功能高分子10

合集下载

功能高分子材料论文

功能高分子材料论文

专业: 材料科学与工程姓名:**学校名称:贵州大学论文题目:生物医用高分子材料学号:*******老师: ***生物医用高分子材料摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。

关键词:功能高分子材料,生物医用高分子材料。

功能高分子材料功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。

功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料.近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言.这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料.如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物.可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料.功能高分子材料按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。

功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。

随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。

功能性高分子

功能性高分子
1、电磁性功能高分子材料 包括导电性高分子、超导电高分子、有机半 导体、压电和热电高分子磁性体、磁记录材料。
永久磁性材料采用 Al-Ni-Co / 铁氧化磁体合
金,易脆、不宜切割成型。有机磁性材料分为结
构型和复合型两种,前者是共合成为一体,后者
是在有机聚合物中添加磁粉。如磁性标志物、冰 箱门封等。
2、光功能性高分子材料
8、氨基树脂及塑料
属于氨基、酰胺基单体与醛类热
固性树脂,包括脲醛、三聚腈胺甲醛、
脲三聚腈胺甲醛、苯胺甲醛等。无臭、
耐水、耐热、耐霉菌及自熄性强,可
作白色开关、冰箱外壳及制作麻将等。
9、环氧树脂
其主链结构上含有醚键和仲醇基, 主要用于生产涂料、电绝缘材料、增 强材料以及粘接剂。
10、不饱和聚酯
二元醇与二元酸或二元不饱和酸
2、聚氯乙烯
具有优良的综合性能及便宜的价格,
其特点为难燃、抗化学腐蚀、耐磨及优 良的电绝缘性能、较高的机械性能,为 第二大塑料常用作管材、电缆、日用门 窗等多种工程塑料。其缺点为热稳定差、 受热易降解、制作软制品须添加增塑剂。
3、聚苯乙烯树脂
属于热塑性树脂,具良好的刚性、透 明、耐水性及化学稳定性,具有优异的电 性和耐辐射性能及低的吸湿性、良好的加 工性以及便宜价格,使其具有广泛应用。 缺点:机械加工强度不高、耐冲击性 差、不耐热、易燃、易裂。
• 离子交换膜是指在电位差作用下,电解质中的不 同离子实现膜分离的过程。其材质是以高分子制 成膜状后,再引入离子交换基团。其材质为聚全 氟磺酸等。
• 气化分离膜是用于常规气体或有机物气体提纯、 富集或回收用。其材质是聚砜、聚烯烃、聚碳 酸酯、硅橡胶。
• 透过汽化膜是利用在减压时有机物选择性溶解、 扩散或蒸发性能的差别达到分离目的。其材质 为聚四氟乙烯等。

功能高分子导电高分子

功能高分子导电高分子

第五章 导电高分子
1.3.2 复合型导电高分子 复合型导电高分子是在本身不具备导电性的 高分子材料中掺混入大量导电物质,如炭黑、金 属粉、箔等,通过分散复合、层积复合、表面复 合等方法构成的复合材料,其中以分散复合最为 常用。
第五章 导电高分子
与结构型导电高分子不同,在复合型导电高分 子中,高分子材料本身并不具备导电性,只充当了 粘合剂的角色。导电性是通过混合在其中的导电性 的物质如炭黑、金属粉末等获得的。由于它们制备 方便,有较强的实用性,因此在结构型导电高分子 尚有许多技术问题没有解决的今天,人们对它们有 着极大的兴趣。复合型导电高分子用作导电橡胶、 导电涂料、导电粘合剂、电磁波屏蔽材料和抗静电 材料,在许多领域发挥着重要的作用。
导电高分子 (Conducting Polymers)
本章主要内容
一、前言 二、导电高聚物的定义,分类 三、导电高聚物的导电机理
四、导电高聚物的应用
一、前言
1
2 3
绝缘体
半导体 导体 超导体
< 10-10
按电学性能分类
10-10~102
>102
4

电导率 , s/cm (西门子/厘米) 通常,聚合物材料属于绝缘体范畴。
座右铭:去冒险吧
麦克迪尔米德小传 (Alan G. MacDiarmid,1929~)
1927年生于新西兰。 曾就读于新西兰大学、美国 威斯康星大学以及英国剑桥 大学。 1955年开始在宾夕法尼亚大 学任教。 1973年开始研究导电高分子 2000年获诺贝尔化学奖
发表过六百多篇学术论文 拥有二十项专利技术
2、导电高分子的发现
1970’s
1971 1862 1916 1957 1967 1968

功能性高分子材料科学-感光性高分子材料和聚合方法

功能性高分子材料科学-感光性高分子材料和聚合方法

O-O N-N C-S C-N
138.9 160.7 259.4 291.6
C-Cl C-C C-O N-H
328.4 347.7 351.5 390.8
C-H H-H O-H C=C
413.4 436.0 462.8 607
比较可见,λ=200~800nm的紫外光和可见光的能量足以使大部分化学键断裂。
3 感光性高分子材料
当pH>8时,HCrO4-不存在,则体系不会发生光化学 反应。利用这一特性,在配制感光液时,加入氨水使之 成碱性,可长期保存,不会反应。成膜时,氨挥发而使 体系变为酸性,光化学反应能正常进行。重铬酸铵(见 下表)是最理想的增感剂,也是因为上述原因。
铬系感光剂的相对感度
感光剂
蛋白朊 阿拉伯树胶
2 光化学反应的基础知识
2.1 光的性质和光的能量 物理学的知识告诉我们,光是一种电磁波。在
一定波长和频率范围内,它能引起人们的视觉,这 部分光称为可见光。广义的光还包括不能为人的肉 眼所看见的微波、红外线、紫外线、X 射线和γ射 线等。
2 光化学反应的基础知识
现代光学理论认为,光具有波粒二相性。光的 微粒性是指光有量子化的能量,这种能量是不连续 的。光的最小能量微粒称为光量子,或称光子。光 的波动性是指光线有干涉、绕射、衍射和偏振等现 象,具有波长和频率。光的波长λ和频率ν之间有 如下的关系:
功能高分子材料
高科技隐身材料
感光性高分子
photosensitive polymers
1 概述
感光性高分子是指在吸收了光能后,能在分子内或分子间产生 化学、物理变化的一类功能高分子材料。而且这种变化发生后, 材料将输出其特有的功能。从广义上讲,按其输出功能,感光性 高分子包括光致抗蚀材料、光致诱蚀材料、光致变色材料、光能 储存材料、光记录材料、光导电材料、光电转换材料等。

