广东省百合外国语学校人教版初中七年级数学上册第四章《几何图形初步》模拟测试题(答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.(0分)[ID :68652]已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )
A .点
B 在线段CD 上(
C 、
D 之间)
B .点B 与点D 重合
C .点B 在线段C
D 的延长线上 D .点B 在线段DC 的延长线上
2.(0分)[ID :68651]如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cm
A .4
B .3
C .2
D .1 3.(0分)[ID :68634]如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相
对的面上标的字是
A .美
B .丽
C .云
D .南
4.(0分)[ID :68629]如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).
A .4个
B .3个
C .2个
D .1个 5.(0分)[ID :68623]下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )
A .
B .
C .
D . 6.(0分)[ID :68622]如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).
A .45︒
B .65︒
C .50︒
D .25︒
7.(0分)[ID :68620]如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).
A .3
B .4
C .5
D .6
8.(0分)[ID :68607]如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )
A .8cm
B .6cm
C .4cm
D .2cm
9.(0分)[ID :68590]如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )
A .m n -
B .m n +
C .2m n -
D .2m n + 10.(0分)[ID :68589]已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( ) A .60° B .20° C .40° D .20°或60° 11.(0分)[ID :68587]对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中
点;②若AM=MB=
12AB ,则M 是AB 的中点;③若AM=12
AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( ) A .①④ B .②④ C .①②④ D .①②③④ 12.(0分)[ID :68581]22°20′×8等于( ).
A .178°20′
B .178°40′
C .176°16′
D .178°30′ 13.(0分)[ID :68579]如图,图中射线、线段、直线的条数分别为( )
A .5,5,1
B .3,3,2
C .1,3,2
D .8,4,1
14.(0分)[ID :68566]两个锐角的和是( )
A .锐角
B .直角
C .钝角
D .锐角或直角或钝角 15.(0分)[ID :68563]用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定
有( )
A .7个面
B .15条棱
C .7个顶点
D .10个顶点 二、填空题
16.(0分)[ID :68716]线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.
17.(0分)[ID :68702]如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则
COD ∠=________.
18.(0分)[ID :68710]看图填空.
(1)AC =AD -_______=AB +_______,
(2)BC +CD =_______=_______-AB ,
(3)AD =AC+___.
19.(0分)[ID :68708]如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.
20.(0分)[ID :68704](1)比较两条线段的长短,常用的方法有_________,_________. (2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 21.(0分)[ID :68703]木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.
22.(0分)[ID :68683]把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .
23.(0分)[ID :68682]如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.
24.(0分)[ID :68749]一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)
25.(0分)[ID :68747]已知∠A=67°,则∠A 的余角等于______度.
26.(0分)[ID :68745]如图所示,O 是直线AB 上一点,OD 平分∠BOC, ∠COE =90°,若∠AOC =40°,则∠DOE =_________.
27.(0分)[ID :68734]如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.
三、解答题
28.(0分)[ID :68847]已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求:∠BHF 的度数.
29.(0分)[ID :68839]作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:
(1)画射线 AB ,直线 BC ,线段 AC
(2)连接 AD 与 BC 相交于点 E.
30.(0分)[ID :68811]如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点. (1)若9,6AC cm CB cm ==,求线段MN 的长;
(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.
(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.
【参考答案】
2016-2017年度第*次考试试卷参考答案
**科目模拟测试
一、选择题
1.A
2.C
3.D
4.B
5.C
6.A
7.A
8.A
9.C
10.D
11.B
12.B
13.D
14.D
15.A
二、填空题
16.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系
17.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC平分∠BOD∴∠
18.CDBCBDADCD【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC(2)BC+CD=BD=AD-AB(3)AD=AC+CD故答案为:CD;BC;BD;AD
19.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出
20.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大
21.两点确定一条直线【解析】【分析】依据两点确定一条直线来解答即可【详解】解:在木板上画出两个点然后过这两点弹出一条墨线此操作的依据是两点确定一条直线故答案为两点确定一条直线【点睛】本题考查的是直线的性
22.【分析】棱长为1cm的正方体拼的表面积是6要使拼接成的长方体表面积最大则重合的面要最少当四个正方体排成一列时面积最大重合的有6个面【详解】解:当四个正方体排成一列时面积最大重合的有6个面根据以上分析
23.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO
24.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体
25.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23
26.20【解析】【分析】求出∠BOC=140°根据OD平分∠BOC得出∠COD=∠BOC求出
∠COD=70°根据∠DOE=∠COE-∠COD求出即可【详解】∵O是直线AB上一点
∴∠AOC+∠BOC=18
27.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是
三、解答题
28.
