说明PWM调速系统的工作原理

合集下载

pwm调速系统工作原理

pwm调速系统工作原理

pwm调速系统工作原理
PWM调速系统是基于脉宽调制(Pulse Width Modulation)原
理进行的调速系统。

其工作原理如下:
1. 输入信号:首先,系统会接收来自控制器的输入信号,该信号代表了需要调整转速的目标值。

2. 参考信号生成:系统会将输入信号与某个参考信号进行比较,生成一个误差信号。

这个参考信号可以是一个固定频率的方波信号。

3. 比较器:误差信号会被送入一个比较器中,与一个可调的正弦波或三角波信号进行比较。

4. 脉冲调制:比较器的输出信号会传递给脉冲调制器,通过调整它的输入信号的占空比,可以得到一个与误差信号幅度成正比的脉冲宽度。

5. 脉冲产生:脉冲调制器会产生一串脉冲信号,其宽度与误差信号的幅度成比例。

脉冲信号的频率通常为固定值,而占空比会随误差信号变化。

6. 控制信号输出:脉冲信号会被传递到一个功率放大器,然后经过滤波器去除高频噪声。

最后,滤波后的信号会被转换为适合电机的控制信号,用于调整电机的转速。

通过以上工作原理,PWM调速系统可以实现精确的转速控制,
可以应用于各种需要调速的设备和系统,如电机驱动、照明控制等。

pwm调速原理占空比

pwm调速原理占空比

pwm调速原理占空比
PWM调速是一种通过改变电平信号的占空比来控制电机转速
的方法。

占空比即高电平信号在一个周期内所占的比例,一般用百分比来表示。

在PWM调速中,周期固定,但高电平和低电平的持续时间可
以改变。

当占空比为100%时,即持续时间等于一个周期,高
电平信号一直保持,此时电机工作在最大转速。

当占空比为0%时,即持续时间为0,高电平信号不存在,电机停止转动。

通过调整占空比可以实现电机转速的控制。

当占空比增加时,高电平信号的持续时间增加,相对低电平信号的持续时间减少,电机转速加快。

反之,当占空比减少时,高电平信号的持续时间减少,低电平信号的持续时间增加,电机转速减慢。

这种调速原理利用了电机的惯性和动态响应特性,通过不断改变占空比,使电机的转速能够平滑调整到所需的速度。

同时,PWM调速还具有能量损耗小、控制精度高等优点,被广泛应
用于工业控制和机械设备中。

综上所述,PWM调速通过改变电平信号的占空比来控制电机
转速,通过不断调整占空比可以实现电机转速的精确控制。

这种调速原理简单高效,广泛应用于各种领域中。

PWM调速系统的基本原理

PWM调速系统的基本原理

PWM调速系统的基本原理PWM调速系统是一种通过改变信号的占空比来调节输出功率的电子调速系统。

它广泛应用于电机驱动、电源调节等领域。

PWM调速系统的基本原理是将输入电压转换为一系列具有不同占空比的脉冲信号,通过调节脉冲信号的占空比来改变输出功率。

1.输入电压转换:在PWM调速系统中,通常会使用电压转换器(如升压、降压或倒置转换器)将输入电压转换为适合于驱动电机的电压。

这个电压转换过程可以通过各种电力电子器件(如晶体管、二极管、开关等)来实现。

2.脉冲调宽:PWM调速系统将所需输出功率转换为一系列具有不同占空比的脉冲信号。

占空比是指脉冲信号中高电平时间与周期时间的比值。

占空比越大,输出功率越大。

3.开关控制:脉冲信号通过开关器件(如晶体管或开关管)来控制。

当脉冲信号处于高电平时,开关器件导通,输出电压施加到负载上;当脉冲信号处于低电平时,开关器件关断,输出电压为0。

4.滤波:PWM调速系统通过使用滤波器将开关器件的脉冲输出转换为平滑的输出信号。

滤波器通常是由电感、电容组成的低通滤波器。

它的作用是去除脉冲信号中的高频成分,使输出电压更加平稳。

5.反馈调节:PWM调速系统通常会采用反馈调节来实现稳定输出功率。

通过传感器或测量信号,系统可以监测到负载电流、电压或转速等参数,并将这些信号反馈给控制器。

控制器会根据反馈信号来调整脉冲信号的占空比,使输出功率保持在所需水平。

6.控制策略:控制器根据反馈信号进行适当的计算和决策,以调整脉冲信号的占空比。