功能材料概论10(功能高分子材料)

功能材料概论10(功能高分子材料)


其次,酶的固化在一定程度上提高了酶的稳定性,适应反应条件 的能力提高。
另外,酶的固化还使均相反应转变成多相反应。简化了反应步骤, 使酶促反应可以实现连续化、自动化 。

9.3定化方法有化学法和物理法两大类。
化学方法有:利用酶分子上的-SH、-OH、NH2、咪唑基等, 将酶通过化学键连接到合成的或天然的高分子载体上的共价键 结合法;作为载体的高分子必须含有能与上述基团反应的功能 基,如-F、-COCl、-SO2Cl、-NCO、-NCS、-CHO等。 用交联剂通过化学键将酶分子交联起来成为不溶性物质的交联 法。 物理方法有包埋法和吸附法。
1. 在有机合成中的应用 (1)光学纯氨基酸的合成 合成L—蛋氨酸,采用常规方法合成仅能获得外消旋体产物,而 采用从Aspergillus aryzae菌中提取的酰化氨基酸水解酶作为催化 剂,将此酶用物理吸附的方法固化在N,N-二乙基胺乙基葡聚糖 树脂上,再将这种固化有酶催化剂的树脂装入反应柱中,使N乙 酰基-D,L-蛋氨酸外消旋体通过反应柱进行脱乙酰基反应,在柱 的出口处将得到光学纯的L蛋氨酸。而且该反应柱可以连续反复 使用。
(3)复合功能 高分子吸附剂、高分子絮凝剂、高分子表面活性剂、高分子染料、高 分子稳定剂、高分子相溶剂、高分子功能膜和高分子功能电极等。 (4)生物、医用功能 抗血栓、控制药物释放和生物活性等 。
2. 从制造和结构的角度考虑:
结构型功能高分子 复合型功能高分子
3. 按照功能特性通常可分成以下几类:
9.3 固定化酶
9.3.1 固定化酶的优点

酶是一种分子量适中的蛋白质,由各种氨基酸连接而成,存在于 所有活细胞中,是生命过程中化学反应中的天然催化剂,在生物 体内进行的化学反应,几乎全部是由酶催化的。

功能高分子

功能高分子
功能高分子
——有传递作用的高分子及其 复合材料
产生与引进
定义与分类 功 能 高 分 子
应用
图片展示
发展与前景
产生与引进
功能高分子材料是上世纪60年代发展起来的新
兴领域,是高分子材料渗透到电子、生物、能 源等领域后开发涌现出的新材料。近年来,功 能高分子材料的年增长率一般都在10%以上, 其中高分子分离膜和生物医用高分子的增长率 高达50%。
物质、能量和信息作用的高分子及其复合材料, 或具体地指在原有力学性能的基础上,还具有 化学反应活性、光敏性、导电性、催化性、生 物相容性、药理性、选择分离性、能量转换性、 磁性等功能的高分子及其复合材料。
功能高分子是指具有某些特定 功能的高分子材料。 它们之所以具有特定的功能, 是由于在其大分子链中结合了 特定的功能基团,或大分子与 具有特定功能的其他材料进行 了复合,或者二者兼而有之。
殊化学和物理变化的聚合物,它能够对光 进行传输、吸收、贮存、转换的作用,在 功能高分子领域占有重要的地位。高传输 高分子材料如高分子光纤,今后的发展重 点是开发低光损耗,长距离光传输的光线 制品;同时,有机高分子的光成像技术主 要用于印刷制版、电子信息和影像领域, 其中光导高分子在光照时能引起电阻率的 明显下降,已取代硒鼓,成为复印机,激 光打印中关键材料。
定义与分类
高分子材料:macromolecular
material,以 高分子化合物为基础的材料。高分子材料是由 相对分子质量较高的化合物构成的材料,包括 橡胶、塑料、纤维、涂料、胶粘剂和高分子基 复合材料,高分子是生命存在的形式。所有的 生命体都可以看作是高分子的集合。
定义与分类
功能高分子材料一般指具有传递、转换或贮存
产生与引进

