基于单片机的PWM调速系统
基于单片机的直流电机调速系统设计
直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)
基于单片机STC89C52的直流电机PWM调速控制系统
第一章:前言Pwm 电机调速原理对于电机的转速调整,我们是采用脉宽调制(PWM)办法,控制电机的时候,电源并非连续地向电机供电,而是在一个特定的频率下以方波脉冲的形式提供电能。
不同占空比的方波信号能对电机起到调速作用,这是因为电机实际上是一个大电感,它有阻碍输入电流和电压突变的能力,因此脉冲输入信号被平均分配到作用时间上,这样,改变在始能端EN1 和EN2 上输入方波的占空比就能改变加在电机两端的电压大小,从而改变了转速。
此电路中用微处理机来实现脉宽调制,通常的方法有两种:(1)用软件方式来实现,即通过执行软件延时循环程序交替改变端口某个二进制位输出逻辑状态来产生脉宽调制信号,设置不同的延时时间得到不同的占空比。
(2)硬件实验自动产生PWM 信号,不占用CPU 处理的时间。
这就要用到STC89C52的在PWM模式下的计数器1,具体内容可参考相关书籍。
51 单片机PWM 程序产生两个PWM,要求两个PWM 波形占空都为80/256,两个波形之间要错开,不能同时为高电平!高电平之间相差48/256,PWM 这个功能在PIC 单片机上就有,但是如果你就要用51 单片机的话,也是可以的,但是比较的麻烦.可以用定时器T0来控制频率,定时器T1 来控制占空比:大致的的编程思路是这样的:T0 定时器中断是让一个I0口输出高电平,在这个定时器T0的中断当中起动定时器T1,而这个T1 是让IO 口输出低电平,这样改变定时器T0 的初值就可以改变频率,改变定时器T1 的初值就可以改变占空比。
前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过 PWM 方式控制直流电机调速的方法就应运而生。
基于单片机的直流电机调速系统的课程设计
一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
基于单片机的直流电机PWM调速控制系统的设计
基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。
示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。
基于.PWM的电机调速系统
基于PWM的电机调速系统实验目的:1.学会并掌握可keil软件的使用;2.学会并掌握protues软件的使用;3.通过实验巩固单片机相关知识和检验自身动手能力实验要求:掌握单片机相关知识,利用调PWM占空比的方式来控制直流电机的转速,并且在led数码管上显示转速。
实验设备和仪器:1.89c51单片机最小系统2.直流电机3.示波器实验内容:本次实验设计是由小组五个成员共同完成基于PWM的电机调速系统并完成实物搭建和撰写实验报告。
本次实验小组共提供了两个方案,方案一和方案二,两个方案各自具有优缺点,详细内容会在下面给出。
方案一实验步骤:1.利用protues画电路图,电路图如图1所示:图1:方案一电路图2.根据电路图编写C语言代码:代码如下:#include <reg51.h>sbit PWM=P2^7;sbit CS3=P2^3;sbit CS2=P2^2;sbit CS1=P2^1;sbit CS0=P2^0;sbit key1=P1^0;sbit key2=P1^1;sbit key3=P1^2;sbit key4=P1^3;unsigned char timer1;unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};void Time1Config();void main(void){Time1Config();while(1){if(timer1>100) //PWM周期为100*0.5ms{timer1=0;}if(~key1){if(timer1 <30) //改变30这个值可以改变直流电机的速度{PWM=1;}else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0;P0=tab[3];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1;P0=tab[0];P0=0xff;}else if(~key2){if(timer1 <50){PWM=1;else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0; P0=tab[5];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1; P0=tab[0];P0=0xff;}else if(~key3){if(timer1 <80){PWM=1;}else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0; P0=tab[8];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1; P0=tab[0];P0=0xff;}else