常用的控制策略包括比例控制、积分控制、微分控制和PID控制等。

它们旨在使系统输出尽可能接近期望值,并具有良好的稳定性和动态性能。

总结来说,PWM调速系统通过将输入电压转换为具有不同占空比的脉冲信号,并通过滤波和反馈调节来实现对输出功率的精确控制。

该系统具有调节范围广、动态响应快、效率高等优点,因此在现代电子调速领域得到了广泛的应用。

pwm电机 调速原理

pwm电机 调速原理

pwm电机调速原理
PWM电机调速原理
PWM(Pulse Width Modulation,脉宽调制)是一种通过改变信号的脉冲宽度来控制电机转速的调速方法。

在PWM调速原理中,控制器向电机输出一段固定频率的方波信号,通过改变方波信号的脉冲宽度来调节占空比,从而达到调速的目的。

具体而言,PWM电机调速原理可以分为以下几个步骤:
1. 设定目标转速:通过设定控制器中的目标转速值,确定电机需要达到的转速。

2. 信号发生器:控制器中的信号发生器会生成一段固定频率的方波信号,频率一般是几十kHz至几百kHz。

3. 脉宽调制:通过调节方波信号的脉冲宽度,即调节方波中高电平的时间长度,来改变方波信号的占空比。

一般来说,脉冲宽度越长,占空比越高,电机转速也就越快。

4. 电机驱动:根据脉宽调制生成的方波信号,控制器会控制电机驱动电路,将相应的电流传递给电机。

5. 反馈控制:为了保持电机转速的稳定,通常会加入反馈控制系统。

通过测量电机转速并与设定的目标转速进行比较,控制器可以对脉宽调制的占空比进行自动调整,以使电机转速保持在设定范围内。

通过不断调整脉宽调制的占空比,控制器可以实现对电机转速的精确调节。

PWM调速原理广泛应用于许多领域,如机械传动、风扇调速、电动车辆等。

pwm电子风扇调速原理

pwm电子风扇调速原理

pwm电子风扇调速原理
PWM(脉冲宽度调制)电子风扇调速原理是通过改变电源输
入的脉冲宽度来控制风扇电机的转速。

具体操作如下:
1. 风扇电机接收电源供电。

风扇通常使用直流电源供电,可以是电池或者交流转直流适配器。

2. 控制器接收调速信号。

PWM调速电路需要一个控制器,通
常是微控制器或特定的PWM调速芯片。

该控制器可以接收来
自用户或传感器的信号,以确定风扇的期望转速。

3. 控制器通过PWM电压。

一旦接收到调速信号,控制器会生
成一系列的PWM脉冲。

脉冲的宽度可以在一定的范围内调整,通常在几十万分之一秒的时间尺度上。

4. PWM信号作用于驱动电路。

PWM信号由控制器发送到驱
动电路,驱动电路会根据脉冲的宽度来控制电源供给给风扇电机。

脉冲的宽度越长,电源供给时间越长,电机转速越快。

5. 风扇电机响应调速信号。

根据PWM信号的宽度,风扇电机
会自动调整转速。

当脉冲宽度较长时,电机会加快转速;脉冲宽度较短时,电机会减慢转速。

通过以上方式,利用PWM调速原理可以实现对电子风扇转速
的精确控制。

不同的PWM脉宽会导致不同的转速,从而满足
用户的需求和环境的要求。

简述pwm直流调速原理

简述pwm直流调速原理

PWM(Pulse Width Modulation,脉宽调制)直流调速是一种常用的电调速方法,通过调整电源电压的占空比来控制直流电机的转速。

其基本原理如下:
脉宽调制:PWM调速通过调整电源电压的占空比来控制电机的平均电压。

占空比是指高电平脉冲信号的持续时间与一个完整周期的时间比例。

当占空比较高时,电机接收到较高的平均电压,转速相应增加;当占空比较低时,电机接收到较低的平均电压,转速相应减小。

控制电路:PWM调速系统通常由控制电路和功率电路两部分组成。

控制电路根据所需转速通过逻辑电路或微控制器生成PWM信号,控制电源电压的占空比。

控制电路中的反馈系统可以测量电机的转速或其他参数,以便对PWM信号进行实时调整和闭环控制。

功率电路:功率电路用于将PWM信号转换为对电机的实际控制。

典型的功率电路是使用电子开关器件(如MOSFET或IGBT)组成的半桥或全桥电路,它们能够根据PWM信号的状态开关电源电压的连接与断开,从而调整电机接收到的电压。

