几何勾股定理与弦图练习2
初二数学:勾股定理专题知识点与同步练习(含答案)

勾股定理1.勾股定理勾股定理:直角三角形的两条直角边a、b的__________等于斜边c的平方,即:a2+b2=c2.【注意】(1)应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是__________;若a为斜边,则关系式是b2+c2=a2.(2)如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.2.勾股定理的应用勾股定理是直角三角形的一个重要性质,它把直角三角形有一个直角的“形”的特点转化为三边“数”的关系.利用勾股定理,可以解决与直角三角形有关的计算和证明问题,还可以解决生活、生产中的一些实际问题.其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边确定另两边的关系;(3)证明包含平方(算术平方根)关系的几何问题;(4)构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题.一、勾股定理已知直角三角形的两边长,求第三边长,关键是先明确所求边是斜边还是直角边,再决定用勾股定理的原式还是变式.【例1】已知直角三角形的两条直角边的长分别为3和4,则第三边长为A.5 B C或5 D二、勾股定理的证明勾股定理的证明是通过拼图法或割补法完成的,探索时利用面积关系,将“形”的问题转化为“数”的问题.【例2】中国古代数学家们对勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°,若AC b =,BC a =.请你利用这个图形解决下列问题:(1)试说明222a b c +=;(2)如果大正方形的面积是10,小正方形的面积是2,求()2a b +的值.三、勾股定理点的应用利用勾股定理解应用题的关键是寻找直角三角形,若不存在直角三角形,可通过添加辅助线构造出直角三角形.【例3】如图,有一只小鸟在一棵高13 m 的大树树梢上捉虫子,它的伙伴在离该树12 m ,高8 m 的一棵小树树梢上发出友好的叫声,它立刻以2 m /s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?习题1.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别是a ,b ,c .若a =5,b =12,则c 的长为 A .119 B .13 C .18D .1692.如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是 A .2kB .k +1C .k 2-1D .k 2+13.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为A .4米B .8米C .9米D .7米4.如图,一棵大树被台风刮断,若树在离地面3 m 处折断,树顶端落在离树底部4 m 处,则树折断之前高A .5 mB .7 mC .8 mD .10 m5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为A .8B .9C .10D .116.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为 A .22B .32C .62D .827.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2 m ,宽为1.5 m ,现需要在相对的顶点间用一块木板加固,则木板的长为__________.8.若△ABC 中,∠C =90°.(1)若a =5,b =12,则c =__________; (2)若a =6,c =10,则b =__________;(3)若a ∶b =3∶4,c =10,则a =__________,b =__________.9.一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________.10.如图,在东西走向的铁路上有A ,B 两站,在A ,B 的正北方向分别有C ,D 两个蔬菜基地,其中C 到A 站的距离为24千米,D 到B 站的距离为12千米.在铁路AB 上有一个蔬菜加工厂E ,蔬菜基地C ,D 到E 的距离相等,且AC =BE ,则E 站距A 站__________千米.11.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75 cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ;(4)若∠A =30°,c =24,求c 边上的高h c ; (5)若a 、b 、c 为连续整数,求a +b +c .12.已知:△ABC 中,AD 为BC 中线,求证:22222()AB AC BD AD +=+.13.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB =8 cm ,BC =10 cm ,求EC 的长.14.如图,一个圆桶,底面直径为16 cm ,高为18 cm ,则一只小虫从下底部点A 爬到上底B 处,则小虫所爬的最短路径长是(π取3)A .50 cmB .40 cmC .30 cmD .20 cm15.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为A .22B .32C .62D .8216.如图,AC 是电线杆的一根拉线,测得BC =6米,∠ACB =60°,则AB 的长为A .12米B .3米C .6米D .317.如图,90ACB ∠=︒,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =__________.18.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7 m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3 m,木板顶端向下滑动了0.9 m,则小猫在木板上爬动了__________m.19.古诗赞美荷花“竹色溪下绿,荷花镜里香”,平静的湖面上,一朵荷花亭亭玉立,露出水面10 cm,忽见它随风斜倚,花朵恰好浸入水面,仔细观察,发现荷花偏离原地40 cm(如图).请部:水深多少?20.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。
专题16勾股定理与弦图问题-2021-2022学年八年级数学上(原卷版)【北师大版】

2021-2022学年八年级数学上册尖子生同步培优题典【北师大版】专题1.6勾股定理与弦图问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•重庆期末)2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为()A.25B.19C.13D.1692.(2020秋•明溪县期中)如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x+y)2=49,用x,y表示直角三角形的两直角边(x>y),下列选项中正确的是()A.小正方形面积为4B.x2+y2=5C.x2﹣y2=7D.xy=243.(2020秋•阜宁县期中)“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的大正方形.每个直角三角形的两条直角边的长分别是3cm和6cm,则中间小正方形的面积是()A.9cm2B.36cm2C.27cm2D.45cm24.(2020秋•亭湖区校级期中)如图,在赵爽弦图中,已知直角三角形的短直角边长为a,长直角边长为b,大正方形的面积为20,小正方形的面积为4,则ab的值是()A.10B.8C.7D.55.(2020秋•中牟县期中)1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE,EB在一条直线上,证明中用到的面积相等关系是()A.S△EDA=S△CEBB.S△EDA+S△CDE+S△CEB=S四边形ABCDC.S△EDA+S△CEB=S△CDED.S四边形AECD=S四边形DEBC6.(2020秋•江阴市期中)如图,“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成大正方形,若小正方形的边长为3,大正方形边长为15,则一个直角三角形的周长是()A.45B.36C.25D.187.(2020秋•碑林区校级期中)如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S正方形ABCD=21,则图中阴影部分的面积之和为()A .214B .215 C .225 D .2238.(2019秋•丹东期末)如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是( )A .121B .144C .169D .1969.(2021春•武昌区期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如图,设直角三角形较长直角边长为a ,较短直角边长为b .若大正方形面积是9,小正方形面积是1,则ab 的值是( )A .4B .6C .8D .1010.(2020春•海陵区期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =6,大正方形的面积为16,则小正方形的面积为( )A .8B .6C .4D .3二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•雨花区校级月考)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,如果大正方形的面积为16,小正方形的面积为3,直角三角形的两直角边分别为a 和b,那么(a+b)2的值为.12.(2020秋•淮阴区期中)如图,四个全等的直角三角形围成一个大正方形ABCD,中间阴影的部分是一个小正方形EFGH,这样就组成了一个“赵爽弦图”.若AB=13,AE=12,则正方形EFGH的面积为.13.(2020秋•沈河区校级期中)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为2的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=4√3EF,则正方形ABCD的面积为.14.(2020秋•福田区期末)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,且AH:AE=3:4.那么AH等于.15.(2020•宁夏)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为 .16.(2021•高新区一模)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m ,小正方形的边长为n ,若S 1S 2=32,则nm 的值为 .17.(2020秋•金水区校级月考)如图,用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为10,小正方形面积为2,若用x ,y 表示直角三角形的两直角边(x >y ),下列四个说法:①x 2+y 2=10;②xy =2;③x −y =√2;④x +2y =4√2.其中说法正确的有 .(只填序号)18.(2020•通州区一模)把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD 的面积为 .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•天宁区期中)如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a.较短的直角边为b,斜边长为c,结合图①,试验证勾股定理;(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC =3,求该飞镖状图案的面积;(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1、S2、S3,若S1+S2+S3=16,则S2=.20.(2020秋•姜堰区期中)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.(1)在Rt△ABC中,AC=m,BC=n,∠ACB=90°,若图①中大正方形的面积为61,小正方形的面积为1,求(m+n)2;(2)若将图①中的四个直角三角形中较长的直角边分别向外延长一倍,得到图②所示的“数学风车”,求这个风车的外围周长(图中实线部分).21.(2020秋•徐州期中)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明,请将下面说理过程补充完整:证明:连接DB,过点D作BC边上的高DF,交BC的延长线与点F,则四边形DFCE为长方形,所以DF=EC=.(用含字母的代数式表示)因为S四边形ABCD=S△ACD+=+12 ab;S四边形ABCD=S△ADB+=12c2+;所以+12ab=12c2+;所以.22.(2020秋•玄武区校级期中)阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.从而得数学等式:(a+b)2=c2+4×12ab,化简证得勾股定理:a2+b2=c2.【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC =3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.知识补充:如图6,含60°的直角三角形,对边y:斜边x=定值k.23.(2020春•青白江区期末)如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上.BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)在探究长方形ACDF的面积S时,我们可以用两种不同的方法:一种是找到长和宽,然后利用长方形的面积公式,就可得到S;另一种是将长方形ACDF看成是由△ABC,△BDE,△AEF,△ABE组成的,分别求出它们的面积,再相加也可以得到S.请根据以上材料,填空:方法一:S=.方法二,S=S△ABC+S△BDE+S AEF+S△ABE=ab+12b2−12a2+12c2.(2)由于(1)中的两种方法表示的都是长方形ACDP的面积,因此它们应该相等,请利用以上的结论求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.24.(2020秋•苏州期末)三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1),并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为a,b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.。
习题word版:第十七章 勾股定理