高分子材料的定义及分类

高分子材料的定义及分类

高分子材料的定义及分类高分子材料是由大量重复单元组成的材料,其分子量较大,通常为10^3至10^7之间。

高分子材料通常具有优良的机械性能、耐化学性能和优异的加工性能,因此在工程领域得到广泛应用。

高分子材料可以按照其来源、结构、用途和性能等多种分类方法进行分类。

下面将对高分子材料的分类进行详细介绍。

一、按来源分类1.天然高分子材料天然高分子材料是从自然界中提取的高分子化合物,如橡胶、天然树脂、纤维素等。

这些材料通常具有良好的生物相容性和生物可降解性,因此在医药和食品包装等领域得到广泛应用。

2.合成高分子材料合成高分子材料是通过化学合成得到的高分子材料,包括热塑性高分子材料和热固性高分子材料两大类。

热塑性高分子材料在加热后可软化流动,冷却后可再次硬化,如聚乙烯、聚丙烯等;热固性高分子材料在加热后可永久固化,如酚醛树脂、环氧树脂等。

二、按结构分类1.线性高分子材料线性高分子材料的分子链呈直线状排列,如聚乙烯、聚丙烯等。

这类材料通常具有较好的延展性和强度,但易于晶化,在加工和使用时需要注意其脆性和收缩率。

2.支化高分子材料支化高分子材料的分子链呈支化状排列,如聚乙烯醇、聚丙烯醇等。

这类材料具有良好的柔韧性和拉伸性能,但其熔融粘度和分子排列的有序性较差,影响其物性和加工性能。

3.网状高分子材料网络结构的高分子材料通常由交联剂或共聚物接枝形成三维连续网络结构,如硅橡胶、环氧树脂等。

这类材料具有良好的耐热性和耐化学性,但加工性能较差。

三、按用途分类1.塑料塑料是高分子材料的一种,其主要成分是合成高分子树脂,通常具有优良的成型性和机械性能,可广泛用于日常生活用品、包装材料、建筑材料等领域。

2.橡胶橡胶是一种具有良好弹性和拉伸性能的高分子材料,通常用于轮胎、密封件、橡胶鞋等领域。

3.纤维纤维是一种长丝状高分子材料,如涤纶、尼龙、腈纶等,具有优良的强度和柔软性,可用于纺织品、绳索、工业滤料等领域。

四、按性能分类1.工程塑料工程塑料是一类具有优良机械性能和耐化学性能的高分子材料,如聚碳酸酯、聚酰胺、聚酯等,通常用于汽车零部件、电子产品外壳、工程装备等领域。

(完整版)高分子化学复习题——简答题

(完整版)高分子化学复习题——简答题

第一章绪论1、与低分子化合物相比,高分子化合物有什么特点?能否用蒸馏的方法提纯高分子化合物?答:与低分子化合物相比,高分子化合物主要特点有:(1)相对分子质量很大,通常在104~106之间;(2)合成高分子化合物的化学组成比较简单,分子结构有规律性;(3)各种合成聚合物的分子形态是多种多样的;(4)一般高分子化合物实际上是由相对分子质量大小不等的同系物组成的混合物,其相对分子质量只具有统计平均的意义及多分散性;(5)由于高分子化合物相对分子质量很大,因而具有与低分子化合物完全不同的物理性质.不能。

由于高分子化合物分子间作用力往往超过高分子主链内的键合力,当温度升高到汽化温度以前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构,因而不能用蒸馏的方法提纯高分子化合物。

2、何谓相对分子质量的多分散性? 如何表示聚合物相对分子质量的多分散性?答:聚合物是相对分子质量不等的同系物的混合物,其相对分子质量或聚合度是一平均值。

这种相对分子质量的不均一性称为相对分子质量的多分散性.相对分子质量多分散性可以用重均分子量和数均分子量的比值来表示.这一比值称为多分散指数, 其符号为D. 即D =M w/M n。

分子量均一的聚合物其D为1.D越大则聚合物相对分子质量的多分散程度越大。

相对分子质量多分散性更确切的表示方法可用相对分子质量分布曲线表示.以相对分子质量为横坐标,以所含各种分子的质量或数量百分数为纵坐标,即得相对分子质量的质量或数量分布曲线.相对分子质量分布的宽窄将直接影响聚合物的加工和物理性能。

聚合物相对分子质量多分散性产生的原因注意由聚合物形成过程的统计特性所决定。

3、各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子.答:(1)天然无机高分子:石棉、金刚石、云母;天然有机高分子:纤维素、土漆、天然橡胶;生物高分子:蛋白质、核酸(2)碳链聚合物:聚乙烯、聚苯乙烯、聚丙烯;杂链聚合物:聚甲醛、聚酰胺、聚酯(3)塑料:PE、PP、PVC、PS;橡胶:丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶化学纤维:尼龙、聚酯、腈纶、丙纶;功能高分子:离子交换树脂、光敏高分子、高分子催化剂4、什么叫热塑性塑料?什么叫热固性塑料?试各举两例说明。

高分子功能膜材料

高分子功能膜材料

2024/10/12
多孔膜
按膜旳材料分类
表6—1 膜材料旳分类
类别
膜材料
纤维素酯类 纤维素衍生物类
聚砜类
聚酰(亚)胺类
非纤维素酯类 聚酯、烯烃类
含氟(硅)类
其他
举例 醋酸纤维素,硝酸纤维素,乙基纤维素等 聚砜,聚醚砜,聚芳醚砜,磺化聚砜等 聚砜酰胺,芳香族聚酰胺,含氟聚酰亚胺等 涤纶,聚碳酸酯,聚乙烯,聚丙烯腈等 聚四氟乙烯,聚偏氟乙烯,聚二甲基硅氧烷等 壳聚糖,聚电解质等
H2O,H(He),H2S,CO2,O2,Ar(CO),N2(CH4),C2H6,C3H8


聚酰亚胺溶解性差,制膜困难,所以开发了可 溶性聚酰亚胺,其构造为:
2024/10/12
O
O
C N
C
CH2 CH2 CH CH
C N
C
O
O
R n
(v)乙烯基聚合物 用作膜材料旳乙烯基聚合物涉及聚乙烯醇、聚 乙烯吡咯烷酮、聚丙烯酸、聚丙烯腈、聚偏氯乙 烯、聚丙烯酰胺等。共聚物涉及:聚丙烯醇/苯 乙烯磺酸、聚乙烯醇/磺化聚苯醚、聚丙烯腈/甲 基丙烯酸酯、聚乙烯/乙烯醇等。聚乙烯醇/丙烯 腈接枝共聚物也可用作膜材料。
2024/10/12
电渗析技术在食品工业、化工及工业废水旳 处理方面也发挥着主要旳作用。尤其是与反渗 透、纳滤等精过滤技术旳结合,在电子、制药 等行业旳高纯水制备中扮演主要角色。
另外,离子互换膜还大量应用于氯碱工业。 全氟磺酸膜(Nafion)以化学稳定性著称, 是目前为止唯一能同步耐40%NaOH和 100℃温度旳离子互换膜,因而被广泛应用作 食盐电解制备氯碱旳电解池隔膜。
三、分离膜制备措施
相转换法
粉末烧结

功能高分子材料及其应用

功能高分子材料及其应用

功能高分子材料及其应用杨小玲1015063005 研1001班摘要:对功能高分子材料做了粗略的概括和分类,并对其主要品种反应型高分子、导电高分子材料、高分子染料、高分子功能膜材料、生物医用高分子材料、液晶高分子材料等分别做了论述。

介绍了功能高分子材料的发展状况,展望了未来的功能高分子材料的发展趋势。

关键词:功能高分子;材料;化学发展现状;展望功能高分子功能高分子材料是指那些既具有普通高分子特性,同时又表现出特殊物理化学性质的高分子材料,是重要的现代功能材料之一。

功能高分子材料分为两类:一类是在原来高分子材料的基础上,使其成为更高性能和功能的高分子材料,另一类是具有新型功能的高分子。

而功能高分子材料又分为:化学功能高分子材料、光功能高分子材料、电功能高分子材料、高分子液晶等。

新型功能高分子材料因为其特殊的功能而受到人们广泛关注。

1、主要的功能高分子材料功能高分子所涉及的学科甚广,内容丰富,根据其性质和功能主要可分成为如下几类:反应型高分子材料、光敏型高分子材料、电活性高分子材料、膜型高分子材料、吸附型高分子材料、高性能工程材料、高分子智能材料等。