if(~key4){if(timer1 <100){PWM=1;}else{PWM=0;}CS0=0;CS1=1;CS2=0;CS3=0; P0=tab[1];CS0=0;CS1=0;CS2=1;CS3=0;P0=tab[0];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1;P0=tab[0];P0=0xff;}}}void Time1Config(){TMOD|= 0x10; //设置定时计数器工作方式1为定时器//--定时器赋初始值,12MHZ下定时0.5ms--//TH1 = 0xFE;TL1 = 0x0C;ET1 = 1; //开启定时器1中断EA = 1;TR1 = 1; //开启定时器}void Time1(void) interrupt 3 //3 为定时器1的中断号{TH1 = 0xFE; //重新赋初值TL1 = 0x0C;timer1++;}3.实验仿真,部分仿真结果如图2图3所示:图2:仿真结果图(1)图3:仿真结果图(2)4.实物验证结果如图4所示:图4:方案一实物验证结果实物验证可以明显感觉到电机转速的变化,由于每个开发板不同,相比仿真程序,对实物验证程序进行了略微的修改,最终能达到要求。
基于单片机实现直流电机PWM调速系统毕业设计
畢業設計(論文)基於單片機實現直流電機PWM調速系統系別:電氣與資訊工程系專業班級:電氣自動化06—32(1)班指導教師:董曉紅老師完成日期:2009年6月12日一、題目:基於單片機實現直流電機PWM調速系統二、指導思想和目的:通過畢業設計,培養學生綜合運用所學的知識和技能解決問題的本領,鞏固和加深對所學知識的理解;培養學生調查研究的習慣和工作能力;培養學生建立正確的設計和科學研究的思想,樹立實事求是、嚴肅認真的科學工作態度。
三、設計任務或主要技術指標:利用MCS-51系列單片機,通過PWM方式控制直流電機調速的方法。
採用了專門的晶片組成了PWM信號的發生系統,然後通過放大來驅動電機。
利用直流測速發電機測得電機速度,經過濾波電路得到直流電壓信號,把電壓信號輸入給A/D轉換晶片最後回饋給單片機,在內部進行PI運算,輸出控制量完成閉環控制,實現電機的調速控制。
四、設計進度與要求:1):佈置設計任務,深入瞭解設計內容,搜集參考資料,學習有關內容。
2):學習學校畢業設計的的實際情況,和格式要求。
3):設計網路拓撲結構以及構思設計的基本思路和設計過程。
4):根據根據設計要求和構思思路查找設計內容。
5):根據要求和設計的基本方案對設計要求的材料進行預算。
6):完善設計方案並繪製必須的圖紙草圖,編寫設計說明書。
7):對圖紙進行校正和測繪,畫合格的正式圖紙。
8):總結,熟悉設計內容,準備畢業答辯,完成答辯。
五、主要參考書及參考資料:[1] 王離九,黃錦恩編著,電晶體脈衝直流調速系統,華中理工大學出版社出版[2] 丁元傑主編,上海市教育委員會組編,單片微機原理及應用,機械工業出版社[3] 李榮生主編,電氣傳動控制系統設計指導,機械工業出版社[4] 吳守箴,臧英傑編著,電氣傳動的脈寬調製控制技術,機械工業出版社[5] 陳伯時主編,自動控制系統---電力拖動控制,中央廣播電視大學出版社專業班級:電氣自動化06—32(1)班學生:景天紅指導教師:董曉紅老師教研室主任(簽名):系(部)主任(簽名):年月日新疆工業高等專科學校畢業設計(論文)評定意見書設計(論文)題目:基於單片機實現直流電機PWM調速系統專題:基於單片機實現直流電機PWM調速系統設計者:姓名景天紅專業電氣自動化班級06—32(1)班設計時間:2009年4月20日—2009年6月12日指導教師:姓名職稱單位評閱人:姓名職稱單位評定意見:評定成績:指導教師(簽名):年月日評閱人(簽名):年月日答辯委員會主任(簽名):年月日(上頁背面)畢業設計評定意見參考提綱1.學生完成的工作量與內容是否符合任務書的要求。
基于单片机的PWM直流电机调速系统设计
基于单片机的 PWM直流电机调速系统设计摘要:本文以单片机STC12C5A60S2为核心,结合L298N专用驱动集成电路,通过产生的PWM波控制电机的转速,采用霍尔传感器检测电机转速并通过液晶显示电机实时转速。
最后采用 Keil和 Proteus对整个系统进行设计、编程以及仿真。
关键词:单片机;PWM调速;液晶显示;霍尔传感器;直流电机。
1.引言目前常用的电动机主要有交流电动机和直流电动机,直流电动机因为具有良好的调速性能,以及良好的起、制动性能而被广泛应用在电力拖动系统中。
而调速性能是指电动机在一定的负载条件下,可以根据实际需要,对电动机的转速进行人为的调节。
直流电动机可以在重负载的情况下,实现无级调速,并且调速范围较宽。
直流电动机转速公式:注:为转速、为电枢电压、为电枢电流、为电枢回路总电阻、为励磁磁通、为由电机结构决定的电动势常数。
通过上式可以看出,电动机转速的调节方法主要有以下三种:改变电枢供电电压;改变励磁磁通;调节电枢回路电阻。
以上三种调速方式,以调节电枢供电电压的方式是最好的,它可以实现宽范围的无极平滑调速。