第十七章 勾股定理17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,能得到勾股定理吗?解:∵梯形的面积为12(a +b)(a +b)=12ab +12ab +12c 2,∴a 2+2ab +b 2=ab +ab +c 2. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C ) A .a 2+b 2=c 2 B .b 2+c 2=a 2 C .a 2+c 2=b 2 D .c 2-a 2=b 2 4.(2019·平顶山期末)在△ABC 中,∠B =90°.若BC =3,AC =5,则AB 等于(C ) A .2 B .3 C .4 D .34 5.已知直角三角形中30°角所对的直角边的长是2 3 cm ,则另一条直角边的长是(C ) A .4 cm B .4 3 cm C .6 cm D .6 3 cm 6.(2019·毕节)如图,点E 在正方形ABCD 的边AB 上.若EB =1,EC =2,则正方形ABCD 的面积为(B ) A .3 B .3 C . 5 D .57.(2019·洛阳期中)如图,在△ABC 中,AB ⊥AC ,AB =5 cm ,BC =13 cm ,BD 是AC 边上的中线,则△BCD 的面积是15__cm 2.8.(2019·郑州高新区期末)如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为64.【变式】 如图,以Rt △ABC 的三边为直径分别向外作三个半圆S 1,S 2,S 3.若S 2=32π,S 3=18π,则斜边上半圆的面积S 1=50π.知识点3赵爽弦图9.【关注数学文化】(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(B),A) ,B) ,C) ,D)10.(2019·大庆)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是1.易错点直角边不确定时漏解11.(2019·洛阳期中)已知Rt△ABC的三边长为a,4,5,则a的值是(C)A.3 B.41C.3或41 D.9或4102中档题12.(本课时T8变式)如图,分别以Rt△ABC的三边为边长向外作等边三角形.若AB=4,则三个等边三角形的面积之和是(A)A.8 3 B.6 3C.18 D.1213.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB 上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6C.3 2 D.2114.(2019·河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为(A)A.2 2 B.4C.3 D.1015.(2018·荆州)为了比较5+1与10的大小,可以构造如图所示的图进行推算,其中∠C =90°,BC =3,D 在BC 上且BD =AC =1.通过计算可得5+1>10.(填“>”“<”或“=”)16.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为32或42. 17.如图,在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84., 03 综合题) 18.(2019·毕节改编)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,求CD 的长度.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =60°,AC =10, ∴∠ABC =30°.∴AB =2AC =20,BC =AB 2-AC 2=10 3. ∵AB ∥CF ,∴∠BCM =∠ABC =30°.∴BM =12BC =12×103=5 3.∴CM =BC 2-BM 2=15. 在△EFD 中,∠F =90°,∠E =45°, ∴∠EDF =45°. ∴MD =BM =5 3.∴CD =CM -MD =15-5 3.第2课时勾股定理的应用01基础题知识点1勾股定理在平面图形中的应用1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.2.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高为1.6米.求风筝的高度CE.解:在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.3.(2019·郑州管城区月考)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,它们同时出发,一个半小时后,甲、乙两渔船相距多少海里?解:由题意,得BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,AB=BO2+AO2=15(海里).答:甲、乙两渔船相距15海里.知识点2两次勾股定理的应用4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米5.(教材P25例2变式)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC 上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.知识点3利用勾股定理求两点间的距离6.(2019·常州)平面直角坐标系中,点P(-3,4)到原点的距离是5.7.(教材P26练习T2变式)如图,在平面直角坐标系中,A(4,4),B(1,0),C(0,1),则B,C两点间的距离是2;A,C两点间的距离是5;A,B两点间的距离是5.8.(2019·大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km 至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1.732);(2)确定C港在A港的什么方向.解:(1)由题意,得∠PBC=30°,∠MAB=60°.∴∠CBQ=60°,∠BAN=30°.∴∠ABQ=30°.∴∠ABC=∠ABQ+∠CBQ=90°.∵AB=BC=10,∴在Rt△ABC中,AC=AB2+BC2=102≈14.1.答:A,C两港之间的距离约为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°.∴∠CAM=60°-45°=15°.∴C港在A港北偏东15°的方向上.02中档题9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)A.4米B.8米C.9米D.7米10.(2019·南京)无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.11.【方程思想】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5 m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1 m,离秋千支柱AD的水平距离BE为1.5 m(不考虑支柱的直径).求秋千支柱AD的高.解:设AD=x m,则由题意可得AB=(x-0.5)m,AE=(x-1)m.在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2.解得x=3.答:秋千支柱AD的高为3 m.12.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100 m的P处.这时,一辆轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3 s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80 km/h的限制速度?解:在Rt△APO中,∠APO=60°,则∠P AO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=(1003-100)m.∴从A到B小车行驶的速度为(1003-100)÷3≈24.4(m/s)=87.84 km/h>80 km/h.∴此车超过80 km/h的限制速度.03综合题13.【分类讨论思想】如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC 以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,∴t=4;②当∠BAP为直角时,如图2,BP=t cm,CP=(t-4)cm,AC=3 cm,在Rt△ACP中,AP2=AC2+CP2=32+(t-4)2.在Rt△BAP中,AB2+AP2=BP2,即52+[32+(t-4)2]=t2.解得t =254.∴当△ABP 为直角三角形时,t =4或254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数 1.(教材P 27练习T 1变式)(2019·河南期末)如图,数轴上点A 对应的数是0,点B 对应的数是1,BC ⊥AB ,垂足为B ,且BC =2,以点A 为圆心,AC 长为半径画弧,交数轴于点D ,则点D 表示的数为(D )A .2.2B . 2C . 3D . 52.在数轴上作出表示10的点(保留作图痕迹,不写作法). 解:略.知识点2 网格中的无理数3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),则线段AB 的长度为(C ) A . 2 B . 3 C . 5 D .34.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则CD 的长为(A ) A .255 B .355 C .455 D .455.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:如图所示.知识点3 等腰三角形中的勾股定理6.将一副三角尺按如图所示叠放在一起,若AB =12 cm ,则AF =62cm .7.(2019·天水)如图,等边△OAB 的边长为2,则点B 的坐标为(B ) A .(1,1) B .(1,3) C .(3,1) D .(3,3)8.(教材P27练习T2变式)如图,在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的底边上的高与面积.解:过点A 作AD ⊥BC 于点D , ∵AB =AC =13 cm ,∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52 =12(cm),即等腰三角形底边上的高为12 cm.∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 9.(2019·驻马店汝南县期末)如图,在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D.若 AC =3,BC =4,则BD 的长是(A )A .2B .3C .4D .510.如图,图中小正方形的边长为1,△ABC 的周长为(B )A .16B .12+4 2C .7+7 2D .5+11 211.(教材P 27练习T 1变式)如图,数轴上点A 所表示的实数是5-1.12.点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离为355.13.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8, ∴BD =BE 2-DE 2=82-42=4 3.14.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点. (1)在图1中,以格点为端点,画线段MN =13;(2)在图2中,以格点为顶点,画正方形ABCD ,使它的面积为10.解:(1)如图. (2)如图.03 综合题15.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n=(n -1)2+1=n ,S n =n2(n 为正整数). (2)OA 210=(9)2+1=10, ∴OA 10=10.(3)S 21+S 22+S 23+…+S 210 =(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 利用勾股定理解决最短路径问题 ——教材P39复习题T12的变式与应用【例】 如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路程,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的直线AA ′剪开,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.解:如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根据勾股定理,得 AB 2=A ′A 2+A ′B 2=122+92=225. ∴AB =15.∴需要爬行的最短路程是15 cm.图例圆柱――→展开长方 体阶梯 问题基本 思路将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.1.(2018·禹州期中)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)2.如图是一个三级台阶,它的每一级的长、宽、高分别为24 dm,3 dm,3 dm,点A和点B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是30__dm.3.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm.(1)点A1到点C2之间的距离是多少?(2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm,底面长为4 cm,宽为1 cm,∴A2C2=42+12=17(cm).∴A1C2=52+(17)2=42(cm).(2)如图1所示,A2C1=52+52=52(cm).如图2所示,A2C1=92+12=82(cm).如图3所示,A2C1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A2爬到C1,爬行的最短路程是5 2 cm.小专题(三)方程思想在勾股定理中的应用——教材P39复习题T10的解法剖析及变式应用【教材母题】一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)解:设AB=x尺,根据题意,得∠BAC=90°,AB+BC=10尺,∴BC =(10-x )尺. ∵AC 2+AB 2=BC 2, ∴32+x 2=(10-x )2,解得x =41120.答:折断处离地面41120尺.在一个直角三角形中,若已知两边长,可直接运用勾股定理求第三边长,若已知一边长,且知另两边具有一定的数量关系,可利用方程思想,设出一边长,利用数量关系表示另一边长,借助勾股定理这一等量关系列出方程解决问题,其中两边的数量关系主要有两种呈现形式:一是直角三角形中有特殊角,二是出现图形的折叠.类型1 利用直角三角形中的特殊角揭示两边的数 量关系1.求下列直角三角形中未知的边长.解:如图1,设AC =x ,∵∠ACB =90°,∠B =30°, ∴AB =2x.∵AB 2=AC 2+BC 2,∴(2x)2=x 2+32.∴x =3或-3(负值舍去). ∴AC =3,AB =2 3.如图2,设AC =x ,∵∠ACB =90°,∠A =45°,∴BC =AC =x.∵AB 2=AC 2+BC 2,∴x 2+x 2=(32)2.∴x =3或-3(负值舍去). ∴AC =BC =3.类型2 利用图形的折叠找两边的数量关系2.如图,在Rt △ABC 中,AB =6,BC =4,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为(C )A .53B .52C .83D .53.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.4.