转速调节:通过改变PWM信号的占空比,可以调节电机的转速。

增加占空比会增加电机的平均电压,从而提高转速;减小占空比则会减小平均电压,使转速降低。

通过不断调整占空比,可以实现直流电机的精确调速。

PWM直流调速具有调速范围广、响应快、效率高等优点,被广泛应用于各种需要电机调速的领域,如工业生产、机械设备、电动车辆等。

PWM调速系统实现原理分析

PWM调速系统实现原理分析

PWM调速系统实现原理分析【摘要】PWM调速系统是利用微处理器数字输出来对模拟电路进行控制的调速技术,这种调速方式能使电机工作条件发生变化时电源输出电压依然相对恒定,且调速带宽极大响应速度快,平滑调速能力强,成为电机自动调速系统的主流形式。

本文就PWM调速系统实现原理进行了分析,对深入应用PWM调速系统有一定指导意义。

【关键词】PWM;直流调速;平滑调速;实现原理1.引言在现代工农业生产、军事应用、生活应用中,对电力拖动的自动化要求越来越高,需要大量控制元件组成电机自动控制系统,对电机工况进行自动智能调节。

在早期,主要采用晶闸管进行电子驱动,后来发展出双向可控硅进行相位控制驱动,一直到上世纪80年代电机控制系统都由半控型功率器件主宰。

在上世纪70年代中期,直流电机脉冲宽度调制(PWM)调速系统开始出现,初期主要应用于不可逆、小功率驱动之中,被应用于军事及空间技术等领域。

近年来,随着微电子技术和晶体管制作技术的提升,PWM调速技术得到了高速发展,其应用领域迅速扩展至民用工业领域,其算法更为先进,调速可靠性和安全性也得到了极大的提升。

2.PWM调速系统工作原理2.1 直流电机工作原理直流电机是一种应用广泛的电能转换器,多数直流电机都利用电磁形成方向不变的转矩以进行连续旋转运动,其硬件结构包括定子、主磁极、电刷、转子、换向器几个部分。