2.PWM调节上面提到对于直流电动机的调速最好的方式是改变供电电压的方式,改变供电电压可以采用V-M调速系统和直流脉宽调速系统,而直流脉宽调速系统相对V-M调速系统具有开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。
PWM调速的原理就是通过把恒定的直流电压调制成高度一定,宽度可变的脉冲电压序列,进而改变平均输出电压从而达到调节转速的目的,实质就是通过控制功率管如电力MOSFET,IGBT等的开关时间进而改变加在电机上的电压占空比就可以改变电机的平均电压。
功率管输入电压以及电机电枢电压的关系如下。
假设加在电动机两端的电压为,通过控制功率管的通断使得输出电压变成了一系列脉冲电压,其平均值计算公式为:,其中为占空比,通过改变占空比就可以改变的值,进而改变电动机转速。
3.调速系统硬件设计本设计采用单片机STC12C5A60S2产生的PWM脉冲波调节输出电压的大小,系统原理框图如图1所示。
单片机课程设计完整版《PWM直流电动机调速控制系统》
单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (1)1 设计要求及主要技术指标: (1)1.1 设计要求 (1)1.2 主要技术指标 (2)2 设计过程 (2)2.1 题目分析 (4)2.2 整体构思 (4)2.3 具体实现 ................... 错误!未定义书签。
3 元件说明及相关计算 (5)3.1 元件说明 (5)3.2 相关计算 (6)4 调试过程 (6)4.1 调试过程 (6)4.2 遇到问题及解决措施 (7)5 心得体会 (7)参考文献 (8)附录一:电路原理图 (9)附录二:程序清单 (9)设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。
1.1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。
(3)设计一个4个按键的键盘。
K1:“启动/停止”。
K2:“正转/反转”。
K3:“加速”。
K4:“减速”。
(4)手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
基于51单片机的PWM直流电机调速系统
基于51单片机的PWM直流电机调速系统一、本文概述随着现代工业技术的飞速发展,直流电机调速系统在众多领域如工业自动化、智能家居、航空航天等得到了广泛应用。
在众多调速方案中,基于脉冲宽度调制(PWM)的调速方式以其高效、稳定、易于实现等优点脱颖而出。
本文旨在探讨基于51单片机的PWM直流电机调速系统的设计与实现,以期为相关领域的技术人员提供一种可靠且实用的电机调速方案。
本文将简要介绍PWM调速的基本原理及其在直流电机控制中的应用。
随后,将详细介绍基于51单片机的PWM直流电机调速系统的硬件设计,包括电机选型、驱动电路设计、单片机选型及外围电路设计等。
在软件设计部分,本文将阐述PWM信号的生成方法、电机转速的检测与控制算法的实现。
还将对系统的性能进行测试与分析,以验证其调速效果及稳定性。
本文将总结基于51单片机的PWM直流电机调速系统的优点与不足,并提出改进建议。
希望通过本文的阐述,能为相关领域的研究与应用提供有益参考。
二、51单片机基础知识51单片机,也被称为8051微控制器,是Intel公司在1980年代初推出的一种8位CISC(复杂指令集计算机)单片机。
尽管Intel公司已经停止生产这种芯片,但由于其架构的通用性和广泛的应用,许多其他公司如Atmel、STC等仍然在生产与8051兼容的单片机。
51单片机的核心部分包括一个8位的CPU,以及4KB的ROM、低128B 的RAM和高位的SFR(特殊功能寄存器)等。
它还包括两个16位的定时/计数器,四个8位的I/O端口,一个全双工的串行通信口,以及一个中断系统。
这些功能使得51单片机在多种嵌入式系统中得到了广泛的应用。
在PWM(脉冲宽度调制)直流电机调速系统中,51单片机的主要作用是生成PWM信号以控制电机的速度。
这通常是通过定时/计数器来实现的。
定时/计数器可以设置一定的时间间隔,然后在这个时间间隔内,CPU可以控制I/O端口产生高电平或低电平,从而形成PWM信号。
单片机对电机的调速控制电路
单片机对直流电机的调速控制电路刘新阳李静晶摘要:脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
在所设计的这个电路中,用PWM对直流电机转速做精确控制。
电路中用到的电机驱动芯片L298N是SGS公司的产品,内部包含4通道逻辑驱动电路,是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
关键字:PWM 单片机L298 直流电机一、引言提到电机转速控制一般大家都会想到调节电机的供电电压,但调节电压会使电机的转矩发生很大的变化。
在实际生活中,很多时候我们希望能在电机转速得到控制的前提下保持电机的转矩,怎样克服这个问题呢,在查询了很多资料和进行了大量实验后我认为使用电机的PWM控制可以很好的解决这一问题。
二、设计原理在电机控制中我采用了脉宽调制PWM,脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池本身就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