如图,把长方形纸片ABCD 折叠,使其对角顶点A 与C 重合.若长方形的长BC 为8,宽AB 为4,则折痕EF 的长度为25.类型3 利用勾股定理和方程思想求点的坐标5.如图,在平面直角坐标系中,A(1,3),试在x 轴上找一点P ,使△OAP 为等腰三角形,求出P 点的坐标.解:过点A 作AB ⊥x 轴,垂足为B. ∵A(1,3),∴OB =1,AB =3. ∴OA =12+32=10.当AO =AP 时,以A 为圆心,AO 长为半径画弧与x 轴交于点O 与点P 1, ∵AB ⊥x 轴,∴BP 1=BO =1,即P 1(2,0);当OA =OP 时,以O 为圆心,OA 长为半径画弧与x 轴交于点P 2,P 3, ∵OA =10,∴P 2(10,0),P 3(-10,0);当PA =PO 时,作OA 的垂直平分线交x 轴于点P 4. 设OP 4=x ,则BP 4=x -1,AP 4=OP 4=x.在Rt △ABP 4中,AP 24=AB 2+BP 24, ∴x 2=32+(x -1)2.解得x =5,即P 4(5,0).综上所述,使△OAP 为等腰三角形的点P 有:P 1(2,0),P 2(10,0),P 3(-10,0),P 4(5,0).17.2 勾股定理的逆定理01 基础题 知识点1 互逆命题1.下列各命题的逆命题不成立的是(C ) A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b 2.(2019·安徽)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为如果a ,b 互为相反数,那么a +b =0.逆命题是真命题.(填“真命题”或“假命题”)知识点2 勾股定理的逆定理 3.(2019·郑州期末)下面四组数,其中是勾股数组的是(A ) A .3,4,5 B .0.3,0.4,0.5 C .32,42,52 D .6,7,8 4.(2019·洛阳洛龙区期中)由线段a ,b ,c 组成的三角形不是直角三角形的是(D ) A .a 2-b 2=c 2B .a =54,b =1,c =34C .a =2,b =3,c =7D .∠A ∶∠B ∶∠C =3∶4∶5 5.(2019·益阳)已知M ,N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:答案不唯一,如:5,12,13;7,24,25.7.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a=3,b=22,c=5;(2)a=5,b=7,c=9;(3)a=5,b=26,c=1.解:(1)是,∠B是直角.(2)不是.(3)是,∠A是直角.8.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,∴根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5.∵AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.02中档题9.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10 B.11 C.12 D.1310.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°11.【关注数学文化】(2018·长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.如图,方格中的点A,B称为格点(横线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为(B)A.3 B.4 C.5 D.613.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.14.(教材P34习题T6变式)如图,在正方形ABCD中,E,F分别BC,CD边上的一点,且BE=2EC,FC=2 9DC,连接AE,AF,EF,求证:△AEF是直角三角形.证明:设FC =2a ,则DC =9a ,DF =7a. ∴AB =BC =AD =CD =9a. ∵BE =2CE ,∴BE =6a ,EC =3a.在Rt △ECF 中,EF 2=EC 2+FC 2=(3a)2+(2a)2=13a 2. 在Rt △ADF 中,AF 2=AD 2+DF 2=(9a)2+(7a)2=130a 2. 在Rt △ABE 中,AE 2=AB 2+BE 2=(9a)2+(6a)2=117a 2. ∵13a 2+117a 2=130a 2, ∴EF 2+AE 2=AF 2.∴△AEF 是以∠AEF 为直角的直角三角形.15.(教材P 34习题T 5变式)如图,在四边形ABCD 中,AB =BC =1,CD =3,DA =1,且∠B =90°.求: (1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号);(3)将△ABC 沿AC 翻折至△AB′C ,如图所示,连接B′D ,求四边形ACB′D 的面积.解:(1)∵AB =BC =1,∠B =90°, ∴∠BAC =∠ACB =45°,AC =AB 2+BC 2= 2. 又∵CD =3,DA =1, ∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°.(2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.(3)过点D 作DE ⊥AB′,垂足为E , 由(1)知∠DAC =90°.根据折叠可知∠B′AC =∠BAC =45°,AB =AB′=1,S △AB′C =S △ABC =12.∴∠DAE =∠DAC -∠B′AC =45°. ∴AE =DE.设DE =AE =x ,在Rt △ADE 中,AE 2+DE 2=AD 2. ∴x 2+x 2=1.∴x =22.∴S △ADB′=12×1×22=24.∴S 四边形ACB′D =S △AB′C +S △ADB′=12+24=2+24.03 综合题16.(2019·呼和浩特改编)如图,在△ABC 中,内角∠A ,∠B ,∠C 所对应的边分别为a ,b ,c.(1)若a ,b ,c 满足aa -b +c=12(a +b +c )c ,求证:△ABC 是直角三角形;(2)若a =m -n ,b =2mn ,c =m +n ,(其中m ,n 都是正整数,且m>n),求证:△ABC 是直角三角形.证明:(1)原式可变形为aa +c -b=a +b +c 2c ,∴(a +c)2-b 2=2ac ,即a 2+2ac +c 2-b 2=2ac. ∴a 2+c 2=b 2.∴△ABC 是以∠B 为直角的直角三角形.(2)∵a 2=(m -n)2,b 2=(2mn)2=4mn ,c 2=(m +n)2, ∴(m -n)2+4mn =(m +n)2,即a 2+b 2=c 2. ∴△ABC 是以∠C 为直角的直角三角形.章末复习(二)勾股定理01分点突破知识点1勾股定理(河南中招2019T9选,2018T9选,2017T18(2)解,2016T6选,2015T7选,2014T7选) 1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A.6 B.6 2C.6 3 D.122.如图,阴影部分是一个正方形,则此正方形的面积为64cm2.3.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴在△ACD中,AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 mB.13 mC.16 mD.17 m5.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在宽0.9 m,长1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5__m长.6.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO 长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题及逆定理7.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用8.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形9.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2-b2=c2,则下列说法正确的是(C)A.∠C是直角B.∠B是直角C.∠A是直角D.∠A是锐角02易错题集训10.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是100或28.11.(2018·襄阳)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为23或27.03河南常考题型演练12.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+113.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.6 cmC.5.5 cm D.1 cm14.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD15.(2019·信阳罗山县模拟)如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为(B)A.8 B.9.6 C.10 D.4 516.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.17.(2019·枣庄)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=6-2.18.(2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D 间的距离为13km.19.如图,有一块空白地,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2.解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°.∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.04核心素养专练20.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c=10,则小正方形ABCD的面积是4.周测(第十七章)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C)A.8,15,17 B.2,3, 5C.3,2, 5 D.1,2, 52.已知命题:等边三角形是等腰三角形,则下列说法正确的是(B)A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.点A(-3,-4)到原点的距离为(C)A.3 B.4 C.5 D.74.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC 的长为半径画弧,与数轴交于点D,则点D表示的数为(B)A .1.4 B. 2 C. 3 D .25.将直角三角形的三条边长同时扩大一倍,得到的三角形是(C ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .等腰三角形6.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3.若AC =4,则AB 的长为(D ) A .8 B .6 C .433 D .8337.下面各三角形中,面积为无理数的是(C )8.如图,将边长为12的正方形ABCD 折叠,使得点A 落在CD 边上的点E 处,折痕为MN.若CE 的长为7,则MN 的长为(B )A .10B .13C .15D .无法求出9.已知直角三角形两条直角边的长之和为6,斜边长为2,则这个三角形的面积是(B ) A .0.25 B .0.5 C .1 D .2 310.已知一个直角三角形的斜边长为3,若以三边为斜边分别向外作等腰直角三角形,则所作的三个等腰直角三角形的面积和为(A )A .92B .94C .3D .9 二、填空题(每小题4分,共20分)11.直角三角形斜边长是6,一直角边的长是5,则此直角三角形的另一直角边长为11.12.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB x 轴的负半轴于点C ,则点C 的坐标为(-1,0).13.如图,每个小正方形的边长均为1,则△ABC 边AC 上的高BD 的长为85.14.如图,在△ABC 中,AB ∶BC ∶CA =3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向点B 以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动.若同时出发,则过3秒时,△BPQ 的面积为18cm 2.15.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4.分别以AB ,AC ,BC 为边在AB 的同侧作正方形ABEF ,ACPQ ,BCMN ,四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于18.三、解答题(共50分)16.(8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上.(1)求△ABC 的面积;(2)求AB ,AC 的长. 解:(1)S △ABC =12×7×5 =17.5.(2)由勾股定理,得AB =32+52=34,AC =42+52=41.17.(10分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,BC =6,AC =8,求AB 与CD 的长.解:在△ABC 中,∠ACB =90°,BC =6,AC =8,由勾股定理,得AB =BC 2+AC 2=10,∵S △ABC =12AB·CD =12AC·BC , ∴CD =AC·BC AB =8×610=4.8.18.(10分)如图,∠AOB =90°,OA =45 cm ,OB =15 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?解:因为小球滚动的速度与机器人行走的速度相等,运动时间相等,所以BC =CA.设AC =BC =x ,则OC =45-x ,由勾股定理可知OB 2+OC 2=BC 2.又因为OB =15,所以152+(45-x)2=x 2.解得x =25.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是25 cm .19.(10分)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:S 6=n ;第二步:n =k ;第三步:分别用3,4,5乘k ,得三边长.当面积S 等于150时,请用“积求勾股法”求出这个直角三角形的三边长.解:当S =150时,k =n =S 6=1506=25=5, ∴三边长分别为3×5=15,4×5=20,5×5=25.∴这个直角三角形的三边长为15,20,25.20.(12分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H(点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图1,当点H 与点C 重合时,易证得FG =FD(不要求证明);如图2,当点H 为边CD 上任意一点时,求证:FG =FD.【应用】 在图2中,已知AB =5,BE =3,则FD =54,△EFC 的面积为154.(直接写结果)证明:连接AF ,由折叠的性质可得,AB =AG =AD.在Rt △AGF 和Rt △ADF 中,⎩⎪⎨⎪⎧AG =AD ,AF =AF , ∴Rt △AGF ≌Rt △ADF(HL ).∴FG =FD.。
六年级几何:勾股定理与旋图【三篇】