电流首先由电刷A流入,再经线圈,最后从电刷B流出,此时载流导体受到电磁力作用形成转矩使得转子转动。

换向器则配合电刷对电流进行换向,以使每个磁极下的线圈中电流始终向一个方向,最终电机连续旋转。

2.2 直流电机调速原理根据直流电机工作原理,直流电机的调速可以通过调节供电电压、改变电机主磁通、改变电枢回路电阻三种方法来实现。

调节供电电压主要是在额定电压范围内降低电枢电压,使电机的额定转速下降,这种方法是恒转矩调速,这种方法需要大容量可调直流电源方可实现。

改变电机主磁通的方法是一种通过减弱磁通进行调速的方法,这种方法为弱磁恒功率调速,能使电机在额定转速范围内上调,所需直流电源容量较小但响应速度较慢。

pwm调速原理

pwm调速原理

pwm调速原理
PWM调速原理是指通过改变电路的占空比来实现电机的调速。

利用PWM信号的特性,即信号的占空比与其平均值成正比,
可以实现对电机的控制。

在PWM调速中,信号的周期固定不变,但占空比可以根据需
要进行调节。

占空比是指PWM信号中高电平部分所占的比例。

当占空比较小时,电机得到的平均电压较低,电机转速较慢;当占空比较大时,电机得到的平均电压较高,电机转速较快。

通过改变PWM信号的占空比,可以按照所需的转速控制电机
的转动。

具体控制的步骤如下:
1. 通过控制器产生一个固定频率的PWM信号。

2. 通过改变PWM信号的占空比,控制电机得到的平均电压大小。

3. 根据需要的转速,调整PWM信号的占空比大小。

4. 将PWM信号经过功率放大电路放大后,作用于电机。

5. 根据PWM信号的占空比大小,电机得到相应的平均电压,
实现调速。

通过PWM调速原理,可以实现对电机的精确控制。

由于
PWM信号的频率是固定的,因此可以通过改变占空比来调整
电机的转速,实现电机的调速功能。

同时,调速过程中只需要改变PWM信号的占空比,不需要改变信号的频率,因此可以
节省系统资源。

PWM直流电机调速系统设计

PWM直流电机调速系统设计

PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。

本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。

一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。

2.传感器:传感器主要用于检测电机转速和转速反馈。

常用的传感器有霍尔传感器和编码器。

3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。

控制器一般包括比较器、计数器、时钟和PWM 发生器。

4.功率电源:功率电源负责提供PWM信号的电源。

PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。

二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。

2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。

3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。

4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。

5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。

三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。

2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。

3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。

根据测试结果进行参数调整。

4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。

直流电机调速pwm的原理

直流电机调速pwm的原理

直流电机调速pwm的原理
直流电机调速PWM(脉宽调制)的原理是通过改变电机供电
电压的占空比来实现电机的转速调节。

PWM调速技术通过以
一定的周期(周期时间T)将电源电压以脉冲的形式施加给电机,其中脉冲的宽度(脉宽)决定了每个周期内电源对电机的供电时间比例。

在PWM调速中,周期时间(T)和脉宽时间(Ton)与占空
比(Duty Cycle)之间的关系可以表示为:
占空比(D)= Ton / T
通过改变占空比D的大小,可以控制每个周期中电机所接收
到的有效电压信号的时间比例。

当占空比D变小时,电机接
收到的有效电压时间减少,电机的平均输入功率减小,从而降低转速;反之,当占空比D增大时,电机接收到的有效电压
时间增加,电机的平均输入功率增加,从而提高转速。

实现PWM调速的关键是通过开关器件控制电源电压的开关状
态来实现脉冲信号的生成和调节。

常见的开关器件包括晶体管和MOS管。

通过控制开关器件的导通和截止,可以控制电源
电压的施加和切断。

同时,PWM调速还需要一个控制电路来根据需要改变占空比。

控制电路通常是由微处理器、单片机或专用的PWM芯片来实现,它可以根据不同的控制需求,调整占空比大小,并将相应的控制信号发送给开关器件。

总体而言,直流电机调速PWM的原理是通过改变电机供电电压的占空比来控制电机的转速。

通过控制器件的开关状态和相应的控制电路,可以实现对占空比的调节,从而完成电机的调速操作。

pwm调速系统的工作原理

pwm调速系统的工作原理

pwm调速系统的工作原理
PWM调速系统的工作原理是通过改变脉冲的占空比来实现对电机转速的调节。

系统主要由控制器、比例积分器、PWM信号发生器和驱动输出组成。

首先,控制器接收到用户设定的目标转速信号,并将其与电机当前转速信号进行比较,得到误差信号。

接下来,误差信号会输入到比例积分器中,根据设定的控制算法,该器件可以调节误差信号的变化速率和幅值,以达到稳定控制的效果。

然后,经过比例积分器处理后的信号会传递给PWM信号发生器。

PWM信号发生器根据控制器输出的误差信号波形,产生一系列的脉冲信号,且脉冲的宽度和间隔根据比例积分器的输出进行调节。

脉冲信号的宽度决定了电机获得的电压占空比,从而影响电机的转速。

最后,PWM信号经过驱动输出器的放大和滤波后,驱动电机运行。

驱动输出器会根据PWM信号的状态切换功率管的导通与截止,控制电机的电力输送。

通过不断调整PWM信号的占空比,可以实现对电机转速的精确控制。

需要注意的是,在整个调速过程中,控制器会不断监测电机的转速,并将实际转速信号与目标转速信号进行比较,以修正误差信号,从而实现更精确的调速效果。

pwm调速原理

pwm调速原理

pwm调速原理PWM调速原理。

PWM(Pulse Width Modulation)调速技术是一种常用的电机调速方法,通过控制电机输入的脉冲宽度来实现电机转速的调节。

本文将介绍PWM调速的原理及其应用。

1. PWM调速原理。

PWM调速原理是基于调制信号的脉冲宽度来控制电机的转速。

当输入的PWM 信号占空比(即高电平时间占总周期的比例)增大时,电机的平均电压和电流也随之增大,从而提高了电机的转速。

反之,当PWM信号的占空比减小时,电机的转速也会相应减小。

2. PWM调速的优势。

相比于传统的电压调速和频率调速,PWM调速具有以下优势:精度高,PWM调速可以实现对电机转速的精确控制,有利于提高系统的稳定性和精度。

效率高,PWM调速可以减小电机的能耗,提高能源利用率。

响应快,PWM调速可以实现对电机的快速响应,适用于对转速要求较高的场合。

3. PWM调速的应用。

PWM调速技术广泛应用于各种电机控制系统中,包括风扇、空调、电动车、机械设备等。

以风扇为例,通过调节PWM信号的占空比,可以实现风扇转速的调节,从而满足不同环境下的散热需求;在电动车中,PWM调速可以实现对电机转速的精确控制,提高了电动车的动力性能和能效比。

