泾县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泾县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数
,,若,则( )
A1 B2
C3 D-1
2. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )
A .﹣1
B .1
C .6
D .12
3. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )
A
. B
. C

D

4. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( ) A .1 B .2 C .3 D .4
5. 某几何体三视图如下图所示,则该几何体的体积是( )
A .
1+ B .
1+ C .
1+ D .1+π
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
6. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是6
7. 已知实数x ,y 满足,则z=2x+y 的最大值为( )
A .﹣2
B .﹣1
C .0
D .4
8. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.
9. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )
A .2
B .4
C .
D .
10.函数f (x )在x=x 0处导数存在,若p :f ′(x 0)=0:q :x=x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件
B .p 是q 的充分条件,但不是q 的必要条件
C .p 是q 的必要条件,但不是q 的充分条件
D .p 既不是q 的充分条件,也不是q 的必要条件
11.已知函数f (x )=Asin (ωx+φ)(a >0,
ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )
A .f (x )=sin (3x+)
B .f (x )=sin (2x+)
C .f (x )=sin (x+)
D .f (x )=sin (2x+)
12.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}
C .{1,2,3,4,5}
D .∅
二、填空题
13.
(sinx+1)dx 的值为 .
14.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 . 15.已知函数()ln a f x x x =+
,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率1
2
k ≤恒 成立,则实数的取值范围是 .
16.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:
①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
17.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔
小时各
服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的
,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次
服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)
18.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .
三、解答题
19.数列{a n }满足a 1=
,a n ∈(﹣

),且tana n+1•cosa n =1(n ∈N *
).
(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2
a n }的前n 项和;
(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.
20..
(1)求证:
(2),若

21.如图,在四棱锥中,等边
所在的平面与正方形
所在的平面互相垂直,


中点,

的中点,且
(Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,
求出的长,若不存在,请说明理由.
22.设集合{}
{}2
|8150,|10A x x x B x ax =-+==-=.
(1)若1
5
a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .
23X
(I )求该运动员两次都命中7环的概率; (Ⅱ)求ξ的数学期望E ξ.
24.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,
(1)证明:BC1∥平面A1CD;
(2)求异面直线BC1和A1D所成角的大小;
(3)求三棱锥A1﹣DEC的体积.
泾县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】g(1)=a﹣1,
若f[g(1)]=1,
则f(a﹣1)=1,
即5|a﹣1|=1,则|a﹣1|=0,
解得a=1
2.【答案】C
【解析】解:由题意知
当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,
又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.
故选C.
3.【答案】D
【解析】解:∵f(x)=y=2x2﹣e|x|,
∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,
故函数为偶函数,
当x=±2时,y=8﹣e2∈(0,1),故排除A,B;
当x∈[0,2]时,f(x)=y=2x2﹣e x,
∴f′(x)=4x﹣e x=0有解,
故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,
故选:D
4.【答案】A
【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,
∴f′(x)=﹣asinx,g′(x)=2x+b,
∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,
∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,
即a=1,b=0.
∴a+b=1.
故选:A.
【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.
5.【答案】A
【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1;
正方体的边长为1,
∴几何体的体积V=V 正方体+=13+××π×12×1=1+

故选:A .
【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.
6. 【答案】D
【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数, ∴函数f (x )在x=7时,函数取得最大值f (7)=6, ∵函数f (x )是偶函数,
∴在[﹣7,0]上是减函数,且最大值是6, 故选:D
7. 【答案】D
【解析】解:画出满足条件的平面区域, 如图示:

将z=2x+y 转化为:y=﹣2x+z ,
由图象得:y=﹣2x+z 过(1,2)时,z 最大, Z 最大值=4, 故选:D .
【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.
8. 【答案】A.
【解析】在ABC ∆中2
2
2
2
cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>
A B ⇔>,故是充分必要条件,故选A.
9. 【答案】C
【解析】解:由于q=2,

∴;
故选:C.
10.【答案】C
【解析】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.
根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,
故p是q的必要条件,但不是q的充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.
11.【答案】D
【解析】解:由图象知函数的最大值为1,即A=1,
函数的周期T=4(﹣)=4×=,
解得ω=2,即f(x)=2sin(2x+φ),
由五点对应法知2×+φ=,
解得φ=,
故f(x)=sin(2x+),
故选:D
12.【答案】B
【解析】解:∵C U A={1,5}
∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.
故选B.
二、填空题
13.【答案】2.
【解析】解:所求的值为(x﹣cosx)|﹣11
=(1﹣cos1)﹣(﹣1﹣cos(﹣1))
=2﹣cos1+cos1
=2.
故答案为:2.
14.【答案】
2
【解析】解:∵x 2+y 2
=4的圆心O (0,0),半径r=2, ∴点(0,1)到圆心O (0,0)的距离d=1, ∴点(0,1)在圆内.
如图,|AB|最小时,弦心距最大为1, ∴|AB|min
=2
=2