而模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。
尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。
其中一点就是,模拟电路容易随时间漂移,因而难以调节。
能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。
模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。
模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。
基于单片机的PWM直流电机调速系统设计论文(附电路图、程序清单)
图 2.2 直流电机原理图
2.2 直流电机的调速方法
根据直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直 流电动机的调速方法有三种: (1)调节电枢供电电压 U。改变电枢电压主要是从额定电压往下降低电枢电压, 从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调 速的系统来说,这种方法最好。 大容量可调直流电源。 (2)改变电动机主磁通 。改变磁通可以实现无级平滑调速,但只能减弱磁通进 变化时间 变化遇到的时间常数较小,能快速响应,但是需要
第1章 引 1.1 概况
言
现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元 件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。 在这一系统中可对生产机械进行自动控制。 随着近代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动化电 力拖动正朝着计算机控制的生产过程自动化的方向迈进。以达到高速、优质、高效率 地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成 部分。另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。特别对于 小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可 靠性与柔性,还有易于应用的优点。自动化的电力拖动系统更是低成本自动化系统的 重要组成部分。 在如今的现实生活中,自动化控制系统已在各行各业得到广泛的应用和发展,其 中自动调速系统的应用则起着尤为重要的作用。虽然直流电机不如交流电机那样结构 简单、价格便宜、制造方便、容易维护,但是它具有良好的起、制动性能,宜于在广 泛的范围内平滑调速,所以直流调速系统至今仍是自动调速系统中的主要形式。现在 电动机的控制从简单走向复杂,并逐渐成熟成为主流。其应用领域极为广泛,例如: 军事和宇航方面的雷达天线、火炮瞄准、惯性导航等的控制;工业方面的数控机床、 工业机器人、印刷机械等设备的控制;计算机外围设备和办公设备中的打印机、传真 机、复印机、扫描仪等的控制;音像设备和家用电器中的录音机、数码相机、洗衣机、 空调等的控制。 随着电力电子技术的发展, 开关速度更快、 控制更容易的全控型功率器件MOSFET 和IGBT成为主流,脉宽调制技术表现出较大的优越性:主电路线路简单,需要用的功 率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能 好,稳速精度高,因而调速范围宽;系统快速响应性能好,动态抗扰能力强;主电路 元件工作在开关状态,导通损耗小,装置效率较高;近年来,微型计算机技术发展速
基于单片机的电机交流调速系统设计
山东协和学院工学院,山东济南 2501091总体设计方案1.1 研究思路与研究内容以STM32F103C8T6为处理器完成逆变过程的计算与控制及其对脉冲芯片的输出,驱动芯片采用IR2104驱动,逆变部分采用6路MOS管组成的三相全桥逆变电路。
通过STM32中PWM模式调用定时器使其按照正弦规律变化改变占空比输出SPWM波形,通过驱动三路IR2104驱动芯片去驱动6路MOS管组成的三相全桥逆变电路,再通过三路LC低通滤波器将开关高频信号滤除,输出低频信号,可以通过改变输出的正弦波频率完成对电机的预期速度的控制,使得电机转速以期望值输出。
1.2. 变频调速方法与改变极对数进行调速的方法相比较,另一种方法为去改变电机输入的电源频率对电机进行调速。
此种方法的原理为:改变输入频率f,当频率f越高时候电机转速越快,通常有两种变频的方式分别为:交直交变频和交交变频两种方式。
这种调速方法与之前的改变极对数进行调速的方法相比较具有可行性高的优点,因为输入电源的频率可以通过逆变器进行调节,调节之后达到人们所预设的效果之后,再作为输入将其输入进电机,可以控制电机输入的电源频率,从而完成输入电源频率的可控。
通过控制其频率的输入电机的转速同时可以被控制,而与其相比改变电机的极对数就显得相当的困难,由于电机在出厂时候极对数已经确认难以去人工改变,所以这种方法显示较为刻板,不如去改变电源频率更为方便快捷,因此在未来的电机调速发展趋势上是还以效率更高、更易操作的变频调速为主流。