4. 总结。

PWM调速技术作为一种高效、精确的电机调速方法,已经得到了广泛的应用。

通过控制PWM信号的占空比,可以实现对电机转速的精确控制,提高了系统的稳定性和能效比。

未来,随着电机控制技术的不断发展,PWM调速技术将会在更多领域得到应用,为各种电机控制系统带来更好的性能和效果。

5. 参考文献。

刘晓明. 电机控制技术[M]. 机械工业出版社, 2015.王明. PWM调速技术在电机控制中的应用[J]. 电机技术, 2019(6): 45-48.。

pwm调速系统解释

pwm调速系统解释

PWM调速系统是通过改变脉冲宽度来调节电机速度的一种调速系统。

它利用微处理器的数字输出来对模拟电路进行控制,通过调节脉冲宽度来改变电机的输入电压,从而实现电机的调速。

PWM调速系统的原理是通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

在PWM调速系统中,通常有一个参考信号,它是一个理想的方波信号,其频率和占空比都可以调整。

而实际的PWM方波信号则由一个比较器产生,当参考信号的值大于或等于三角波信号的值时,比较器输出高电平,反之则输出低电平。

通过调整三角波信号的频率和幅度,就可以改变PWM方波信号的占空比,从而实现电机速度的调节。

PWM调速系统的优点包括响应速度快、调速范围广、精度高、对电机无损等。

由于PWM 调速系统是通过改变电机的输入电压来实现调速的,因此它可以实现电机的无级调速,并且调节非常方便。

此外,PWM调速系统的电路简单、可靠性高、成本低,因此在许多领域得到了广泛应用。

总之,PWM调速系统是一种通过改变脉冲宽度来调节电机速度的调速系统,其优点包括响应速度快、调速范围广、精度高、对电机无损等。

在实际应用中,需要根据具体需求选择合适的PWM调速系统,并注意其使用和维护。

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理

脉冲宽度调制脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。

它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。

一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。

脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。

通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。

PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。

电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。

通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。

只要带宽足够,任何模拟值都可以使用PWM进行编码。

多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。

许多微控制器内部都包含有PWM控制器。

例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。

占空比是接通时间与周期之比;调制频率为周期的倒数。

执行PWM操作之前,这种微处理器要求在软件中完成以下工作:* 设置提供调制方波的片上定时器/计数器的周期* 在PWM控制寄存器中设置接通时间* 设置PWM输出的方向,这个输出是一个通用I/O管脚* 启动定时器* 使能PWM控制器PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。

让信号保持为数字形式可将噪声影响降到最小。

噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。

对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。

pwm调速的原理

pwm调速的原理

pwm调速的原理
PWM调速的原理是通过改变脉冲宽度来控制电机的转速。


体来说,PWM调速是通过周期性地改变电机输入电压的占空
比来实现的。

占空比是指一个周期内高电平时间与周期时间之比。

在PWM调速中,输入电压的占空比决定了电机的平均功率输
入量。

当占空比较小时,电机会得到较低的平均功率输入,转速较低;而当占空比较大时,电机会得到较高的平均功率输入,转速也会提高。

PWM调速的核心是使用一个周期性的信号源,即PWM信号。

PWM信号由一个方波和一个调制信号合成,方波的周期决定
了调速系统的调速速度,而调制信号决定了占空比。

比如,一个周期为T的方波信号,周期的一半时间为高电平,一半时间为低电平,占空比为50%。

如果将调制信号与方波
信号合成,当调制信号为高电平时,输出的PWM信号也为高
电平,此时电机能够得到较高的平均功率输入,转速较快;当调制信号为低电平时,输出的PWM信号也为低电平,电机得
到较低的平均功率输入,转速较慢。