六年级几何:勾股定理与旋图【三篇】
导读:本文六年级几何:勾股定理与旋图【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】如图16-2,把四边形ABCD的各边都延长2倍,得到一个新四边形EFGH如果ABCD的面积是5平方厘米,则EFGH 的面积是多少平方厘米?
有四边形EFGH的面积为△EAH,△FCG,△EFB,△DHG,ABCD 的面积和,即为30+30+5=65平方厘米.
【第二篇】如图12,正方形的边长为10cm,AB=2cm,CD=3cm,求阴影部分的面积。
解答:平行两条线,做平行线。
可知外侧形成四个旋转地小长方形,除去中间的长方形后阴影部分等分。
所以(10×10-2×3)÷2+2×3=53(平方厘米)
【第三篇】几何勾股定理与弦图练习1
答案:
几何勾股定理与弦图练习2。
五年级奥数几何专项九 勾股定理与弦图(二)

专项九勾股定理与弦图(二)课前预习华盛顿的傍晚亲爱的小朋友们:“在那山的那边海那边的美国首都华盛顿,有一位中年人,他聪明又勤奋,他潜心探讨,他反复思考与演算……”那是1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员加菲尔德。
他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。
由于好奇心驱使,加菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。
只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。
于是加菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”加菲尔德答道:“是5呀。
”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”加菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”加菲尔德一时语塞,无法解释了,心里很不是滋味。
加菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。
他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
具体方法如下:两个全等的Rt△ABC和Rt△BDE可以拼成直角梯形ACDE,则梯形面积等于三个直角三角形面积之和。
即(AC+DE)×CD÷2=AC×BC÷2+BD×DE÷2+AB×BE÷2(a+b)2÷2=a×b÷2+a×b÷2+c×c÷2化简整理得a2+b2=c2点评:此种解法主要利用了三角形的面积公式:底×高÷2,和梯形的面积公式:(上底+下底)×高÷2.而在我国对于勾股定理的证明又做出了那些贡献哪?在我国古代,把直角三角形叫做勾股形。
2019六年级上册奥数试题 勾股定理与弦图练习题 全国通用

勾股定理与弦图练习题一.夯实基础:1.将长为10米的梯子斜靠在墙上,若梯子上端到墙的底端距离为6米,则梯足到墙的底端距离为米.2.若直角三角形一直角边和斜边分别为17和145,则另一直角边为3.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是4.三个正方形的面积如图,正方形A的面积为BBA CD二. 拓展提高:5. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为 cm 2.6. 已知四边形ABCD 中(如图2), AB = 13 ,BC = 3 ,CD = 4 ,DA = 12 ,并且 BD 与 AD垂直,则四边形 ABCD 的面积等于 BCA D图27. 一块木板如图所示,已知AB =3,BC =4,DC =13,AD =12,木板的面积为()AD C8. 如图在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的面积是AB D C三. 超常挑战9.如图,求l的长度。
1 11 11 111l110.如图,四边形BCDE是正方形,三角形ABC是直角三角形。
若A B 长3厘米,AC长4厘米,试求三角形ABE 的面积。
AC BD E11.如图所示,ABCD为一个长方形,问阴影长方形的面积是多少?ABE F四.杯赛演练:12. 如图 4,六个相同的长方形围成了大小两个正方形,已知小正方形的面积是 36 平方厘米,则每个小长方形的面积是多少平方厘米?13. (“华罗庚金杯赛”初赛)科技小组演示自制的机器人.若机器人从点 A 向南行走1.2米,再向东行走 1米,接着又向南行走1.8米,再向东行走2米.最后又向南行走1米到达 B 点.则 B 点与 A 点的距离是( )米.(A)3 (B)4 (C)5 (D)714. (全国华罗庚金杯少年数学邀请赛)如图在美丽的平面珊瑚礁图案中,三角形都是直角三角形,四边形都是正方形,如果图中所有的正方形的面积之和为980 平方厘米,问最大的正方形的边长是多少厘米?15. 如图,对角线 BD 将矩形 ABCD 分割为两个三角形, AE 和CF 分别是两个三角形上的高,长度都等于6cm , EF 的长度为5cm ,求矩形 ABCD 的面积.ADB CB A B ECD FE FBAC E F D答案:1. 根据勾股定理得梯足到墙的底端距离为 8米2. 根据勾股定理,另一直角边的平方为1452 -172 = (145 +17) ⨯ (145 -17) =128⨯162 = 28 ⨯ 34 = (16⨯ 9)2 ,所以另一直角边为1443. 当第三边为斜边时,第三边长的平方是32+42=25,当第三边长是直角边时,第三边长的平方是42-32=7,因此第三边的平方是25或74. A 的面积为100-64=36.5. 根据勾股定理有 S +S =S , S +S =S , S +S =72,所以正方形 A , B , C , D 的面积之和为496. 在直角∆ABD 中运用勾股定理可知 BD 2=132-122=25, BD =5. 因此∆ABD 的面积为1⨯12⨯5=30(单位面积). 2再根据勾股定理的逆定理可以判定∆BCD 也是直角三角形,因为 BD 2 =BC 2 +CD 2 ,从而∆BCD 的面积为1⨯4⨯3=5(单位面积). 2所以四边形ABCD 的面积是36(单位面积).7. 连接 AC ,根据勾股定理得 AC =5,又因为52+122=132,所以三角形 ACD 为直角三角形,因此木板的面积为5⨯12÷2-3⨯4÷2=24AD CF8. 根据勾股定理有 BD =9, CD =5,所以△ABC 的面积是(9+5) ⨯12÷2=849. 根据勾股定理, l 2=12+12+12+12+12+12+12+12+12=9=32,所以l =310. 过 A 作 AH ⊥EB 于 H ,AF ⊥BC 于 F 。
中考数学复习----勾股定理知识点总结与专项练习题(含答案解)

中考数学复习----勾股定理知识点总结与专项练习题(含答案解) 知识点总结1. 勾股民定理的内容:在直角三角形中,两直角边的平方的和等于斜边的平方。
若直角三角形的两直角边是b a ,,斜边是c ,则222b a c +=。
2. 勾股数:满足直角三角形勾股定理的三个正整数是一组勾股数。
3. 勾股定理的逆定理:若三角形的三条边分别是c b a ,,,且满足222b a c +=,则三角形是直角三角形,且∠C 是直角。
4. 特殊三角形三边的比:①含30°的直角三角形三边的比例为(从小打大):2:3:1。
②45°的等腰直角三角形三边的比例为(从小到大):2:1:1。
5. 两点间的距离公式:若点()11y x A ,与点()22y x B ,,则线段AB 的长度为:()()221221y y x x AB −+−=。
练习题 1、(2022•攀枝花)如图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC .若OC =,BC =1,∠AOB =30°,则OA 的值为( )A .3B .23C .2D .1【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.【解答】解:∵∠OBC=90°,OC=,BC=1,∴OB===2,∵∠A=90°,∠AOB=30°,∴AB=OB=1,∴OA===,故选:A.2、(2022•荆门)如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为120m的正方形,且每一个侧面与地面成60°角,则金字塔原来高度为()A.120m B.603m C.605m D.1203m【分析】根据底部是边长为120m的正方形求出BC的长,再由含30°角的直角三角形的性质求解AB的长,利用勾股定理求出AC的长即可.【解答】解:如图,∵底部是边长为120m的正方形,∴BC=×120=60m,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∴AB =2BC =120m ,∴AC ==m . 故选:B .3、(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC 中,∠A =30°,AC =3,∠A 所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A .23B .23﹣3C .23或3D .23或23﹣3【分析】根据题意知,CD =CB ,作CH ⊥AB 于H ,再利用含30°角的直角三角形的性质可得CH ,AH 的长,再利用勾股定理求出BH ,从而得出答案.【解答】解:如图,CD =CB ,作CH ⊥AB 于H ,∴DH =BH ,∵∠A =30°,∴CH =AC =,AH =CH =,在Rt △CBH 中,由勾股定理得BH ==,∴AB =AH +BH ==2,AD =AH ﹣DH ==, 故选:C . 4、(2022•荆州)如图,在Rt △ABC 中,∠ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若CE =31AE =1,则CD = .【分析】如图,连接BE ,根据作图可知MN 为AB 的垂直平分线,从而得到AE =BE =3,然后利用勾股定理求出BC ,AB ,最后利用斜边上的中线的性质即可求解.【解答】解:如图,连接BE ,∵CE =AE =1,∴AE =3,AC =4,而根据作图可知MN 为AB 的垂直平分线,∴AE =BE =3,在Rt △ECB 中,BC ==2,∴AB ==2, ∵CD 为直角三角形ABC 斜边上的中线,∴CD =AB =.故答案为:. 5、(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于21AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .25B .3C .22D .310 【分析】利用勾股定理求出AB ,再利用相似三角形的性质求出AE 即可.【解答】解:在Rt △ABC 中,BC =6,AC =8,∴AB ===10, ∵BD =CB =6,∴AD =AB ﹣BC =4,由作图可知EF 垂直平分线段AD ,∴AF =DF =2,∵∠A =∠A ,∠AFE =∠ACB =90°,∴△AFE ∽△ACB ,∴=, ∴=,∴AE =,故选:A .6、(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .42B .6C .210D .35【分析】在网格中,以MN 为直角边构造一个等腰直角三角形,使PM 最长,利用勾股定理求出即可.【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,此时PM最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.7、(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:=,点O到学校的距离为:=,点O到体育场的距离为:=,点O到医院的距离为:=,∵<=<,∴点O到超市的距离最近,故选:A.8、(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE 的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.14B.15C.4D.17【分析】方法一:根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB和BC的长,根据等面积法可以求得EG的长,再根据勾股定理求得EF的长,最后计算出CE的长即可.方法二:延长ED到F,使得DE=DF,连接CF,BF,然后根据全等三角形的判定和性质,以及勾股定理,可以求得CE的长.【解答】解:方法一:作EF⊥CB交CB的延长线于点F,作EG⊥BA交BA的延长线于点G,∵DB=DE=2,∠BDE=90°,点A是DE的中点,∴BE===2,DA=EA=1,∴AB===,∵AB=BC,∴BC=,∵=,∴,解得EG=,∵EG⊥BG,EF⊥BF,∠ABF=90°,∴四边形EFBG是矩形,∴EG=BF=,∵BE=2,BF=,∴EF===,CF=BF+BC=+=,∵∠EFC=90°,∴EC===,故选:D.方法二:延长ED到F,使得DE=DF,连接CF,BF,如图所示,∵BD=DE=2,∠BDE=90°,∴∠BDE=∠BDF=90°,EF=4,∴△BDE≌△BDF(SAS),∴BE=BF,∠BEA=∠BF A=45°,∵∠EBA+∠ABF=90°,∠ABF+∠FBC=90°,∴∠EBA=∠FBC,∵BE=BF,BA=BC,∴△EBA≌△FBC(SAS),∴∠BEA=∠BFC=45°,AE=CF,∴∠CFE=∠BFC+∠AFB=90°,∵点A为DE的中点,∴AE=1,∴CF=1,∴EC===,故选:D.9、(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是.【分析】设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.10、(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE ∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=,tan∠FDB=,∴,解得BF=,故选项A错误;故选:A.11、(2022•通辽)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CP A=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CP A=30°.∵∠PCB=30°,∴∠PCB=∠CP A,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.12、(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【分析】过点D作DM⊥CI于点M,过点F作FN⊥CI于点N,由正方形的性质可证得△ACJ≌△CDM,△BCJ≌△CFN,可得DM=CJ,FN=CJ,可证得△DMI≌△FNI,由直角三角形斜边上的中线的性质可得DI=FI=CI,由勾股定理可得MI,NI,从而可得CN,可得BJ与AJ,即可求解.【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.13、(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【分析】由勾股定理和乘法公式完成计算即可.【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.14、(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE=.【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH =BG=x,结合图形得出AE=x﹣1,利用勾股定理列方程求解.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.15、(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,径隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是(结果用含m的式子表示).【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【解答】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2﹣1,∴弦是a+2=m2﹣1+2=m2+1,故答案为:m2+1.16、(2022•常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC断裂(填“会”或“不会”,参考数据:3≈1.732).【分析】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,从而可得△ABD是等边三角形,进而可得BD=20cm,然后再在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可解答.【解答】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.17、(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【分析】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.18、(2022•泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为.【分析】根据勾股定理即可得到结论.【解答】解:如图,第一步到①,第二步到②,故走两步后的落点与出发点间的最短距离为=,故答案为:.。
小学奥数勾股定理与弦图练习及答案【三篇】