本设计采用变频调速,所有的机械调速都是都是基于电机操作实现的。
从总体上看,电机分为交流、直流两种电机。
因为直流电机调速容易实现,可靠性高,故之前电机调速主流为直流电机进行调速。
但直流电机与其对应的也有其特有的缺点:因为使用的直流电源供电,其滑环和碳刷易损坏需要定期更换新器件,故在实际应用中带来不少麻烦,而且定期更换元器件所带来的成本比较高,因此进一步改进电机调速是人们所追求的。
基于智能功率模块的直流PWM调速系统设计
基于智能功率模块的直流PWM调速系统设计1.前言随着电力电子技术和控制技术的发展,直流脉冲宽度调制(PWM)型调速系统近年来已发展成熟,它已成为现代调速系统的佼佼者。
与传统的晶闸管-电动机(V-M)直流调速系统相比,它具有调速范围宽,稳速精度高,响应速度快,低速性能好等优点。
特别是大功率的普通晶闸管、门极关断晶闸管、绝缘栅双极晶体管的相继问世,促使其生产水平已达到4500V,2500A,组成的PWM变换器要以用来驱动上千千瓦的电动机,广泛用于交通、工矿企业等电动传动系统中,因此对PWM调速系统的进一步研究,在调速精度要求较高的场合,对解决传统直流调速系统调速精度低、稳定性差的难题,具有广泛的意义和价值。
2.系统构成原理框图本文设计的是一个直流PWM调速系统,闭环系统可以获得比开环系统硬得多的稳态特性,从而在保证一定静差率的要求下,提高调速范围,因此系统采用可逆转速、电流双闭环控制,主电路设计为H型双极式结构形式,在此系统选一调速电机,即 220V,6.5A的直流他励电动机,额定转速为1500r/min。
设计时保持技术先进,便于操作,结构轻便的原则。
本系统的原理框图如图1所示,它由直流电动机M,双极式H桥PWM变换器,脉宽调制器(UPW),电流检测与保护电路(FA)以及速度调节器(ASR),电流调节器(ACR),测速发电机(TG)等组成。
图1 直流脉宽调速系统原理框图图中: UPW—脉宽调制器;GM—调制波发生器;DLD—逻辑延时环节;GD—基极驱动器;PWM—脉宽调制变换器;FA—瞬时动作的限流保护;TA—电流传感器;TG—测速发电机;ASR—速度调节器;ACR—电流调节器;、—转速给定电压和转速反馈电压;、—电流给定电压和电流反馈电压。
3.利用智能功率模块构成主电路智能功率模块(Intelligent Power Module,简称IPM)是以IGBT为功率器件的新型模块。
这种功率模块是将输出功率组件IGBT和驱动电路、多种保护电路集成在同一模块内,并可将监测到的过压、过热、欠压等故障信号送给控制电路,即使发生过载或是使用不当,也可保证IPM自身不受损坏。
基于单片机的直流电机PWM调速控制系统设计开题报告
基于单片机的直流电机PWM调速控制系统设计开题报告泰山学院毕业设计开题报告基于单片机的直流电机PWM调速控制系统题目设计学院机械与工程学院年级二〇一一级专业机械设计制造及其自动化姓名学号指导教师签字学生签字2012年 12月 7日题目来源指导教师推荐? 自选, 其它?题目类别基础研究? 应用研究, 其它?一、课题研究的目的和意义在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。
无论是在工农业生产、交通运输、国防、航空航天、医疗卫生、商务与办公设备中,还是在日常生活中的家用电器中,都大量地使用着各种各样的电动机。
以前电动机大多使用由模拟电路组成的控制柜进行控制,现在单片机已经开始取代模拟电路作为电机控制器。
当前电机控制器的发展方向越来越趋于多样化和复杂化,现有的专用集成电路未必能满足苛刻的新产品开发要求,为此可考虑开发电机的新型单片机控制器二、课题的研究现状电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。
正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。
而国外交直流系统数字化已经达到实用阶段。
三、课题研究的主要内容完成单片机的直流电机控制系统总体设计,包括各部分硬件的设计以及相应的驱动程序设计。
通过电平转换使上位机能与单片机进行串口通信,并选用串口大师软件对单片机发送信号。
设计显示电路,使用户可以通过显示屏与控制系统进行交互,实现电机正反转等状态以及速度的实时显示。
四、课题研究的方法根据市场需求和发展趋势,本设计将介绍一种基于AT89S51单片机的直流电机转速控制系统。
首先对直流调速控制电路进行设计来实现对速度的控制、检测、显示;再对直流调速控制主回路进行设计,其采用了三相桥式全控整流电路;然后进行系统的软件设计,本课题采用PID控制算法设计;最后进行系统的抗干扰设计,为了防止从电源系统窜入干扰,本系统供电采用隔离变压器;同时,为了保证信息传输的正确性,在过程通道上采用光祸隔离措施。
PWM可逆直流调速系统设计
PWM可逆直流调速系统设计1. 引言PWM(脉冲宽度调制)可逆直流调速系统是一种常用的电机调速系统,广泛应用于工业生产和家电领域。
本文将介绍PWM可逆直流调速系统的设计原理、主要组成部分以及工作原理。
2. 设计原理PWM可逆直流调速系统的设计原理基于脉冲宽度调制技术和电机控制原理。