通过调节调制信号的频率和占空比,可以控制PWM信号的形状,从而控制电机的转速。

常见的PWM调速方法有基于定时
器的硬件PWM和基于软件算法的软件PWM。

总之,PWM调速利用改变脉冲宽度来控制电机的转速,通过调节占空比实现不同速度的调整。

pwm调速工作原理

pwm调速工作原理

pwm调速工作原理
PWM调速工作原理是通过不断变化脉冲宽度来调节电机的转速,从而实现对电机的精确控制。

具体原理如下:
1. PWM(脉冲宽度调制)是一种调制技术,通过调节矩形脉
冲信号的宽度来控制信号的平均功率。

通常情况下,频率是固定的,而脉冲宽度则根据需求进行调整。

2. 基于PWM的调速原理是利用调整脉冲信号的宽度来改变电
机的平均电压,进而改变电机的转速。

脉冲宽度越宽,电机所接收到的平均电压越高,电机转速也会相应增加。

3. 在PWM调速中,控制器会先将输入信号(比如电压或电流)进行采样,并将其转换为数字信号。

然后,控制器会根据所设定的控制信号来生成PWM信号。

4. 生成PWM信号时,控制器会设置一个固定的频率,例如
10kHz,并根据需要调节每个脉冲的宽度。

脉冲宽度的调节是
通过比较输入信号与一个参考信号(通常为一个可变电压)来实现的。

5. 控制器通过不断比较输入信号和参考信号的大小,来确定每个脉冲的高电平时间长度。

如果输入信号较大,脉冲的高电平时间将增加;如果输入信号较小,脉冲的高电平时间将减少。

6. 这样,在整个PWM周期内,通过改变脉冲宽度的高电平时
间长度,即可实现对电机转速的调节。

脉冲宽度调宽时,电机
转速增加;脉冲宽度调窄时,电机转速减小。

7. 通过控制器的不断调整,使得PWM信号的平均电压与所需的电机转速相匹配,从而实现精确的调速效果。

总结起来,PWM调速通过改变脉冲宽度来调整电机的平均电压,进而改变电机的转速。

这种调速方式可实现高精度的调速效果,广泛应用于各种需要精确控制的场合。

pwm电机调速原理

pwm电机调速原理

pwm电机调速原理PWM电机调速原理。

PWM(Pulse Width Modulation)电机调速原理是指通过改变脉冲宽度调制信号的占空比来控制电机的转速。

在工业自动化控制系统中,PWM调速技术被广泛应用于各种电机的调速控制中,具有调速范围广、响应速度快、效率高等优点。

本文将从PWM调速原理的基本概念、工作原理、应用特点等方面进行详细介绍。

1. PWM调速原理的基本概念。

PWM调速原理是利用脉冲宽度调制技术,通过改变脉冲信号的占空比来控制电机的转速。

在PWM信号中,脉冲的宽度和周期是可以调节的,通过改变脉冲的宽度,可以改变电机的平均电压,从而实现电机的调速控制。

通常情况下,PWM信号的频率是固定的,而脉冲的宽度则根据需要进行调节,以实现对电机的精确控制。

2. PWM调速原理的工作原理。

PWM调速原理的工作原理主要包括两个方面,脉冲信号的生成和电机的控制。

首先,通过PWM信号发生器产生一定频率的脉冲信号,然后通过占空比控制电路改变脉冲信号的宽度,最后输出给电机进行控制。

在电机端,通过接收PWM信号,控制电机的电压和电流,从而实现电机的调速控制。

3. PWM调速原理的应用特点。

PWM调速原理具有调速范围广、响应速度快、效率高等特点。

首先,通过改变脉冲信号的占空比,可以实现对电机转速的精确控制,调速范围广。

其次,由于PWM信号的开关速度快,可以实现对电机的快速响应,响应速度快。

最后,由于PWM调速原理可以实现对电机的高效控制,因此具有较高的能量利用率,效率高。

4. PWM调速原理的工业应用。

PWM调速原理在工业领域有着广泛的应用,特别是在各种电机的调速控制中。

例如,风机、泵、压缩机等设备的调速控制都可以采用PWM调速技术,实现对设备运行的精确控制。

此外,PWM调速原理还可以应用于电动汽车、电动工具等领域,实现对电机的高效控制,提高设备的整体性能和能源利用率。

5. 结语。

通过本文的介绍,我们了解了PWM电机调速原理的基本概念、工作原理、应用特点及工业应用。

考试题目简述直流电机PWM调速系统的组成及工作原

考试题目简述直流电机PWM调速系统的组成及工作原

考试题目简述直流电机PWM调速系统的组成及工作原理
直流电机PWM调速系统的组成包括IGBT和续流极管,三相交流
电经过整流滤波后送往直流PWM变换器,通过改变直流PWM变换器中IGBT的控制脉冲占空比,来改变其输出电压的人小,极管起续流作
用工作原理是通过改变输出方波的占空比使负载上的平均电流功率
从0-100%变化、从而改变负载、灯光亮度/电机速度。

利用脉宽调制(PWM)方式、实现调光/调速、它的优点是电源的能量功率、能得到充分利用、电路的效率高。

例如:当输出为50%的方波时,脉宽调制(PWM)电路输出能量功率也为50%,即几乎所有的能量都转换给负载。

而采用常见的电阻降压调速时,要使负载获得电源最大50%的功率,电源必须提供71%以上的输出功率,这其中21%消耗在电阻的压降及热耗上。

大部分能量在电阻上被消耗掉了、剩下才是输出的能量、转换效率非常低。

此外HW-A-1020型调速因其采用开关方式热耗几乎不存在、HW-A-1020型调速在低速时扭矩非常大、因为调速器带有自动跟踪PWM、另外采用脉宽调制(PWM)方式、可以使负载在工作时得到几乎满电源电压、这样有利于克服电机内在的线圈电阻而使电机产生更大的力矩率。