29.
30.
2016-2017年度第*次考试试卷参考解析
【参考解析】
**科目模拟测试
一、选择题
1.A
解析:A
【分析】
根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.
【详解】
解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
点B在线段CD上(C、D之间),
故选:A.
【点睛】
本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.2.C
解析:C
【分析】
由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.
【详解】
解:∵AB=10cm,BC=4cm,
∴AC=AB+BC=14cm,
∵D是AC的中点,
∴AD=1
AC=7cm;
2
∵M是AB的中点,
∴AM=1
AB=5cm,
2
∴DM=AD﹣AM=2cm.
故选:C.
【点睛】
此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.
3.D
解析:D
【分析】
如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.
【详解】
如图,
根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.
故选D.
4.B
解析:B
【分析】
根据余角的性质,补角的性质,可得答案.
【详解】
解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;
乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;
丙∠AOB=∠COD,故丙错误;
丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;
故选:B.
【点睛】
本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.
5.C
解析:C
【分析】
根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.
【详解】
解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;
B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;
C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.
故选:C.
【点睛】
此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.
6.A
解析:A
【分析】
根据题意,先求得∠COB的值;OM平分∠BOC,ON平分∠AOC,则可求得∠AOM、
∠AON的值;∠MON=∠AOM+∠AON,计算得出结果.
【详解】
∵∠AOB=90°,且∠AOC=40°,
∴∠COB=∠AOB+∠AOC=90°+40°=130°,
∵OM平分∠BOC,
∴∠BOM=1
∠BOC=65°,
2
∴∠AOM=∠AOB-∠BOM=25°,
∵ON平分∠AOC,
∴∠AON=1
∠AOC=20°,
2
∴∠MON=∠AOM+∠AON=45°.
∴∠MON的度数是45°.
故选:A.
【点睛】
本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.
7.A
解析:A
【分析】
根据题意可知BC=6,所以AC=18,由于D是AC中点,可得AD=9,从BD=AB-AD就可求出线段BD的长.
【详解】
由题意可知12AB =,且12BC AB =
, 所以6BC =,18AC =.
因为点D 是线段AC 的中点, 所以1118922
AD AC ==⨯=, 所以1293BD AB AD =-=-=.
故选A .
【点睛】
本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.
8.A
解析:A
【分析】
先根据点M 是AB 中点求出AM=BM=6cm ,再根据MC :CB=1:2求出MC 即可得到答案.
【详解】
∵点M 是AB 中点,
∴AM=BM=6cm ,
∵MC :CB=1:2,
∴MC=2cm ,
∴AC=AM+MC=6cm+2cm=8cm ,
故选:A.
【点睛】
此题考查线段的中点性质,线段的和差计算,正确理解图形中线段之间的数量关系是解题的关键.
9.C
解析:C
【分析】
由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.
【详解】
解:由题意得,EC+DF=EF-CD=m-n
∵E 是AC 的中点,F 是BD 的中点,
∴AE=EC ,DF=BF ,
∴AE+BF=EC+DF=m-n ,
∵AB=AE+EF+FB ,
∴AB=m-n+m=2m-n
故选:C
【点睛】
本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.
10.D
解析:D
【分析】
考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.
【详解】
解:如图
当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,
当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,
故选D.
【点睛】
本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 11.B
解析:B
【分析】
根据线段中点的定义和性质,可得答案.