通过调整PWM信号的脉冲宽度,可以控制电机的转速和运行方向。
主要原理包括: - 电源供应:系统通过电源为电机提供电能。
- PWM信号生成:通过数字控制器或单片机产生PWM 信号。
- H桥驱动电路:将PWM信号转换为适合电机的驱动信号。
- 电机控制:根据PWM信号调整电机的转速和运行方向。
3. 主要组成部分PWM可逆直流调速系统主要由以下几个组成部分构成:3.1 电源供应电源供应是系统的功率来源,可以选择直流电源或交流电源。
直流电源常用的电压范围为12V或24V,交流电源则需要将交流电转换为直流电。
3.2 PWM信号生成PWM信号生成是通过数字控制器或单片机来产生PWM信号的过程。
通过控制PWM信号的占空比,可以改变电机的转速。
3.3 H桥驱动电路H桥驱动电路是将PWM信号转换为适用于电机驱动的信号的关键部分。
H桥由4个开关管组成,根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
3.4 电机控制电机控制是根据PWM信号调整电机的转速和运行方向的过程。
通过增大或减小PWM信号的占空比,可以控制电机的速度;通过改变PWM信号的极性,可以改变电机的运行方向。
4. 工作原理PWM可逆直流调速系统的工作原理如下:1.首先,电源供应向系统提供电能,为后续的电机驱动做准备。
2.数字控制器或单片机根据预设的参数生成PWM信号,并将其输入到H桥驱动电路。
3.H桥驱动电路根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
4.电机控制模块根据PWM信号的占空比调整电机的转速,根据PWM信号的极性改变电机的运行方向。
直流电机PWM控制实现打印
直流电机PWM控制实现摘要本文介绍了一种基于单片机控制的PWM直流电机调速系统,系统以89C51单片机为核心,以小型直流电机为控制对象,实现双闭环PI控制。
系统包括转速给定、转速显示、转速检测、电流检测、PWM脉宽信号产生电路以及直流电机驱动电路。
从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,给出了该系统的详细设计思路、软硬件设计、电路结构和采用PI控制算法的控制程序流程。
在芯片选择方面,以89C51为控制核心,分别采用了AD574电流模/数转换、8253转速M/T法测量、8279转速设定/显示、DAC1208/TL494PWM波形产生、LDM18200电机驱动等芯片和一些外围电路。
该系统具有较好的控制精度,可以在中小功率直流电动机上广泛使用。
关键词单片机;直流电机;调速系统;PWM;双闭环控制AbstractA kind of PWM direct current motor speeding control system by this paper is introduced based on Single-Chip Computer control.In this system, taking the single- chip computer89C51 as the core part and the small-type of DC motor as the control object.a double closed-loop PI control is implemented.This system consists of rotation setting,display and detection, current sensing, PWM pulse signals generator circuit and the DC drive circuit.Beginning with the theory of the DC timing system,this article has built up the maths model of the reversible DC-PWM timing system with a dual-converter and dual-closed-loop,Given the details of the system design, software and hardware design, circuit structure and control algorithms using the PI process control proce- dures.In the chip selection, to 89C51 for the control of the core,By using the AD574 current A/D converter, 8253 Speed M/T measurement, 8279 speed settings/Show, DAC1208/TL494PWM waveform generator, LDM18200 motor drive, such as chips and some external circuit.The system has better control accuracy, in small and medium-sized power on the wider use of DC motor.Key words single-chip computer;DC motor;adjustment speed system;PWM;double closed-loop control目录摘要 (I)Abstract (I)目录 (II)第1章绪论 (1)1.1 序言 (1)1.2 直流调速系统发展概况 (1)第2章直流脉宽调速系统的理论研究 .................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的PWM调速系统