小学奥数勾股定理与弦图练习及答案【三篇】
导读:本文小学奥数勾股定理与弦图练习及答案【三篇】,仅供参考,
如果觉得很不错,欢迎点评和分享。
【第一篇】例2、△ABC是直角三角形,在边AB、BC、CA
上分别取点D、E、F,使得AD=AF=FC=EC。
当△DEF成为等腰直
角三角形、BE=3cm、DB=1cm时,求△ABC的面积。
【第二篇】例1、如图,P是正方形ABCD外面的一点,PB=12
厘米,△APB的面积是90平方厘米,△CPB的面积是48平方厘米。
请问:正方形ABCD的面积是多少平方厘米?
【第三篇】习题:从一个正方形的木板上锯下宽0.5米的一
个长方形木条以后,剩下的长方形面积为5平方米,问:锯下的长方
形木条的面积等于多少平方米?。
初中数学八年级几何勾股定理练习题2(含答案)

初中数学八年级几何勾股定理练习题2(含答案)一.填空题1、一直角三角形的两直角边的长度分别为3、6,则斜边的长度为。
2、△ABC为直角三角形,且∠C=90°,AB=4,A C=2,则∠A= °3、在Rt△ABC中,∠BAC=90°,且a+c=9,a﹣c=4,则b的值是.4、如图所示的正方形网格中,每个小正方形的面积均为1,正方形ABCM,CDEN,MNPQ的顶点都在格点上,则正方形MNPQ的面积为.5、如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.6、如图,一架13m长的梯子AB斜靠在一竖直的墙AC上,这时AC为12m.如果子的顶端A沿墙下滑7m,那么梯子底端B向外移m.7、如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若AC=9,AB=15,则DE=.8、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.9、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.10、如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是.二.选择题1、下列各组数表示三角形的三条边的边长,其中是直角三角形的是()A、 2,3,4 B 、 5,6,7 C、6,7,8 D、6,8,102、△ABC为直角三角形,且∠C=90°,AB=6 , AC=2,则BC= .A 、3B 、 4C 、23D 、243、如图,在三角形ABC 中,已知∠C =90°,AC =3,BC =4,则AB 的大小有可能是( )A .1B .2C .3D .54、下列各组数据中,不是勾股数的是( ) A .3,4,5 B .7,24,25C .8,15,17D .5,6,95、满足下列关系的三条线段a ,b ,c 组成的三角形一定是直角三角形的是( )A .a <b +cB .a >b ﹣cC .a =b =cD .a 2=b 2﹣c 26、为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)( )A .0.7米B .0.8米C .0.9米D .1.0米7、下列选项中(图中三角形都是直角三角形),不能用来验证勾股定理的是( )A.B.C.D.8、如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()km.A.4B.5C.6D.9、两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2B.(a﹣b)2=c2C.a2﹣b2=c2D.a2+b2=c210、如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m三.解答题1、如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?2、在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的三条边.(1)如果a=3,b=4,求c的长;(2)如果c=13,b=12,求a的长.3、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=BC,由于某种原因,由C到B的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D(A、D、B在同一条直线上),并新修一条路CD,测得CA=6.5千米,CD=6千米,AD=2.5千米.(1)问CD是否为从村庄C到河边最近的路?请通过计算加以说明;(2)求原来的路线BC的长.4、如图,已知等腰三角形ABC的底边BC=20cm,D是腰AB上的一点,且BD=12cm,CD=16cm.(1)求证:△BCD是直角三角形;(2)求△ABC的周长,5、(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×ab+(a﹣b)2,所以4×ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.6、如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.求:四边形ABDC的面积.7、勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:a b c13=1+24=2×1×25=2×2+125=2+312=2×2×313=4×3+137=3+424=2×3×425=6×4+149=4+540=2×4×541=8×5+1…………n a=b=c=(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现a,b,c之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”).(4)你能用以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)2参考答案一.填空题31、52、60°3、解:∵a+c=9,a﹣c=4,∴a=,c=,∵在Rt△ABC中,∠BAC=90°,∴b====6,故答案为:6.4、解:∵CM=3,CN=6,∠MCN=90°,∴MN2=CM2+CN2=32+62=45,∴正方形MNPQ的面积=MN2=45,故答案为:45.5、解:由题意可得:AO=8海里,BO=15海里,∠AOB=180°﹣25°﹣65°=90°,故AB==17(海里),答:两轮船相距17海里.故答案为:17.6、解:∵∠ACB=90°,AB=13,AC=12,∴BC==5,∵AE=7,∴CE=12﹣7=5,∴CD==12,∴BD=CD﹣BC=7,∴梯子底端B向外移7m,故答案为:7.7、解:在Rt△ABC中,∠C=90°,AC=9,AB=15,由勾股定理,得BC═12,∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,×AC×CD+×AB×DE=×AC×BC,即×9×DE+×15×DE=×9×12,解得:DE=4.5.故答案为:4.5.8、解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.9、解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.10、解:如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,AC =×2π×24=24π,∠C =90°,BC =7π,由勾股定理得:AB ==25π.故答案为:25π.二.选择题1、解 因为D :6²+8²=10²故选D2、解:由勾股定理,BC=22AC AB -=2226-=32=24故选D3、解:方法1:由垂线段最短,可得AB 的大小有可能是5.方法2:在三角形ABC 中,∠C =90°,AC =3,BC =4,则AB ===5.故选:D .4、解:A 、32+42=52,是勾股数;B 、72+242=252,是勾股数;C 、82+152=172,是勾股数;D、52+62≠92,不是勾股数.故选:D.5、解:当a2=b2﹣c2,可得:a2+c2=b2,所以三条线段a,b,c组成的三角形一定是直角三角形,故选:D.6、解:梯脚与墙角距离:=0.7(米),∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.7、解:A、中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理,本选项不符合题意.B、不能证明勾股定理,本选项符合题意.C、利用A中结论,本选项不符合题意.D、中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理,本选项不符合题意,故选:B.8、解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.9、解:根据题意得:S=(a+b)(a+b),S=ab+ab+c2,(a+b)(a+b)=ab+ab+c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:D.10、解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:BC===5(m),∴大树的高度为5+5=10(m),故选:D.三.解答题1、解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120m,则该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.2、解:(1)∵在Rt△ABC中,∠C=90°,a=3,b=4,∴c===5;(2)∵在Rt△ABC中,∠C=90°,c=13,b=12,∴a===5.3、解:(1)是,理由:∵62+2.52=6.52,∴CD2+AD2=AC2,∴△ADC为直角三角形,∴CD⊥AB,∴CD是从村庄C到河边最近的路;(2)设BC=x千米,则BD=(x﹣2.5)千米,∵CD⊥AB,∴62+(x﹣2.5)2=x2,解得:x=8.45,答:路线BC的长为8.45千米.4、(1)证明:∵在△BDC中,BC=20cm,BD=12cm,CD=16cm.∴BD2+CD2=BC2,∴∠BDC=90°,∴△BCD是直角三角形;(2)解:设AB=AC=xcm,则AD=(x﹣12)cm,在Rt△ADC中,由勾股定理得:AD2+CD2=AC2,即(x﹣12)2+162=x2,解得:x=15,即AB=AC=15cm,∵BC=20cm,∴△ABC的周长是AB+AC+BC=15cm+15cm+20cm=50cm.5、解:(1)梯形ABCD的面积为(a+b)(a+b)=a2+ab+b2,也利用表示为ab+c2+ab,∴a2+ab+b2=ab+c2+ab,即a2+b2=c2;(2)∵直角三角形的两直角边分别为3,4,∴斜边为5,∵设斜边上的高为h,直角三角形的面积为×3×4=×5×h,∴h=,故答案为;(3)∵图形面积为:(a﹣2b)2=a2﹣4ab+4b2,∴边长为a﹣2b,由此可画出的图形为:6、解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴四边形ABDC的面积=S△ABC +S△BCD=×12×5+×3×4=36.7、解:(1)由表中数据可得:a=2n+1,b=2n(n+1),c=2n(n+1)+1,故答案为:2n+1,2n(n+1),2n(n+1)+1;(2)a2+b2=c2,理由是:∵a=2n+1,b=2n(n+1),c=2n(n+1)+1,∴a2+b2=(2n+1)2+[2n(n+1)]2=[2n(n+1)]2+4n(n+1)+1c2=[2n(n+1)+1]2=[2n(n+1)]2+4n(n+1)+1∴a2+b2=c2;(3)对于偶数,这个关系不成立,故答案为:不成立;(4)当2n+1=2019时,n=1009,∴当n=1009时,a2=20192,b2=[2n(n+1)]2=20202×10092,c2=[2n(n+1)+1]2=[2020×1009+1]2,∵a2+b2=c2;∴20192+20202×10092﹣(2020×1009+1)2=0.。
勾股定理重难点练习题