【详解】
若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,
若AM=MB=1
2
AB,则M是AB的中点,故②正确;
若AM=1
2
AB,M不在线段AB上时,则M不是AB的中点,故③错误;
若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;
故正确的是:②④
故选B.
【点睛】
本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.12.B
解析:B
【分析】
根据角的换算关系即可求解.
【详解】
22°×8=176°,20′×8=160′=2°40′,
故22°20′×8=176°+2°40′=178°40′
故选B.
【点睛】
本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 13.D
解析:D
【分析】
直线没有端点,射线有一个端点,线段有两个端点.
【详解】
以A 点为端点的射线有2条,以B 为端点的射线有3条,以C 为端点的射线有2条,以D 为端点射线有1条,合计射线8条.
线段:AB ,BC ,AC ,BD ,合计4条.
直线:AC ,合计1条
故本题 D.
【点睛】
直线没有端点,射线有一个端点,线段有两个端点.
14.D
解析:D
【分析】
在0度到90度之间的叫锐角,可以用赋值法讨论.
【详解】
解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;
当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;
当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;
综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.
【点睛】
利用赋值法解题,可以使一些难以直接证明的问题简单易解.
15.A
解析:A
【解析】
【分析】
用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.
【详解】
用一个平面截正方体,若所得的截面是一个三角形,
此时剩下的较大的几何体一定比正方体多了一个面,
如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,
如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.
故选:A.
【点睛】
此题考查截一个几何体 ,解题关键在于掌握立体图形.
二、填空题
16.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系 解析:4
【分析】
根据线段的和差关系即可求解.
【详解】
∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,
则AC =AB+BC=4cm ,
故填:4.
【点睛】
此题主要考查线段的长度,解题的关键是熟知线段的和差关系.
17.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】
∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC 平分∠BOD ∴∠
解析:40°
【解析】
【分析】
由题意可知∠1+∠2=100°,从而得到∠BOD =80°,由角平分线的定义可得到结论.
【详解】
∵∠1=28°,∠2=72°,
∴∠1+∠2=100°,
∴∠BOD =80°.
∵OC 平分∠BOD ,
∴∠COD =∠BOC 12
BOD ∠=
=40°. 故答案为40°.
【点睛】
本题考查了角平分线的定义,掌握图形间角的和差关系是解题的关键. 18.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD
解析:CD BC BD AD CD
【分析】
根据线段之间的和差关系进行解答即可得答案.
【详解】
(1)AC=AD-CD=AB+BC,
(2)BC+CD=BD=AD-AB,
(3)AD=AC+CD,
故答案为:CD;BC;BD;AD;CD
【点睛】
本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.
19.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出
解析:450°
【分析】
(1)∠AOE=90°,故图中所有的角都是不大于90°的角;
(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.
【详解】
不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,
∠COA,∠BOA共10个;
它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+
∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.
故答案为10;450°.
【点睛】
此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.
20.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大
解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b
【分析】
(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;
(2)两条线段a和b的大小有三种情况.
【详解】
(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.
(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.
故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.
【点睛】
本题考查了比较线段的长短,是基础题型,是需要识记的知识.
21.两点确定一条直线【解析】【分析】依据两点确定一条直线来解答即可【详解】解:在木板上画出两个点然后过这两点弹出一条墨线此操作的依据是两点确定一条直线故答案为两点确定一条直线【点睛】本题考查的是直线的性解析:两点确定一条直线.
【解析】
【分析】
依据两点确定一条直线来解答即可.
【详解】
解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.
故答案为两点确定一条直线.
【点睛】
本题考查的是直线的性质,掌握直线的性质是解题关键.
22.【分析】棱长为1cm的正方体拼的表面积是6要使拼接成的长方体表面积最大则重合的面要最少当四个正方体排成一列时面积最大重合的有6个面【详解】解:当四个正方体排成一列时面积最大重合的有6个面根据以上分析
解析:18
【分析】
棱长为1cm的正方体拼的表面积是6,要使拼接成的长方体表面积最大则重合的面要最少,当四个正方体排成一列时,面积最大.重合的有6个面.
【详解】
解:当四个正方体排成一列时,面积最大.重合的有6个面.