摘要
本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。
文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。
此外,本文中还采用了芯片IR2110作为直流电机正转调速功率放大电路的驱动模块,并且把它与延时电路相结合完成了在主电路中对直流电机的控制。
另外,本系统中使用了测速发电机对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。
在软件方面,文章中详细介绍了PI运算程序,初始化程序等的编写思路和具体的程序实现。
关键词:PWM信号测速发电机PI运算前言
本文主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。
冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
PWM控制技术就是以该结论为理论基础,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些
脉冲来代替正弦波或其他所需要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
PWM控制的基本原理很早就已经提出,但是受电力电子器
件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现
和迅速发展,PWM控制技术才真正得到应用。
随着电力电
子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM 控制技术获得了空前的发展。
到目前为止,已经出现了多种PWM控制技术。
PWM控制技术以其控制简单、灵活和动态响应好的优点而
成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
本文就是利用这种控制方式来改变电压的占空比实现直流
电机速度的控制。
文章中采用了专门的芯片组成了PWM信号的发生系统,然后通过放大来驱动电机。
利用直流测速发电机测得电机速度,经过滤波电路得到直流电压信号,把电压信号输入给A/D转换芯片最后反馈给单片机,在内部进行PI运算,输出控制量完成闭环控制,实现电机的调速控制。
第一节系统总体设计框图及单片机系统的设计
1.1.1 系统总体设计框图
1.1.2 8051单片机简介
1.8051单片机的基本组成
8051单片机由CPU和8个部件组成,它们都通过片内单一总线连接,其基本结构依然是通用CPU加上外围芯片的结构模式,但在功能单元的控制上采用了特殊功能寄存器的集中控制方法。
其基本组成如下图所示:
2.CPU及8个部件的作用功能介绍如下
中央处理器CPU:它是单片机的核心,完成运算和控制功能。
内部数据存储器:8051芯片中共有256个RAM单元,能作为存储器使用的只是前128个单元,其地址为00H—7FH。
通常说的内部数据存储器就是指这前128个单元,简称内部RAM。
特殊功能寄存器:是用来对片内各部件进行管理、控制、监视的控制寄存器和状态寄存器,是一个特殊功能的RAM区,位于内部RAM的高128个单元,其地址为80H—FFH。
内部程序存储器:8051芯片内部共有4K个单元,用于存储程序、原始数据或表格,简称内部ROM。
并行I/O口:8051芯片内部有4个8位的I/O口(P0,P1,P2,P3),以实现数据的并行输入输出。
串行口:它是用来实现单片机和其他设备之间的串行数据传送。
定时器:8051片内有2个16位的定时器,用来实现定时或者计数功能,并且以其定时或计数结果对计算机进行控制。
中断控制系统:该芯片共有5个中断源,即外部中断2个,定时/计数中断2个和串行中断1个。
振荡电路:它外接石英晶体和微调电容即可构成8051单片机产生时钟脉冲序列的时钟电路。
系统允许的最高晶振频率为12MHz。
3.8051单片机引脚图
1.1.3 单片机系统中所用其他芯片简介
1.地址锁存器74LS373
74LS373片内是8个输出带三态门的D锁存器。
其结构如下图所示:
当使能端G呈高电平时,锁存器中的内容可以更新,而在返回低电平的瞬间实现锁存。
如果此时芯片的输出控制端为低,也即是输出三态门打开,锁存器中的地址信息便可以通过三态门输出。
以下是其引脚图:
2.程序存储器27128
(1)芯片引脚
(2)功能表引脚工作方式
(片选)
(允许输出)
VPP
(编程控制)
输出
读
L
VCC
H
数据输出维持
H
*
VCC
*
高阻
编程
L
H
VPP
L
数据输入编程校验L
L
VPP
H
数据输出编程禁止H
*
VPP
*
高阻。