知识结构
历史
勾股定理
定理:直角三角形两直角边的平方和等于斜边的平方. 证明:赵爽弦图、毕达哥拉斯弦图、总统证法等,
都是等面积思想.
定理:如果一个三角形两条边的平方和等于第三条边的平方,
勾股定理
证明:作那一么个这直个角三三角角形形是,直利角用三勾角股形定.理、全等证明.
任何东西只要移至该灯 5 m 及 5 m 以内时,灯就会自动发光.一个身高 1.5 m
的学生从远方走过来,走到离门_______m 处时,灯刚好发光.(门的厚度忽
略不计)
【综合应用】
13. 如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=39 m,BC=36m,
求这块地的面积.
请你利用图 2 给出证明过程.
(3)若动点 P 满足 PA 1 ,请直接写出 PC 的值.
PB 3
AC
20. (课本第 11 页第 5 题)给你一根长绳子,没有其他工具,你能方便地得到 一个直角吗?
5
21. (课本第 13 页“做一做”)李叔叔想要检测雕像底座正面的边 AD 和边 BC 是否分别垂直于底边 AB,但他随身只带了卷尺. (1)你能替他想办法完成任务吗? (2)李叔叔量得边 AD 的长是 30 cm,边 AB 的长是 40 cm,点 B,D 之间的 距离是 50 cm,边 AD 垂直于边 AB 吗? (3)小明随身只有一个长度为 20cm 的刻度尺,他能有办法检验边 AD 是否 垂直于边 AB 吗?边 BC 与边 AB 呢?
第 7 题图
第 8 题图
8. 如图,一只蚂蚁从长为 4,宽为 3,高为 2 的长方体纸箱(有盖)的 A 点沿
纸箱爬到 B 点,那么它所爬行的最短路程是____________.
(完整版)勾股定理典型例题详解及练习(附答案)

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段, 其中能构成一个直角三角形三边的线段是( )1) 题意分析:本题考查勾照定理及勾股定理的逆定理./2) 解题思踏;可利用勾照定理直接求出各也长,再进行判断.卜 解答过程:#ai^AEAF 中,AF=h AE=2,根据勾股定理,得。
跻=J 招己'十』十F = 姊同理 = 2思* QH. = 1 CD = 2^5计算发现(右尸十0招”=(雁沪t 即/费+寥=奇,根据 勾股定理的迎定理得到以AE 、EF 、GH 为也的三角形是直角三角形.故选 B. *解题后B0思考、1.勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形. 因此,解跑时一定要认真分析题目所蛤条件,看是否可用勾股定理来解n ,L 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 七”就是斜诳而.固执"地运用公式"二/十舛 其实,同样是四"6 NC 不一定就等于叩幻I 不一定就是斜遮,A ABC 不一定就是直角三痢 形.卜A. CD 、EF 、GH C. AB 、CD GHB. AB 、EF 、GHD. AB 、CD EF3.直角三角形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从"形胡(一个三角形是直角三角形)到板'3’ =疽十瑟)的辿程,而直角三角形的判定是一个从W〔一个三角形的三满是L = ^+广的条件)到胃形'这个三弟形是直急三甬形)的过程.甘1在应用勾股定理解题时,要全面地毒虑问题.注意m题中存在的多种可能性,避免漏解。
/例2-如图'有一块直角三角形舐板幽G两直角边ACMkm, BWg 现博直甬边AC沿直线AD折叠,庾它落在斜辿AB上,且点C落到点E处, 则CD等于(EC 。
A. 2cmB. 3cm C 4an D 5cm*" iiEMraZJ VI :『n暴意分析,本题考查勾股定理的应用,:)解题思路;本题若直接在△XOQ中运用勾股定理是无法求得® ffi 长的,因为只知道一条迫应。
初中数学八年级几何勾股定理练习题2(含答案)