PWM可逆直流调速系统设计

PWM可逆直流调速系统设计

PWM可逆直流调速系统设计1. 引言PWM(脉冲宽度调制)可逆直流调速系统是一种常用的电机调速系统,广泛应用于工业生产和家电领域。

本文将介绍PWM可逆直流调速系统的设计原理、主要组成部分以及工作原理。

2. 设计原理PWM可逆直流调速系统的设计原理基于脉冲宽度调制技术和电机控制原理。

通过调整PWM信号的脉冲宽度,可以控制电机的转速和运行方向。

主要原理包括: - 电源供应:系统通过电源为电机提供电能。

- PWM信号生成:通过数字控制器或单片机产生PWM 信号。

- H桥驱动电路:将PWM信号转换为适合电机的驱动信号。

- 电机控制:根据PWM信号调整电机的转速和运行方向。

3. 主要组成部分PWM可逆直流调速系统主要由以下几个组成部分构成:3.1 电源供应电源供应是系统的功率来源,可以选择直流电源或交流电源。

直流电源常用的电压范围为12V或24V,交流电源则需要将交流电转换为直流电。

3.2 PWM信号生成PWM信号生成是通过数字控制器或单片机来产生PWM信号的过程。

通过控制PWM信号的占空比,可以改变电机的转速。

3.3 H桥驱动电路H桥驱动电路是将PWM信号转换为适用于电机驱动的信号的关键部分。

H桥由4个开关管组成,根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。

3.4 电机控制电机控制是根据PWM信号调整电机的转速和运行方向的过程。

通过增大或减小PWM信号的占空比,可以控制电机的速度;通过改变PWM信号的极性,可以改变电机的运行方向。

4. 工作原理PWM可逆直流调速系统的工作原理如下:1.首先,电源供应向系统提供电能,为后续的电机驱动做准备。

2.数字控制器或单片机根据预设的参数生成PWM信号,并将其输入到H桥驱动电路。

3.H桥驱动电路根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。

4.电机控制模块根据PWM信号的占空比调整电机的转速,根据PWM信号的极性改变电机的运行方向。

PWM调速说明

PWM调速说明

PWM调速原理PWM的原理: PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

1.PWM控制的基本原理(1)理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

(2)面积等效原理:分别将如图1所示电压窄脉冲加在一阶惯性环节(R-L电路)上,如图a所示。

其输出电流I(t)对不同窄脉冲时的响应波形如图b所示。

从波形可以看出,在I(t)的上升段,I(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各I(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应I(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

.图2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

图3 用PWM波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。

PWM波形可等效的各种波形:直流斩波电路:等效直流波形SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。

2. PWM相关概念占空比:就是输出的PWM中,高电平保持的时间与该PWM的时钟周期的时间之比如,一个PWM的频率是1000Hz,那么它的时钟周期就是1ms,就是1000us,如果高电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空比就是200:1000,也。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说明PWM调速系统的工作原理说明PWM调速系统的工作原理脉冲宽度调制脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。

它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。

一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。

脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。

通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。

PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。

电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。

通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。

只要带宽足够,任何模拟值都可以使用PWM进行编码。

多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。

许多微控制器内部都包含有PWM控制器。

例如,Microchip公司的PIC16C67内含两个PWM 控制器,每一个都可以选择接通时间和周期。

占空比是接通时间与周期之比;调制频率为周期的倒数。

执行PWM操作之前,这种微处理器要求在软件中完成以下工作:* 设置提供调制方波的片上定时器/计数器的周期* 在PWM控制寄存器中设置接通时间* 设置PWM输出的方向,这个输出是一个通用I/O管脚* 启动定时器* 使能PWM控制器PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。