根据以上分析表面积最大的为:4×(4×1)+2×(1×1)=18.
故答案为18.
【点睛】
本题的考查了长方体表面积的计算,关键是要分析出什么情况下表面积最大.23.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO
解析:135°
【解析】
【分析】
先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知
∠COE=1
2
∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.
【详解】
因为OC AB
于点O,
所以∠AOC=∠BOC=90°,
因为OE 为COB ∠的平分线,
所以∠COE =12
∠BOC =45°, 又因为∠AOE =∠COE +∠AOC,
所以∠AOE =90°+45°=135°.
故答案为:135°.
【点睛】
本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.
24.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体 解析:12π或16π
【分析】
根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.
【详解】
解:绕它的直角边所在的直线旋转所形成几何体是圆锥,
①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123
ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163
ππ⨯⨯=, 故答案为:12π或16π.
【点睛】
此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论. 25.23【解析】∵∠A=67°∴∠A 的余角=90°﹣67°=23°故答案为23
解析:23
【解析】
∵∠A=67°,
∴∠A 的余角=90°﹣67°=23°,
故答案为23.
26.20【解析】【分析】求出∠BOC=140°根据OD 平分∠BOC 得出
∠COD=∠BOC 求出∠COD=70°根据∠DOE=∠COE-∠COD 求出即可【详解】∵O 是直线AB 上一点∴∠AOC+∠BOC=18
解析:20
【解析】
【分析】求出∠BOC=140°,根据OD 平分∠BOC 得出∠COD=12
∠BOC ,求出∠COD=70°,
根据∠DOE=∠COE-∠COD求出即可.
【详解】∵O是直线AB上一点,
∴∠AOC+∠BOC=180°,
∵∠AOC=40°,
∴∠BOC=140°,
∵OD平分∠BOC,
∠BOC=70°,
∴∠COD=1
2
∵∠DOE=∠COE-∠COD,∠COE=90°,
∴∠DOE=20°,
故答案为20°.
【点睛】本题考查了角的计算、角平分线的定义,解题的关键是能求出各个角的度数. 27.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出
MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设
AB=2xcmBC=3xcmCD=4xcm∵M是
解析:5cm
【分析】
运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.
【详解】
解:设AB=2xcm,BC=3xcm,CD=4xcm,
∵M是AB的中点,N是CD的中点,
∴MB=xcm,CN=2xcm,
∴MB+BC+CN=x+3x+2x=3,
∴x=0.5,
∴3x=1.5,
即BC=1.5cm.
故答案为:1.5cm.
【点睛】
本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.
三、解答题
28.
∠BHF=115° .
【分析】
由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分
∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.
【详解】
∵AB∥CD,
∴∠CFG=∠AGE=50°,
∴∠GFD=130°;
又FH平分∠EFD,
∴∠HFD=1
2
∠EFD=65°;
∵AB∥CD,
∴∠BHF=180°-∠HFD=115°.
【点睛】
本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.29.
答案见解析
【分析】
利用作射线,直线和线段的方法作图.
【详解】
如图:
【点睛】
本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.
30.
(1)7.5;(2)1
2
a,理由见解析;(3)能,MN=
1
2
b,画图和理由见解析
【分析】
(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.
(2)据题意画出图形,利用MN=MC+CN即可得出答案.
(3)据题意画出图形,利用MN=MC-NC即可得出答案.
【详解】
解:(1)点M、N分别是AC、BC的中点,
∴CM=1
2
AC=4.5cm,
CN=1
2
BC=3cm,
∴MN=CM+CN=4.5+3=7.5cm.所以线段MN的长为7.5cm.
(2)MN的长度等于1
2 a,
根据图形和题意可得:MN=MC+CN=1
2
AC+
1
2
BC=
1
2
(AC+BC)=
1
2
a;
(3)MN的长度等于1
2 b,
根据图形和题意可得:
MN=MC-NC=1
2
AC-
1
2
BC=
1
2
(AC-BC)=
1
2
b.
【点睛】
本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.。

相关文档
最新文档