初中数学⼋年级⼏何勾股定理练习题2(含答案)初中数学⼋年级⼏何勾股定理练习题2(含答案)⼀.填空题1、⼀直⾓三⾓形的两直⾓边的长度分别为3、6,则斜边的长度为。
2、△ABC为直⾓三⾓形,且∠C=90°,AB=4,A C=2,则∠A= °3、在Rt△ABC中,∠BAC=90°,且a+c=9,a﹣c=4,则b的值是.4、如图所⽰的正⽅形⽹格中,每个⼩正⽅形的⾯积均为1,正⽅形ABCM,CDEN,MNPQ的顶点都在格点上,则正⽅形MNPQ的⾯积为.5、如图,轮船甲从港⼝O出发沿北偏西25°的⽅向航⾏8海⾥,同时轮船⼄从港⼝O出发沿南偏西65°的⽅向航⾏15海⾥,这时两轮船相距海⾥.6、如图,⼀架13m长的梯⼦AB斜靠在⼀竖直的墙AC上,这时AC为12m.如果⼦的顶端A沿墙下滑7m,那么梯⼦底端B向外移m.7、如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若AC=9,AB=15,则DE=.8、对⾓线互相垂直的四边形叫做“垂美”四边形,现有如图所⽰的“垂美”四边形ABCD,对⾓线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.9、“赵爽弦图”巧妙地利⽤⾯积关系证明了勾股定理,如图所⽰的“赵爽弦图”是由四个全等的直⾓三⾓形和⼀个⼩正⽅形拼成的⼀个⼤正⽅形,设直⾓三⾓形较长直⾓边长为a,较短直⾓边长为b,若a=4,b=3,则⼤正⽅形的⾯积是.10、如图,圆柱的底⾯半径为24,⾼为7π,蚂蚁在圆柱表⾯爬⾏,从点A爬到点B的最短路程是.⼆.选择题1、下列各组数表⽰三⾓形的三条边的边长,其中是直⾓三⾓形的是()A、 2,3,4 B 、 5,6,7 C、6,7,8 D、6,8,102、△ABC为直⾓三⾓形,且∠C=90°,AB=6 , AC=2,则BC= .A 、3B 、 4C 、23D 、243、如图,在三⾓形ABC 中,已知∠C =90°,AC =3,BC =4,则AB 的⼤⼩有可能是()A .1B .2C .3D .54、下列各组数据中,不是勾股数的是() A .3,4,5 B .7,24,25C .8,15,17D .5,6,95、满⾜下列关系的三条线段a ,b ,c 组成的三⾓形⼀定是直⾓三⾓形的是()A .a <b +cB .a >b ﹣cC .a =b =cD .a 2=b 2﹣c 26、为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,⼤林搬来⼀架⾼为2.5⽶的⽊梯,准备把拉花挂到2.4⽶的墙上,开始梯脚与墙⾓的距离为1.5⽶,但⾼度不够.要想正好挂好拉花,梯脚应向前移动(⼈的⾼度忽略不计)()A .0.7⽶B .0.8⽶C .0.9⽶D .1.0⽶7、下列选项中(图中三⾓形都是直⾓三⾓形),不能⽤来验证勾股定理的是()A.B.C.D.8、如图,⾼速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建⼀个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()km.A.4B.5C.6D.9、两个边长分别为a,b,c的直⾓三⾓形和⼀个两条直⾓边都是c的直⾓三⾓形拼成如图所⽰的图形,⽤两种不同的计算⽅法计算这个图形的⾯积,则可得等式为()A.(a+b)2=c2B.(a﹣b)2=c2C.a2﹣b2=c2D.a2+b2=c210、如图,⼀棵⼤树在离地⾯3m,5m两处折成三段,中间⼀段AB恰好与地⾯平⾏,⼤树顶部落在离⼤树底部6m处,则⼤树折断前的⾼度是()A.9m B.14m C.11m D.10m三.解答题1、如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有⼀卡车在公路MN上以5m/s的速度沿PN⽅向⾏驶,卡车⾏驶时周围100m以内都会受到噪⾳的影响,请你算出该学校受影响的时间多长?2、在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的三条边.(1)如果a=3,b=4,求c的长;(2)如果c=13,b=12,求a的长.3、在⼀条东西⾛向河的⼀侧有⼀村庄C,河边原有两个取⽔点A,B,其中AB=BC,由于某种原因,由C到B的路现在已经不通,该村为⽅便村民取⽔决定在河边新建⼀个取⽔点D(A、D、B在同⼀条直线上),并新修⼀条路CD,测得CA=6.5千⽶,CD=6千⽶,AD=2.5千⽶.(1)问CD是否为从村庄C到河边最近的路?请通过计算加以说明;(2)求原来的路线BC的长.4、如图,已知等腰三⾓形ABC的底边BC=20cm,D是腰AB上的⼀点,且BD=12cm,CD=16cm.(1)求证:△BCD是直⾓三⾓形;(2)求△ABC的周长,5、(1)教材在探索平⽅差公式时利⽤了⾯积法,⾯积法可以帮助我们直观地推导或验证公式,俗称“⽆字证明”,例如,著名的赵爽弦图(如图①,其中四个直⾓三⾓形较⼤的直⾓边长都为a,较⼩的直⾓边长都为b,斜边长都为c),⼤正⽅形的⾯积可以表⽰为c2,也可以表⽰为4×ab+(a﹣b)2,所以4×ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直⾓三⾓形两条直⾓边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第⼆⼗任总统伽菲尔德的“总统证法”,请你利⽤图②推导勾股定理.(2)试⽤勾股定理解决以下问题:如果直⾓三⾓形ABC的两直⾓边长为3和4,则斜边上的⾼为.(3)试构造⼀个图形,使它的⾯积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上⾯的⽹格中,并标出字母a,b所表⽰的线段.6、如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外⼀点,连接DC,DB,且CD=4,BD=3.求:四边形ABDC的⾯积.7、勾股定理是数学中最常见的定理之⼀,熟练的掌握勾股数,对迅速判断、解答题⽬有很⼤帮助,观察下列⼏组勾股数:a b c13=1+24=2×1×25=2×2+125=2+312=2×2×313=4×3+137=3+424=2×3×425=6×4+149=4+540=2×4×541=8×5+1…………n a=b=c=(1)你能找出它们的规律吗?(填在上⾯的横线上)(2)你能发现a,b,c之间的关系吗?(3)对于偶数,这个关系(填“成⽴”或“不成⽴”).(4)你能⽤以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)2⼀.填空题31、52、60°3、解:∵a+c=9,a﹣c=4,∴a=,c=,∵在Rt△ABC中,∠BAC=90°,∴b====6,故答案为:6.4、解:∵CM=3,CN=6,∠MCN=90°,∴MN2=CM2+CN2=32+62=45,∴正⽅形MNPQ的⾯积=MN2=45,故答案为:45.5、解:由题意可得:AO=8海⾥,BO=15海⾥,∠AOB=180°﹣25°﹣65°=90°,故AB==17(海⾥),答:两轮船相距17海⾥.故答案为:17.6、解:∵∠ACB=90°,AB=13,AC=12,∴BC==5,∵AE=7,∴CE=12﹣7=5,∴CD==12,∴BD=CD﹣BC=7,∴梯⼦底端B向外移7m,故答案为:7.7、解:在Rt△ABC中,∠C=90°,AC=9,AB=15,由勾股定理,得BC═12,∵AD平分∠CAB,DE⊥AB,∠C=90°,×AC×CD+×AB×DE=×AC×BC,即×9×DE+×15×DE=×9×12,解得:DE=4.5.故答案为:4.5.8、解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.9、解:由勾股定理可知⼤正⽅形的边长===5,∴⼤正⽅形的⾯积为25,故答案为25.10、解:如图所⽰:沿过A点和过B点的母线剪开,展成平⾯,连接AB,则AB 的长是蚂蚁在圆柱表⾯从A 点爬到B 点的最短路程, AC =×2π×24=24π,∠C =90°,BC =7π,由勾股定理得:AB ==25π.故答案为:25π.⼆.选择题 1、解因为D :62+82=102 故选D 2、解:由勾股定理,BC=22AC AB -=2226-=32=24 故选D 3、解:⽅法1:由垂线段最短,可得AB 的⼤⼩有可能是5.⽅法2:在三⾓形ABC 中,∠C =90°,AC =3,BC =4,则AB ===5.故选:D . 4、解:A 、32+42=52,是勾股数; B 、72+242=252,是勾股数; C 、82+152=172,是勾股数;D、52+62≠92,不是勾股数.5、解:当a2=b2﹣c2,可得:a2+c2=b2,所以三条线段a,b,c组成的三⾓形⼀定是直⾓三⾓形,故选:D.6、解:梯脚与墙⾓距离:=0.7(⽶),∵开始梯脚与墙⾓的距离为1.5⽶,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(⽶).故选:B.7、解:A、中间⼩正⽅形的⾯积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理,本选项不符合题意.B、不能证明勾股定理,本选项符合题意.C、利⽤A中结论,本选项不符合题意.D、中间⼩正⽅形的⾯积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理,本选项不符合题意,故选:B.8、解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.9、解:根据题意得:S=(a+b)(a+b),S=ab+ab+c2,(a+b)(a+b)=ab+ab+c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:D.10、解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:BC===5(m),∴⼤树的⾼度为5+5=10(m),故选:D.三.解答题1、解:设拖拉机开到C处刚好开始受到影响,⾏驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120m,则该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产⽣的噪声的影响时间为24秒.2、解:(1)∵在Rt△ABC中,∠C=90°,a=3,b=4,∴c===5;(2)∵在Rt△ABC中,∠C=90°,c=13,b=12,∴a===5.3、解:(1)是,理由:∵62+2.52=6.52,∴CD2+AD2=AC2,∴△ADC为直⾓三⾓形,∴CD⊥AB,∴CD是从村庄C到河边最近的路;(2)设BC=x千⽶,则BD=(x﹣2.5)千⽶,∵CD⊥AB,∴62+(x﹣2.5)2=x2,解得:x=8.45,4、(1)证明:∵在△BDC中,BC=20cm,BD=12cm,CD=16cm.∴BD2+CD2=BC2,∴∠BDC=90°,∴△BCD是直⾓三⾓形;(2)解:设AB=AC=xcm,则AD=(x﹣12)cm,在Rt△ADC中,由勾股定理得:AD2+CD2=AC2,即(x﹣12)2+162=x2,解得:x=15,即AB=AC=15cm,∵BC=20cm,∴△ABC的周长是AB+AC+BC=15cm+15cm+20cm=50cm.5、解:(1)梯形ABCD的⾯积为(a+b)(a+b)=a2+ab+b2,也利⽤表⽰为ab+c2+ab,∴a2+ab+b2=ab+c2+ab,即a2+b2=c2;(2)∵直⾓三⾓形的两直⾓边分别为3,4,∴斜边为5,∵设斜边上的⾼为h,直⾓三⾓形的⾯积为×3×4=×5×h,∴h=,故答案为;(3)∵图形⾯积为:(a﹣2b)2=a2﹣4ab+4b2,∴边长为a﹣2b,由此可画出的图形为:6、解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直⾓三⾓形,∴四边形ABDC的⾯积=S△ABC +S△BCD7、解:(1)由表中数据可得:a=2n+1,b=2n(n+1),c=2n(n+1)+1,故答案为:2n+1,2n(n+1),2n(n+1)+1;(2)a2+b2=c2,理由是:∵a=2n+1,b=2n(n+1),c=2n(n+1)+1,∴a2+b2=(2n+1)2+[2n(n+1)]2=[2n(n+1)]2+4n(n+1)+1c2=[2n(n+1)+1]2=[2n(n+1)]2+4n(n+1)+1∴a2+b2=c2;(3)对于偶数,这个关系不成⽴,故答案为:不成⽴;(4)当2n+1=2019时,n=1009,∴当n=1009时,a2=20192,b2=[2n(n+1)]2=20202×10092,c2=[2n(n+1)+1]2=[2020×1009+1]2,∵a2+b2=c2;∴20192+20202×10092﹣(2020×1009+1)2=0.。
勾股定理习题(含解析)