1.1反应型高分子材料反应型功能高分子材料是指具有化学活性,并且应用在化学反应过程中的功能高分子材料,包括高分子试剂和高分子催化剂两大类。

高分子试剂是指小分子反应试剂经过高分子化,或者在某些聚合物骨架上引入反应活性基团,得到的具有化学试剂功能的高分子化合物。

高分子催化剂是指通过聚合、接枝等方法将小分子催化剂高分子化,使具有催化活性的化学结构与高分子骨架相结合,得到的具有催化活性的高分子材料。

1.1.1 开发高分子试剂和高分子催化剂的目的主要从以下几个角度考虑:①简化操作过程;②有利于贵重试剂和催化剂的回收和再生,利用高分子反应试剂和催化剂的可回收性和可再生性,可以将某些贵重的催化剂和反应试剂高分子化后在多相反应中使用,达到降低成本和减少环境污染的目的;③可以提高试剂的稳定性和安全性;④所谓的固相合成工艺可以提高化学反应的机械化和自动化程度;⑤提高化学反应的选择性;⑥可以提供在均相反应条件下难以达到的反应环境。

功能性聚合物

功能性聚合物

膜制备材料: 膜制备材料:
天然高分子材料类——主要包括改性纤维素及其衍生物类, 主要包括改性纤维素及其衍生物类, 天然高分子材料类 主要包括改性纤维素及其衍生物类 原料易得,成膜性能好,化学性质稳定,多用于透析、 原料易得,成膜性能好,化学性质稳定,多用于透析、微 超滤、反渗透、膜蒸发和膜电泳等场合。近年来, 滤、超滤、反渗透、膜蒸发和膜电泳等场合。近年来,甲 壳素类海藻酸钠类成为了新的分离膜制备材料。 壳素类海藻酸钠类成为了新的分离膜制备材料。 聚烯烃类——包括聚乙烯、聚丙烯、聚丙烯酰胺等。主要 包括聚乙烯、 聚烯烃类 包括聚乙烯 聚丙烯、聚丙烯酰胺等。 用于制备微滤、超滤、密度膜等。 用于制备微滤、超滤、密度膜等。 聚酰胺类——尼龙 ,机械强度高,化学稳定性好,高温 尼龙66,机械强度高,化学稳定性好, 聚酰胺类 尼龙 性能优良。 性能优良。 聚砜类 含氟高分子材料 有机硅聚合物类 高分子电解质类
(3)多相膜反应和萃取膜反应 多相膜反应和萃取膜反应
亲水的含有脂肪酶的酶膜将反应器分隔为两部分。 亲水的含有脂肪酶的酶膜将反应器分隔为两部分。酶 的一边流过溶于有机相的L、 酯混合物 酯混合物, 的一边流过溶于有机相的 、D酯混合物,另一边流过水相 吹扫流。 酯通过相间分配传递进入酶膜 酯通过相间分配传递进入酶膜, 吹扫流。L-酯通过相间分配传递进入酶膜,被脂肪酶水解 为水溶性产物L-酸 为水溶性产物 酸。而D-酯因脂肪酶的高水解选择性而不 酯因脂肪酶的高水解选择性而不 参与反应,也不溶于水相,将随着底物流离开反应器, 参与反应,也不溶于水相,将随着底物流离开反应器,从 而将消旋的L、 酯拆分 酯拆分。 而将消旋的 、D酯拆分。
(1)反渗透膜 反渗透膜 反渗透膜主要是不对称膜、 反渗透膜主要是不对称膜、复合膜和中空纤 维膜。不对称膜的表面活性层上的微孔很小( 维膜。不对称膜的表面活性层上的微孔很小(约 2nm),大孔支撑层为海绵状结构;复合膜由超 ),大孔支撑层为海绵状结构; ),大孔支撑层为海绵状结构 薄膜和多孔支撑层等组成。超薄膜很薄, 薄膜和多孔支撑层等组成。超薄膜很薄,只有 0.4µm,有利于降低流动阻力,提高透水速率; µ ,有利于降低流动阻力,提高透水速率; 中空纤维反渗透膜的直径极小, 中空纤维反渗透膜的直径极小,壁厚与直径之比 比较大,因而不需支持就能承受较高的外压。 比较大,因而不需支持就能承受较高的外压。

《高分子化学》习题与答案

《高分子化学》习题与答案

《高分子化学》习题与答案第一章绪论习题1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.与低分子化合物比较,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。

4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。

5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF(2) CH2=CH(CH3)2CH3|(3) CH2=C|COO CH3(4) HO-( CH2)5-COOH(5) CH2CH2CH2O|__________|7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?-(1) -[- CH2- CH-]n|COO CH3-(2) -[- CH2- CH-]n|OCOCH3(3) -[- CH2- C = CH- CH2-]-n|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯(2) 聚丙烯(3) 聚四氟乙烯(4) 丁苯橡胶 (5) 顺丁橡胶 (6) 聚丙烯腈 (7) 涤纶(8) 尼龙6,10 (9) 聚碳酸酯 (10) 聚氨酯9. 写出下列单体形成聚合物的反应式。

指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。

功能高分子概述

功能高分子概述

功能高分子的定义性能:材料对外部作用的抵抗特性。

功能:指从外部向材料输入信号时,材料内部发生质和量的变化而产生输出的特性。

功能高分子是指当有外部刺激时,能通过化学或物理的方法做出响应的高分子材料。

4.4.1 功能高分子概述功能高分子的分类反应型高分子材料 导电高分子材料高分子功能膜材料 医用高分子材料……4.4.1 功能高分子概述功能高分子的特点用量小、品种多专一性强可设计性强4.4.1 功能高分子概述功能高分子的合成策略功能性小分子单体聚合高分子材料的功能化改性多功能材料的复合4.4.1 功能高分子概述功能性小分子单体的高分子化CH 2CHOCH 2OCCH 3CH 3OCH 2CH CH 2O+ CH 2CH COOHCH 2CHOHCH 2OCCH 3CH 3O CH 2CH CH 2OCH 2CH COO例:将含有环氧基团的低分子量双酚A 与丙烯酸反应,得到含双键的环氧丙烯酸酯,这种单体在制备功能性粘合剂方面有广泛的应用。