故答案为:
2

15.【答案】2
1≥a 【解析】
试题分析:'
21()a f x x x =
-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率1
2
k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221
,(0,3]x ∈恒成立,由2111,222
x x a -+≤∴≥.1
考点:导数的几何意义;不等式恒成立问题.
【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.
16.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -
=(,)A B ϕ∴=<
②对:如1y =
;③对;(,)2A B ϕ==
≤;
④错;1212(,)x x x x A B ϕ=
=

1211,(,)A B ϕ==>因为1
(,)
t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.
17.【答案】, 无.
【解析】【知识点】等比数列
【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,
所以)=300,=350.
由,
所以是一个等比数列,
所以
所以若该患者坚持长期服用此药无明显副作用。

故答案为:, 无.
18.【答案】平行.
【解析】解:∵AB1∥C1D,AD1∥BC1,
AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=A
C1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1
由面面平行的判定理我们易得平面AB1D1∥平面BC1D
故答案为:平行.
【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.
三、解答题
19.【答案】
【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
=(tana1•cosa m)==,
由,得m=40.
【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.
20.【答案】
【解析】解:(1)∵,
∴a n+1=f(a n)=,
则,
∴{}是首项为1,公差为3的等差数列;
(2)由(1)得,=3n﹣2,
∵{b n}的前n项和为,
∴当n≥2时,b n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,
而b1=S1=1,也满足上式,则b n=2n﹣1,
∴==(3n﹣2)2n﹣1,
∴=20+4•21+7•22+…+(3n﹣2)2n﹣1,①
则2T n=21+4•22+7•23+…+(3n﹣2)2n,②
①﹣②得:﹣T n=1+3•21+3•22+3•23+…+3•2n﹣1﹣(3n﹣2)2n,
∴T n=(3n﹣5)2n+5.
21.【答案】
【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直
【试题解析】(Ⅰ)是等边三角形,为的中点,
平面平面,是交线,平面
平面.
(Ⅱ)取的中点,底面是正方形,,两两垂直.
分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,
则,
,,
设平面的法向量为,,


平面
的法向量即为平面
的法向量

由图形可知所求二面角为锐角,
(Ⅲ)设在线段上存在点,,
使线段与
所在平面成
角,
平面
的法向量为


,解得
,适合 在线段上存在点
,当线段
时,与所在平面成角.
22.【答案】(1)A B ⊆;(2){}5,3,0=C .
【解析】

点:1、集合的表示;2、子集的性质. 23.【答案】
【解析】解:(1)设A=“该运动员两次都命中7环”,
则P (A )=0.2×0.2=0.04.
(2)依题意ξ在可能取值为:7、8、9、10
且P (ξ=7)=0.04,
P (ξ=8)=2×0.2×0.3+0.32=0.21,
P (ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,
P (ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,
∴ξ的分布列为:
ξ 7 8 9 10 P 0.04 0.21 0.39 0.36 ξ的期望为E ξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.
【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意
相互独立事件概率乘法公式的合理运用.
24.【答案】
【解析】(1)证明:连接AC 1与A 1C 相交于点F ,连接DF , 由矩形ACC 1A 1可得点F 是AC 1的中点,又D 是AB 的中点,
∴DF ∥BC 1,
∵BC 1⊄平面A 1CD ,DF ⊂平面A 1CD ,
∴BC 1∥平面A 1CD ; …
(2)解:由(1)可得∠A 1DF 或其补角为异面直线BC 1和A 1D 所成角.
DF=BC 1=
=1,A 1D=
=
,A 1F=A 1C=1.
在△A 1DF 中,由余弦定理可得:cos ∠A 1DF==

∵∠A 1DF ∈(0,π),∴∠A 1DF=

∴异面直线BC 1和A 1D 所成角的大小;…
(3)解:∵AC=BC ,D 为AB 的中点,∴CD ⊥AB ,
∵平面ABB 1A 1∩平面ABC=AB ,∴CD ⊥平面ABB 1A 1,CD==1.

=
﹣S △BDE ﹣
﹣=
∴三棱锥C ﹣A 1DE 的体积V=

【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC 1和A 1D 所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.。

相关文档
最新文档