让信号保持为数字形式可将噪声影响降到最小。

噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。

对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。

从模拟信号转向PWM可以极大地延长通信距离。

在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。

总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。

几种PWM控制方法采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率.PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法.1 .相电压控制PWM1.1 等脉宽PWM法[1]VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化.相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量.1.2 随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注.为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路.1.3 SPWM法SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.该方法的实现有以下几种方案.1.3.1 等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM 信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2 硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制.1.3.3 软件生成法由于微机技术的发展使得用软件生成SPWM 波形变得比较容易,因此,软件生成法也就应运而生.软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法.1.3.3.1 自然采样法[2]以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法.其优点是所得SPWM 波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制.1.3.3.2 规则采样法[3]规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波.其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法.当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样.当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样. 规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦.其缺点是直流电压利用率较低,线性控制范围较小.以上两种方法均只适用于同步调制方式中. 1.3.4 低次谐波消去法[2]低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法.其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波.该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点.该方法同样只适用于同步调制方式中.1.4 梯形波与三角波比较法[2]前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%.因此,为了提高直流电压利用率,提出了一种新的方法--梯形波与三角波比较法.该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制.由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率.但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波.2 .线电压控制PWM前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦.因此,提出了线电压控制PWM,主要有以下两种方法.2.1 马鞍形波与三角波比较法马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率.在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波[4].除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线电压.这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波. 2.2 单元脉宽调制法[5]因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和.现在把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw+Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负.把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了.这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了.该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,应用范围较小.3 .电流控制PWM电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变.其实现方案主要有以下3种.3.1 滞环比较法[4]这是一种带反馈的PWM控制方式,即每相电流反馈回来与电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化.该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量.其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多.3.2 三角波比较法[2]该方法与SPWM法中的三角波比较方式不同,这里是把指令电流与实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM波.此时开关频率一定,因而克服了滞环比较法频率不固定的缺点.但是,这种方式电流响应不如滞环比较法快.3.3 预测电流控制法[6]预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差.该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速,准确的响应.目前,这类调节器的局限性是响应速度及过程模型系数参数的准确性.4 .空间电压矢量控制PWM [7]空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形.此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通).具体方法又分为磁通开环式和磁通闭环式.磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量.此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小.磁通闭环式引入磁通反馈,控制磁通的大小和变化的速度.在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形.这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音.但由于未引入转矩的调节,系统性能没有得到根本性的改善.5 .矢量控制PWM[8]矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制.其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制.通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制.但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足.此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多应用场合带来不便.6 .直接转矩控制PWM[8]1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control简称DTC).直接转矩控制与矢量控制不同,它不是通过控制电流,磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band 控制产生PWM信号对逆变器的开关状态进行最佳控制,从而在很大程度上解决了上述矢量控制的不足,能方便地实现无速度传感器化,有很快的转矩响应速度和很高的速度及转矩控制精度,并以新颖的控制思想,简洁明了的系统结构,优良的动静态性能得到了迅速发展.但直接转矩控制也存在缺点,如逆变器开关频率的提高有限制.7. 非线性控制PWM单周控制法[7]又称积分复位控制(Integration Reset Control,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例.该技术同时具有调制和控制的双重性,通过复位开关,积分器,触发电路,比较器达到跟踪指令信号的目的.单周控制器由控制器,比较器,积分器及时钟组成,其中控制器可以是RS触发器,其控制原理如图1所示.图中K可以是任何物理开关,也可是其它可转化为开关变量形式的抽象信号.单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态,瞬态误差,使前一周期的误差不会带到下一周期.虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快,开关频率恒定,鲁棒性强等优点,此外,单周控制还能优化系统响应,减小畸变和抑制电源干扰,是一种很有前途的控制方法.8 .谐振软开关PWM传统的PWM逆变电路中,电力电子开关器件硬开关的工作方式,大的开关电压电流应力以及高的du/dt和di/dt限制了开关器件工作频率的提高,而高频化是电力电子主要发展趋势之一,它能使变换器体积减小,重量减轻,成本下降,性能提高,特别当开关频率在18kHz以上时,噪声将已超过人类听觉范围,使无噪声传动系统成为可能. 谐振软开关PWM的基本思想是在常规PWM 变换器拓扑的基础上,附加一个谐振网络,谐振网络一般由谐振电感,谐振电容和功率开关组成.开关转换时,谐振网络工作使电力电子器件在开关点上实现软开关过程,谐振过程极短,基本不影响PWM技术的实现.从而既保持了PWM技术的特点,又实现了软开关技术.但由于谐振网络在电路中的存在必然会产生谐振损耗,并使电路受固有问题的影响,从而限制了该方法的应用.总结PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一.相关应用领域:PWM控制结束主要应用在电力电子技术行业,具体讲,包括风力发电、电机调速、直流供电等领域,由于其四象限变流的特点,可以反馈再生制动的能量,对于目前国家提出的节能减排具有积极意义。

相关文档
最新文档