4.4.1 功能高分子概述C H C H []RC H C H []C H C H []C H C H []C H C H []C H C H []C H C H[]O HC H C H O O C H CO O HO C O R O C O R O P O H O H OC H C H OOC HR已有高分子材料的功能化4.4.1 功能高分子概述PS功能高分子的合成新方法离子型活性聚合阴离子活性聚合阳离子活性聚合活性离子型开环聚合基团转移聚合(GTP)活性自由基聚合引发-转移-终止法(iniferter法)TEMPO引发体系可逆加成-断裂链转移自由基聚合(RAFT)原子转移自由基聚合(ATRP)4.4.1 功能高分子概述N O高分子试剂CH CHCH OCH ClCH CHClKHCO CH CHCHOH O , HCH CHCOOHO小分子过氧酸是常用的强氧化剂,在有机合成中是重要的试剂。

高分子化学名词解释

高分子化学名词解释

1.链终止:链自由基失去活性形成稳定聚合物的反应称为链终止反应。

2.偶合终止:两链自由基的独电子相互结合成共价键的终止反应。

3.歧化终止:某链自由基夺取另一自由基的氢原子或其他原子终止反应。

4.链转移反应:在聚合过程中,链自由基从单体、溶剂、引发剂,甚至从大分子上转移一个原子,使链自由基本身终止,而转移这个原子的分子成为新的自由基并能继续增长,形成新的活性链,使聚合反应继续进行。

5.诱导期:聚合初期初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率为零的时期。

6.半衰期:某一温度下,引发剂分解至起始浓度一半时所需的时间。

7.度数:引发剂分解至起始浓度一半时所需的时间。

8.引发剂效率f:由引发剂分解产生的初级自由基引发单体聚合的百分率。

9.笼蔽效应:引发剂分子被单体分子、溶剂分子包围,引发剂分解成初级自由基后,必须从包围的分子中扩散出来才能引发单体聚合,若它在没有扩散出来前,就结合终止,或形成较为稳定的自由基不易引发,也导致引发剂效率降低。

10.氧化还原引发体系:具有氧化性和还原性两组分引发剂之间发生氧化还原反应产生自由基而引发单体聚合。

11.电荷转移络合物引发:适当的富电子和缺电子分子之间反应,可生成电荷转移络合物(CTC),CTC可以自发地在光、热的作用下分解,产生自由基引发烯类单体聚合。

12.热引发:许多单体在没有加引发剂的情况下会发生自发的聚合反应。

13.光引发:在汞灯的紫外光作用下引起单体聚合的反应。

14.辐射引发:高能射线下引起单体聚合的反应。

15.等离子体:在较低的压力下,物质会成为气体,当给这种气体施加一高压电场,气体中少量电子将沿电场方向被加速,从而电离,使气体成为含有电子、正电子和中性粒子的混合体。

16.稳态假设:链自由基的浓度不随反应时间变化。

17.等活性理论:链自由基的反应活性与链长短无关。

18.自动加速现象:自由基聚合中聚合速率自动加快的现象。

19.凝胶效应:因体系粘度增加而引起的速率自动加速的现象。

833高分子材料答案13

833高分子材料答案13

河南科技大学2013年硕士研究生入学考试试题答案及评分标准考试科目代码:833考试科目名称:高分子材料一、名词解释(共30分,每题5分)1、工程塑料:是指用作工程材料,也即结构材料的一类塑料(2分)。

这类塑料在承受一定的外力下,具有良好的机械性能和尺寸稳定性,较好的电性能,并在高温(>100ºC)和低温(<100ºC)下仍能保持其优良的性能。

(3分)2、合成纤维:线型结构的高分子量合成树脂,经过适当方法纺丝后得到的纤维称为合成纤维。

(5分)3、硫化:使具有高弹性的线型高聚物转变成交联网状结构的高聚物的过程称为硫化。

(5分)4、聚合物基复合材料:是以高分子聚合物为基体(2分),添加各种增强材料、粉体或颗粒填料后制得的一种复合材料(2分)。

聚合物基复合材料具有许多优异的性能(1分)。

5、本体聚合:指在单体中加入少量引发剂或不加引发剂依赖热引发,而无其他反应介质存在的聚合实施方法。

(5分)6、聚合物合金:化学结构不同的均聚物或共聚物的物理混合物称为共混聚合物,又叫做聚合物合金。

(5分)二、简答题(共70分)1、什么是功能高分子材料?这种材料主要包括哪些类型?(7分)答:除了具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息转换、传递和贮存等特殊功能的一类高分子材料称为功能高分子材料。

(3分)这种材料主要包括物理功能(如电学功能、磁学功能、光学功能、热学功能、声学功能)、化学功能(如反应功能、催化功能、分离功能、吸附功能)、生物功能(如抗凝血功能高分子材料、高分子药物、生物降解医用高分子材料)和功能转换型(如智能、光电子信息、生态环境等)的高分子材料。

(4分)2、热塑性聚合物和热固性聚合物在溶剂中的溶解行为有哪些不同?为什么?(7分)答:在适当条件下,热塑性聚合物与溶剂接触时,溶剂分子首先进入聚合物分子链之间,使聚合物发生充分溶胀,然后聚合物分子链从聚集体中分离,进入溶剂中形成均相溶液,发生溶解(2分)。

功能高分子材料知识点

功能高分子材料知识点

第一章1.什么是材料的功能,什么是材料的性能,举例说明。

第1页材料的功能,从本质上来说是向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。

如化学性、导电性、磁性、光敏性、生物活性等。

材料的性能是指材料对外部作用的表征与抵抗的特性,如对外里的抵抗表现为强度、模量,对热的抵抗表现为耐热性,对光、电、化学药品的抵抗表现为材料的耐光性、绝缘性、耐化学药品性等。

2.功能高分子材料的制备方法以及各自的特点。

第4页方法:(1)功能性小分子的高分子化,高分子化学反应引入预期的功能基团。

功能性小分子的高分子化主要优点在于可以使生成的功能高分子功能基团分布均匀,生成的聚合物结构可以通过小分子分析和聚合机理加以预测,产物的稳定性高,但这种方法需在功能性小分子中引入可聚单体,从而使反应较为复杂,同时在反应中反应条件对功能基团会产生一定的影响,需对功能集团加以保护,使材料的成本增加。