勾股定理习题巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,”赵爽弦图“ 1.是由四个全等的直角三角形和一个小正方形拼成的一”赵爽弦图“如图所示的若,b较短直角边长为,a设直角三角形较长直角边长为个大正方形,)b+a(2),则小正方形的面积为(13,大正方形的面积为=215 .4 C.3 B.A6.D 解:如图所示:【解答】2,=21)b+a∵(222ab+a∴,=21b+,13∵大正方形的面积为,13=8﹣2ab=21.8=5﹣13∴小正方形的面积为故选:.C,另两条边长是连续偶数,则该三角形周长为6直角三角形有一条直角边为 2.)( B 20 .A26.D24 .C 22 .2+x,则斜边为(x解:∵两条边长是连续偶数,可设另一直角边为【解答】,)222,=6x﹣)2+x(根据勾股定理得:+x,∴x=8解得,2=10.10=24+8+6∴周长为:C故选)在下列四组数中,不是勾股数的一组数是( 3.c=15,b=12,a=9.Bc=17 ,b=8,a=15.A c=25 ,b=24,a=7.Cc=7,b=5,a=3.D222,=289=178+15组中,A解:由题意可知,在【解答】222222229组中,B在≠5+3组中,D,而在=625=2524+7组中,C,在=225=1512+27.D,故选)下列各组数,可以作为直角三角形的三边长的是( 4.24,7.B 4 ,3,2.A15,13,5.D 20 ,12,8.C 25 ,2222、∵A解:【解答】,∴不能构成直角三角形;4≠3+222,∴能构成直角三角形;=2524+7、∵B222≠12+8、∵C,∴不能构成直角三角形;20222.B,∴不能构成直角三角形.故选15≠13+5、∵D)下列各组数中,能构成直角三角形的是( 5.A23,12,5.D 11 ,8,6.C 2 ,1,1.B 6 ,5,4.222错误;A,∴不能构成直角三角形,故6≠5+4、∵A解:【解答】22正确;B,∴能构成直角三角形,故=1+1、∵B222错误;C,∴不能构成直角三角形,故11≠8+6、∵C222错误.故选:D,∴不能构成直角三角形,故23≠12+5、∵D.B,2,1③12 ,5,13②10 ,8,6分别以下列五组数为一个三角形的边长:① 6.,9④3 )组..其中能构成直角三角形的有(5,4,3⑤ 41 ,40.C 3 .B2 .A5.D 4 2222222229,④12+=513,②=108+6解:因为①【解答】,符合勾股定理的=4140+.B逆定理,所以能构成直角三角形的有三组.故选:B∠:A②∠;C﹣∠B∠A=①∠下列条件:,c,b,a的三边长分别为ABC△7.2﹣b()c+b(=a;③5:4:C=3∠,其中能判断△13:12:c=5:b:a;④)c)是直角三角形的个数有(ABC个2.B 个1.A个4.D 个3.C A=解;①∠【解答】,故①是直角B=90°,解得∠C=180°∠+B∠+A,∠C﹣∠B∠三角形;A②∠,C=75°∠,B=60°∠,A=45°解得∠,C=180°∠+B∠+A∠,5:4:C=3∠:B∠:故②不是直角三角形;2222a,∴)c﹣b()c+b (=a③∵,符合勾股定理的逆定理,故③是直角三角=bc+形;222,∴13:12:c=5:b:a④∵,符合勾股定理的逆定理,故④是直角三角=cb+a 形..C个;故选:3是直角三角形的个数有ABC 能判断△)下列三角形中,是直角三角形的是(8.b=c+a.三角形的三边满足关系A2:1.三角形的三边比为B3:.三角形的一边等于另一边的一半C41,40,9.三角形的三边为D、不能判定是直角三角形,此选项错误;A解:【解答】 222,所以不是直角三角形,此选项错误;3≠2+1、由于B、不能判定是直角三角形,此选项错误;C2229、由于D.D,是直角三角形,此选项正确.故选=4140+一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三9.)组.个数据与其它的数据弄混了,请你帮助他找出来,是第(4,8,5.D12 ,10,13.C8 ,12,12.B12 ,12,13.A222222222≠12、B,错误;6+12≠13、A解:【解答】,正5+=1213、C,错误;6+8确;222D.C,错误.故选2+5≠8.)下列说法正确的有(10.:2:C=1:∠B:∠A是直角三角形;②如果∠ABC,那么△C∠B=∠+A①如果∠、4、4,则三角形是直角三角形;③如果三角形的三边长分别为3,那么这个6三角形不是直角三角形;④有一个角是直角的三角形是直角三角形.个4.D 个3.C 个2.B 个1.A【解答】,C=90°,得∠C=180°∠+B∠+A,且∠C∠B=∠+A解:①∵∠是直角三角形,故①正确;ABC∴△A,则∠C=3x,∠B=2x,∠A=x②设∠,由①知,该三角形是直角三角C∠B=∠+形,故②正确;22222,不符合勾股定理的逆定理,该三角形不是直角6≠4+4,显然=366,=164③三角形,故③正确;④符合直角三角形的判定方法,故④正确;所以.D个结论都正确,故选4)的面积为(ABC,那么△2cm的边长为ABC若等边△11.22222cm.B 1cm.A4cm.D 3cm.C .A故选【解答】、AB,以BC=2AD,且DCB=90°∠+ABC,∠BC∥AD中,ABCD如图,四边形12.S,则=9S,=3S,若S、S、S为边向外作正方形,其面积分别为DC、BC231321)的值为(48.D 24 .C 18 .B 12 .A,E于BC交CD∥AE作A,过CD=3,AB=,∴=9S,=3S∵【解答】31,AE=CD=3,CE=AD∴是平行四边形,AECD∴四边形,BC∥AD∵,DCB∠AEB=则∠,ABC=90°∠+AEB,∴∠DCB=90°∠+ABC∵∠2,∴BC=2BE=4,∴BC=2AD,∵BE==2,∴BAE=90°∴∠.D,故选=48)4(=S 2,则这个三角形最长边上的高是5,4,3一个三角形的三边的长分别是 13.。
勾股定理与弦图

E A
3
B
4CD【今日讲来自】 例2,例3,例5,【讲题心得】 ______________________________________________________________.
【家长评价】 ______________________________________________________________ ______________________________________________________________.
本讲主线
1. 勾股定理、勾股数 2. 弦图模型的应用
勾股定理与弦图
1. 勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方. 2. 公式:a2 b2 c2
c a
?
?
3
5
b
4
12
【例1】(★★) 如图,求出下列直角三角形中未知边的长度.
12
5
c
10 6
b
6 26
a
24
1. 勾股定理:在直角三角形中,两条直角边的平方 和等于斜边的平方.
3
A
C
D
2
【例5】(★★★☆) 试用图形证明勾股定理.
两种弦图模型:
“屁股向内”
“屁股向外”
知识大总结 1. 勾股定理公式:a2 b2 c2 2. 常见勾股数(3,4,5)、(5,12,13)、(7,24,25) 3. 两个弦图模型
c ab
“屁股向内” “屁股向外” “大裤衩”
【例6】(★★★★☆) (第7届日本算术奥林匹克决赛试题) 在直角边为3与4的直角三角形各边上向外分别作正方形,三个正 方形顶点顺次连接成如左下图所示的六边形ABCDEF. 求这个六边 形的面积是多少? F
五年级 勾股定理题库

勾股定理与弦图一.知识精讲 勾股定理的概念勾股定理(毕达哥拉斯定理):直角三角形中的两条直角边的平方和等于斜边的平方.即若a 、b 为直角边,c 为斜边,则222a b c +=.勾股定理逆定理如果三角形两边的平方和等于第三边的平方,那么该三角形是直角三角形.即△ABC 的三边分别是a 、b 、c ,其中c 为最长边,若222a b c +=,则△ABC 是直角三角形,∠C 为直角. 勾股数能够构成直角三角形三边长的三个正整数称为勾股数,即222a b c +=,a 、b 、c 为正整数时,称a 、b 、c 为一组勾股数.(1)每组勾股数的相同整数倍也是勾股数.(2)3、4、5是勾股数,又是三个连续整数,并不是所有三个连续整数都是勾股数. (3)常见的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等. 弦图外弦图 内弦图 勾股弦方图是一种证明勾股定理的图像,具体来说就是:用数形结合的方法,给出了勾股定理的详细证明.在这幅“勾股弦方图”中,以弦为边长的正方形是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为(2)a b ⨯÷;中间的小正方形边长为()b a -,则面积为2()b a -.于是便可得如下的式子:22 4(2)()a b b a c ⨯⨯÷+-=,化简后便可得:222a b c +=.a bDCB A ba a aa bbbc c c c DCBAb a aaa bb bcc ccDC BA aa b bc cA BCa b c板块一.勾股定理类型一:直接应用1.如图在直角三角形ABC 中,AB =6,BC =8,求AC =______________.2.如图在直角三角形ABC 中,AB =8, AC =17,求.BC =______________.3.如图在直角三角形ABC 中,AB =9,AC =15,求.BC =_______________.4.三角形ABC 中,13AB =,15AC =,高12AD =,则ABC ∆的周长是______.5.已知:锐角△ABC 中,20AB =,15AC =,BC 边上的高为12,求△ABC 的面积.6.一个长方形的长为12cm ,对角线长为13cm ,则该长方形的周长为_____________.7.在测量旗杆的方案中,若旗杆高为21m ,目测点到杆的距离为15m ,则目测点到杆顶的距离为(设目高为1m )( ) A .20m B .25m C .30m D .35mABCABCDAB CAB CABC8.如下图,两个正方形的面积分别为64,49,求AC 的长.9.根据图中所给的条件,求梯形ABCD 的面积.10.求下列体形的周长与面积。
小学奥数勾股定理与弦图练习及答案【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《⼩学奥数勾股定理与弦图练习及答案【三篇】》供您查阅。
【第⼀篇】
例2、△ABC是直⾓三⾓形,在边AB、BC、CA上分别取点D、E、F,使得AD=AF=FC=EC。
当△DEF成为等腰直⾓三⾓形、BE=3cm、DB=1cm时,求△ABC的⾯积。
【第⼆篇】
例1、如图,P是正⽅形ABCD外⾯的⼀点,PB=12厘⽶,△APB的⾯积是90平⽅厘⽶,△CPB的⾯积是48平⽅厘⽶。
请问:正⽅形ABCD的⾯积是多少平⽅厘⽶?
【第三篇】
习题:从⼀个正⽅形的⽊板上锯下宽0.5⽶的⼀个长⽅形⽊条以后,剩下的长⽅形⾯积为5平⽅⽶,问:锯下的长⽅形⽊条的⾯积等于多少平⽅⽶?。