1, 若△ACD 的周长为7cm, DE 为AB 边的垂直平分线, 则AC +BC = cm . 19.如图2, 已知△ABC 中, ∠A =36°, AB =AC , BD 为∠ABC 的平分线, 则图中共有 个等腰三角形.
20.已知:△ABC ≌△A B C ''', △A B C '''的周长为12cm, 则△ABC 的周长为 cm . 21.如图3, △ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,AC 边的对应边是__ _. 22.如图4, AB =DE, AC =DF, BF =CE.若BC =18cm, 则FE =______ cm ;
23.如图5, △ABC 中, ∠C =90°, AD 平分∠BAC, AB =5, CD =2, 则△ABD 的面积是_________.
24.已知点P 到x 轴、y 轴的距离分别是2和3, 且点P 关于y 轴对称的点在第四象限, 则点P 的坐标是 .
25、若10的整数部分是a, 则小数部分为 ;
四、解答题:(共56分) 26.计算: (共10分) (1) (5分) 331632700.1251464
---++- (2)(5分) 621263269-+---+-
A
B
C
D
图3 图2 A B C D E
F 图4
C B
D 图5
B A O
D
C
27.求x 值:(共10分 )
(1)(5分) 2
425x = (2)(5分) 3
(0.7)0.027x -=
28.(5分)若2m-4与3m-1是同一个数的两个平方根, 求m 的值.
29.(5分)已知2a -1的平方根是±3, 3a +b -1的算术平方根是4, 求a +2b 的值.
30.(5分)如图, 小明在完成数学作业时, 遇到了这样一个问题, AB=CD, BC=AD, 请说明: ∠A=∠C 的道理, 小明动手测量了一下, 发现∠A 确实与∠C 相等, 但他不能说明其中的道理, 你能帮助他说明这个道理吗?试试看。

31.(6分)如图, AD ∥BC, BD 平分∠ABC, ∠A=120°, ∠C=60°, AB=CD=4cm, 求四边形ABCD 的周长.
32.(6分)已知:∠B =∠C, AD 是△ABC 的角平分线, DE ⊥AB 于E, DF ⊥AC 于F. 求证:BE =CF.
33.(9分)如图, △ABC中, AD⊥BC, 点E在AC的垂直平分线上, 且BD=DE. (1)如果∠BAE= 40°, 那么∠C=_______, ∠B=_______;
(2)如果△ABC的周长为13cm, AC=6cm, 那么△ABE的周长=_________cm;(3)你发现线段AB与BD的和等于图中哪条线段的长, 并证明你的结论.
参考答案
一、选择题:(每小题2分, 共22分)
1.B ;
2.C ;
3.C ;
4.D ;
5.C ;
6.A ;
7.B ;
8.C ;
9.A ; 10.B ; 11.A
二、多项选择题:(每小题3分, 共9分) 12.B,D; 13.A,B,C; 14.A,D. 三、填空题:(每空3分, 共33分) 15.±2; 16.-3; 17.3+5; 18.7; 19.3; 20.12; 21. CD ; 22.18; 23.5;
24.(-3, -2);a 四、解答题:(共56分)
26. (共10分) (1)-23
8
; (2)5.
27. (共10分) (1)5.2±=x ; (2) 1=x 28. (5分) m=1. 29. (5分) 9.
30. (5分)先证△ABD ≌△CDB, 再证∠A =∠C 。

31. (6分)先证∠CBD =300, ∠BDC =900
, BC=2CD.再证AB =CD =AD =4cm, BC=8cm.∴四边形ABCD 的周长为20(cm ).
32.(6分)先证△ABC 是等腰三角形, 再证BD=CD, DE=DF, 进而得Rt △BDE ≌Rt △CDF, ∴BE =CF
33. (9分)(1)350, 700
.(2)7.(3)AB +BD=CD. (注:(1)(2分)(2)(2分)(3)(5分))。

相关文档
最新文档