例如,高吸水性树脂可以通过将亲水性基团的丙烯酸钠进行自由基聚合实现。

利用高分子化学反应制备功能高分子的主要优点在于合成或天然高分子骨架是现成的,可选择的高分子母体多,来源广,价格低廉。

但是在进行高分子化学反应时,反应不可能100%完成,尤其是在多不得高分子化学反应中,制的的产物中含有未反应的官能团,即功能集团较少,功能基团在分子链上的分布也不均匀。

例如聚苯乙烯、尼龙、淀粉都可以作为高分子母体。

(2)通过特殊加工赋予高分子的功能特性。

许多聚合物通过特定的加工方法和加工工艺,可以较精确地控制其聚集状态结构及宏观状态,从而使之体现出一定的功能性。

例如,许多塑料可以经过适当的制膜工艺,制成具有分离功能的多孔膜和致密膜。

(3)通过普通聚合物与功能材料的复合,制成复合型功能高分子材料。

这种制备方法简便快速,不受场地和设备限制,不受聚合物和功能性化合物官能团反应活性的影响,适用范围宽,功能基团的分布较均匀。

但其共混体不稳定,在使用条件下(如溶胀、成膜等)功能聚合物易由于功能小分子的流失而逐步失去活性,如固定化酶。

高分子概论高分子合成材料资料讲解

高分子概论高分子合成材料资料讲解
油基树脂漆、合成树脂类漆——成膜物质
2020/10/17
涂 料 —— 涂料类型
油基树脂漆: 油脂类漆——基于植物油、或植物油加天然树脂、或
植物油加改性酚醛树脂的涂料。 大漆——天然漆(土漆、笨漆、生漆),水乳胶漆;
含有50-80%漆酚(成膜物质)、〈1%漆酶(催干剂)、 20-40%水分、3-9%树脂质、1-5%油分。
v3
V2 > V1 = V3
擦胶
2020/10/17
橡胶加工工艺
压出——在压出机机筒和螺杆间的挤压下,使胶料连续通
过一定形状的口型,制成各种复杂断面半成品。
成型——把构成制品的各部件,通过粘贴、压合等方法组
合成一定形状的最终制品。
硫化——使橡胶大分子由线型结构转变为网状结构
目的:消除永久变形、提高力学性能。
2020/10/17
橡胶制品的原材料
生胶、再生胶 配合剂: 硫化剂
硫化促进剂 硫化活性剂 防焦剂 防老剂 补强剂、填充剂 软化剂、着色剂、溶剂、
发泡剂、隔离剂等。 骨架材料(纤维、金属材料)
纺织纤维、钢丝、玻璃纤维 帘子布、帆布、线绳、针织品 钢丝、钢丝帘子布
2020/10/17
2020/10/17
2020/10/17
2020/10/17
2020/10/17
塑料 塑料 – plastics:以聚合物为主要成分,在一定条件下 (温度、压力)可塑成一定形状,并且在常温下保持 其形状不变的材料。 热塑性塑料:可重复受热塑化、冷却硬化。 热固性塑料:交联聚合物,受热后不再回到可塑状态。
通用塑料:产量大、价格低、力学性能一般,主要作为非结构 材料使用,如:PP、PE、PVC、PSt等。
混炼——将配合剂混入生胶中制成质量均匀的混炼胶 目的:得到符合性能要求的混炼胶。 方法:机械混炼——开炼机、密炼机、螺杆塑炼机

高分子聚合物名词解释

高分子聚合物名词解释

高分子聚合物名词解释高分子聚合物(Polymer)是由大量重复单元(单体)通过化学键连接而成的大分子化合物。

这些重复单元可以是相同的或不同的,它们通过聚合反应(Polymerization)形成长链结构。

高分子聚合物在自然界和人类社会中无处不在,具有重要的应用价值。

以下是一些与高分子聚合物相关的名词解释。

1.单体(Monomer):单体是高分子聚合物的构成单元,它们可以是简单的有机分子,如乙烯、丙烯、苯乙烯等,或者是更复杂的分子。

在聚合反应中,单体分子会失去一部分原子或基团,与其他单体分子形成共价键。

2.聚合反应(Polymerization):聚合反应是指将单体分子转化为高分子聚合物的过程。

这个过程可以是加成聚合(Addition Polymerization),也可以是缩合聚合(Con densation Polymerization)。

3.链增长(Chain Growth):在聚合反应中,随着单体分子不断地加入到正在形成的聚合物链中,聚合物链的长度不断增加,这个过程称为链增长。

4.聚合物链(Polymer Chain):由单体单元通过共价键连接而成的长链结构称为聚合物链。

这些链可以是线性的、分支的或交联的。

5.高分子(Polymer):由大量单体分子通过聚合反应形成的大分子化合物称为高分子。

高分子可以是天然存在的,如蛋白质、淀粉、天然橡胶,也可以是人工合成的,如聚乙烯、聚丙烯、聚苯乙烯等。

6.聚合度(Degree of Polymerization):聚合度是指高分子聚合物中单体单元的重复次数,也就是聚合物链的长度。

7.聚合物网络(Polymer Network):当高分子链通过化学键或物理相互作用形成三维网络结构时,称为聚合物网络。

这种结构通常具有很高的强度和弹性。

8.热塑性聚合物(Thermoplastic Polymer):热塑性聚合物是指那些在加热时可以软化并流动,冷却后又能硬化的聚合物。

功能性高分子聚氨基酸生物制备

功能性高分子聚氨基酸生物制备

功能性高分子聚氨基酸生物制备摘要:聚氨基酸共聚物是一类新型生物降解高分子材料。

聚氨基酸共聚物作为一种新型生物降解高分子材料具有许多优点。

随看其应用领域的不断拓展,必将有力地促进这类材料在生物领域各个方面的应用。

关键词:聚氨基酸,Y-聚谷氨酸,•「聚赖氨酸聚氨基酸材料在降解过程中能够释放出天然的小分子氨基酸,因此材料无毒,具有良好的生物相容性,容易被机体吸收和代谢,是一类生物降解高分子,至今已有许多通过化学合成的聚氨基酸被应用于食品、医药、化工等多个领域,在医学领域如药物控释、手术缝线和人工皮肤等方面具有广泛的应用。

Hoste和Giammona等人分别研究了聚谷氨酸和降解性。

但是,聚氨基酸的溶解性差别较大,只有少数的聚氨基酸溶于水,大多数都是疏水性的,能溶于通用溶剂的也不多,降解周期及速度很难控制,其应用具有一定的局限性,作为生物医用材料,已经不能满足要求。

通过向材料中引入第二组分制备共聚物是改善高分子材料性能的重要途径之一,通过共聚物分子量、共聚单体种类及配比等控制聚合物材料的降解速度和周期。

不同结构的共聚物把不同材料的优点结合起来,能赋予新材料特殊的性质。

1.Y-聚谷氨酸Y-聚谷氨酸[Poly (y-glutamic acid), y-PGA]是由D-/L-谷氨酸通过丫-酰胺键聚合而成的一种高分子阴离子多肽型聚合物。

生物合成的Y-聚谷氨酸通常由500-5000个谷氨酸单体组成,分子量为10 kD-10 000 kD,立体构型分为丫-聚D-谷氨酸(y-D-PGA). y-聚L-谷氨酸(Y-L-PGA)和Y-聚D/L-谷氨酸(y-D/L-PGA) 3种。

Y-聚谷氨酸主链上含有大量游离竣基, 可发生交联、螯合、衍生化等反应,具有强水溶性、生物相容性、生物降解性等。

随看人们环保意识日益增强,Y-聚谷氨酸作为可生物降解高分子材料已备受关注。

1.1. Y-聚谷氨酸的微生物合成Y-聚谷氨酸生产主要有化学合成法、提取法和微生物发酵法3种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 高分子液晶
1.2 高分子液晶及其分类 某些液晶分子可连接成大分子,或者可通过官 能团的化学反应连接到高分子骨架上。这些高分子 化的液晶在一定条件下仍可能保持液晶的特征,就 形成高分子液晶。 高分子液晶的结构比较复杂,因此分类方法很 多,常见的可归纳如下:
第十章 高分子液晶
按液晶的形成条件,与小分子液晶一样,可分 为溶致性液晶、热致性液晶、压致型液晶、流致型 液晶等等。 按致晶单元与高分子的连接方式,可分为主链 型液晶和侧链型液晶。主链型液晶和侧链型液晶中 根据致晶单元的连接方式不同又有许多种类型。表 12—1列举了其中的一些类型。
第十章 高分子液晶
这些中介相既有某种程度的如晶体那样的长程 有序,又有某种程序的如液体那样的运动性。而当 冷却至玻璃化温度以下时,它们又未能形成三维有 序晶体,而只保持了三维以下的有序性,因此得到 了三个相应的玻璃态:液晶玻璃、塑晶玻璃和构象 无序晶玻璃。 研究认为,塑晶在高分子中不多见,构象无序 晶极不稳定,而只有液晶十分常见。液晶的取向有 序性带来了材料的高强度和高模量特性,因此具有 很大的实际应用前景。
第十章 高分子液晶
层内分子排列与向列型类似,而相邻两层间, 分子长轴的取向依次规则地扭转一定的角度,层层 累加而形成螺旋结构。分子长轴方向在扭转了360° 以后回到原来的方向。两个取向相同的分子层之间 的距离称为螺距,是表征胆甾型液晶的重要参数。 由于扭转分子层的作用,照射在其上的光将发生偏 振旋转,使得胆甾型液晶通常具有彩虹般的漂亮颜 色,并有极高的旋光能力。
第十章 高分子液晶
按照液晶的形成条件不同,可将其主要分为热 致性和溶致性两大类。热致性液晶是依靠温度的变 化,在某一温度范围形成的液晶态物质。液晶态物 质从浑浊的各向异性的液体转变为透明的各向同性 的液体的过程是热力学一级转变过程,相应的转变 温度称为清亮点,记为Tcl。不同的物质,其清亮点 的高低和熔点至清亮点之间的温度范围是不同的。
第十章 高分子液晶
根据分子排列的形式和有序性的不同,液晶有 三种结构类型:近晶型、向列型和胆甾型。(见图 12—1)。Biblioteka 近晶型向列型胆甾型
图12—1 液晶结构示意图
第十章 高分子液晶
(1)近晶型液晶(smectic liquid crystals,S) 近晶型液晶是所有液晶中最接近结晶结构的一 类,因此得名。在这类液晶中,棒状分子互相平行 排列成层状结构。分子的长轴垂直于层状结构平 面。层内分子排列具有二维有序性。但这些层状结 构并不是严格刚性的,分子可在本层内运动,但不 能来往于各层之间。因此,层状结构之间可以相互 滑移,而垂直于层片方向的流动却很困难。
第十章 高分子液晶
对液晶取向程度的研究发现,用光学法测定的 取向度约为80%~90%,而从熔融熵数据计算仅为 5%~10%。这种差别的本质可能在于各种方法对 取向的理解不同。前者反映了分子链排列的一致 性,后者则反映了液晶和熔体间构象的相似性。或 者说,在液晶态分子链保持了取向的一致,可是链 所实现的构象已与熔体十分接近。
第十章 高分子液晶
1.3 高分子液晶的热力学本质 液晶是一种不同寻常的相态。只有当分子比较 僵硬、长径比较大和分子间有较强吸引力时,这种 相态才会出现。 众所周知,高分子物质有两个经典的相态,固 态和液态。固态为晶态,液态则包括流动态和玻璃 态两种。
第十章 高分子液晶
晶态是具有三维有序结构的相态。当它被加热 熔融时,熔融熵ΔSf由三部分的贡献所组成,即: ΔSf = ΔSP + ΔS0 + ΔSc (12—1) 其中,ΔSP为位置无序熵,ΔS0为取向无序 熵,ΔSc为构象无序熵。 这样,在晶态和液态之间就会有三个中介相 态,取向有序、位置无序的称为液晶;位置有序、 取向无序的称为塑晶;位置有序、取向有序而构象 无序的称为构象无序晶。
热台偏光显微镜法(POM法) 示差扫描量热计法(DSC法) X射线衍射法 核磁共振光谱法 介电松弛谱法 相容性判别法 光学双折射法
第十章 高分子液晶
2 高分子液晶的分子结构特征
2.1 高分子液晶的化学结构 液晶是某些物质在从固态向液态转换时形成的 一种具有特殊性质的中间相态或过渡相态。显然过 渡态的形成与分子结构有着内在联系。液晶态的形 成是物质的外在表现形式,而这种物质的分子结构 则是液晶形成的内在因素。毫无疑问,分子结构在 液晶的形成过程中起着主要作用,同时液晶的分子 结构也决定着液晶的相结构和物理化学性质。
在常见的液晶中,致晶单元通常由苯环、脂肪 环、芳香杂环等通过一刚性连接单元(X,又称中 心桥键)连接组成。构成这个刚性连接单元常见的 化学结构包括亚氨基(-C=N-)、反式偶氮基 (-N=N-)、氧化偶氮(-NO=N-)、酯基 (-COO-)和反式乙烯基(-C=C-)等。
第十章 高分子液晶
在致晶单元的端部通常还有一个柔软、易弯曲 的基团R,这个端基单元是各种极性的或非极性的 基团,对形成的液晶具有一定稳定作用,因此也是 构成液晶分子不可缺少的结构因素。常见的R包括 —R’、 —OR’、 —COOR’、 —CN、 —OOCR’、 —COR’、 —CH=CH—COOR’、 —Cl、 —Br、 —NO2等。
第十章 高分子液晶
构成上面三种液晶的分子其刚性部分均呈长棒 型。现在发现,除了长棒型结构的液晶分子外,还 有一类液晶是由刚性部分呈盘型的分子形成。在形 成的液晶中多个盘型结构叠在一起,形成柱状结 构。这些柱状结构再进行一定有序排列形成类似于 近晶型液晶。这一类液晶通常记为D。
第十章 高分子液晶
这类盘状液晶根据其结构上的细微不同又可分 为4类,其中Dhd型液晶表示层平面内柱与柱之间呈 六边形排列,分子的刚性部分在柱内排列无序;而 Dho型液晶分子的刚性部分在柱内的排列是有序的。 Drd型液晶分子在层平面内柱与柱之间呈正交型排 列。Dt型液晶所形成的柱结构不与层平面垂直,而 是倾斜成一定角度。盘状分子形成的柱状结构如果 仅构成一维有序排列,也可以形成向列型液晶,通 常用Nd来表示。
第十章 高分子液晶
1 概述
1.1 液晶的基本概念 物质在自然界中通常以固态、液态和气态形式 存在,即常说的三相态。在外界条件发生变化时 (如压力或温度发生变化),物质可以在三种相态 之间进行转换,即发生所谓的相变。大多数物质发 生相变时直接从一种相态转变为另一种相态,中间 没有过渡态生成。例如冰受热后从有序的固态晶体 直接转变成分子呈无序状态的液态。
第十章 高分子液晶
研究发现,处于145℃和179℃之间的液体部分 保留了晶体物质分子的有序排列,因此被称为“流 动的晶体”、“结晶的液体”。1889年,德国科学 家 将处于这种状态的物质命名为“液晶”(liquid crystals,LC)。研究表明,液晶是介于晶态和液 态之间的一种热力学稳定的相态,它既具有晶态的 各向异性,又具有液态的流动性。
第十章 高分子液晶
小分子液晶的这种神奇状态,引起了人们的浓 厚兴趣。现已发现许多物质具有液晶特性(主要是 一些有机化合物)。形成液晶的物质通常具有刚性 的分子结构。导致液晶形成的刚性结构部分称为致 晶单元。分子的长度和宽度的比例R>>l,呈棒状或 近似棒状的构象。同时,还须具有在液态下维持分 子的某种有序排列所必需的凝聚力。这种凝聚力通 常是与结构中的强极性基团、高度可极化基团、氢 键等相联系的。
第十章 高分子液晶
研究表明,能够形成液晶的物质通常在分子结 构中具有刚性部分,称为致晶单元。从外形上看, 致晶单元通常呈现近似棒状或片状的形态,这样有 利于分子的有序堆砌。这是液晶分子在液态下维持 某种有序排列所必须的结构因素。在高分子液晶中 这些致晶单元被柔性链以各种方式连接在一起。
第十章 高分子液晶
液晶类型
混合型
第十章 高分子液晶
多盘型
支链型
树枝型
第十章 高分子液晶
梳型 多重梳型 盘梳型 侧链型 腰接型 结合型
网型
第十章 高分子液晶
按形成高分子液晶的单体结构,可分为两亲型 和非两亲型两类。两亲型单体是指兼具亲水和亲油 (亲有机溶剂)作用的分子。非两亲型单体则是一 些几何形状不对称的刚性或半刚性的棒状或盘状分 子。表12—2列出了各类高分子液晶的分子构型。 实际上,由两亲型单体聚合而得的高分子液晶数量 极少,绝大多数是由非两亲型单体聚合得到的,其 中以盘状分子聚合的高分子液晶也极为少见。两亲 型高分子液晶是溶致性液晶,非两亲型液晶大部分 是热致性液晶。
第十章 高分子液晶
表12—2 按单体结构分类的高分子液晶
两亲分子
单 体 聚 合 物
液 晶 相 的 性 质
非两亲分子
棒状
盘状
溶致性
热致性或溶 致性
热致性
热致性
热致性
第十章 高分子液晶
与小分子液晶相比,高分子液晶具有下列特殊
性:
① 热稳定性大幅度提高; ② 热致性高分子液晶有较大的相区间温度; ③ 粘度大,流动行为与—般溶液显著不同。 从结构上分析,除了致晶单元、取代基、末端 基的影响外,高分子链的性质、连接基团的性质均 对高分子液晶的相行为产生影响。
第十章 高分子液晶
(2)向列型液晶nematic liquid crystals,N) 在向列型液晶中,棒状分子只维持一维有序。 它们互相平行排列,但重心排列则是无序的。在外 力作用下,棒状分子容易沿流动方向取向,并可在 取向方向互相穿越。因此,向列型液晶的宏观粘度 一般都比较小,是三种结构类型的液晶中流动性最 好的一种。
第十章 高分子液晶
而某些物质的受热熔融或被溶解后,虽然失去 了固态物质的大部分特性,外观呈液态物质的流动 性,但可能仍然保留着晶态物质分子的有序排列, 从而在物理性质上表现为各向异性,形成一种兼有 晶体和液体部分性质的过渡中间相态,这种中间相 态被称为液晶态,处于这种状态下的物质称为液晶 (liquid crystals)。其主要特征是其聚集状态在一 定程度上既类似于晶体,分子呈有序排列;又类似 于液体,有一定的流动性。
相关文档
最新文档