惠州市人教版七年级上册数学期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

惠州市人教版七年级上册数学期末试卷及答案-百度文库
一、选择题
1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30°
B .40°
C .50°
D .90°
2.当x 取2时,代数式(1)
2
x x -的值是( ) A .0 B .1 C .2 D .3 3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )
A .10-
B .10
C .5-
D .5
4.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .
410 +
4
15
x -=1 B .
410 +
4
15
x +=1 C .
410x + +4
15
=1 D .
410x + +15
x
=1 5.王老师有一个实际容量为()
20
1.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30
C .32
D .34
6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM
的长( ) A .7cm
B .3cm
C .3cm 或 7cm
D .7cm 或 9cm
7.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )
A .132°
B .134°
C .136°
D .138° 8.已知一个多项式是三次二项式,则这个多项式可以是( )
A .221x x -+
B .321x +
C .22x x -
D .3221x x -+
9.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10 C .2.5 D .2 10.下列计算正确的是( )
A .-1+2=1
B .-1-1=0
C .(-1)2=-1
D .-12=1 11.若2m ab -与162n a b -是同类项,则m n +=( )
A .3
B .4
C .5
D .7
12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解
x=
b
a
;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 1
6
(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1
二、填空题
13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 15.若3750'A ∠=︒,则A ∠的补角的度数为__________.
16.计算: 1
01(2019)5-⎛⎫+- ⎪⎝⎭
=_________
17.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 18.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)
19.若α与β互为补角,且α=50°,则β的度数是_____.
20.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号) 21.已知二元一次方程2x-3y=5的一组解为x a
y b
=⎧⎨=⎩,则2a-3b+3=______. 22.计算:3+2×(﹣4)=_____.
23.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 24.用度、分、秒表示24.29°=_____.
三、压轴题
25.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.
(1)长方形的边AD长为单位长度;
(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;
(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P
点出发时间相同。

那么当三角形BDQ,三角形BPC两者面积之差为1
2
时,直接写出运动时
间t 的值.
26.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填
数之和都相等.
6a b x-1-2...
(1)可求得x =______,第 2021 个格子中的数为______;
(2)若前k 个格子中所填数之和为 2019,求k 的值;
(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算
|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,
求所有的|m-n|的和.
27.如图1,线段AB的长为a.
(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用
尺规画图,再用签字笔把笔迹涂黑.)
(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数
恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M
是BC的中点,点N是AD的中点,请求线段MN的长.
(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开
始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙
同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为
每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点
对应的有理数.
28.已知线段30AB cm =
(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?
(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向
A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.
29.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;
(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.
30.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段
AM 上,D 在线段BM 上)
()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;
(直接填空)
()2当点C 、D 运动了2s ,求AC MD +的值.
()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)
()4在()3的条件下,N是直线AB上一点,且AN BN MN
-=,求MN
AB
的值.
31.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.
(1)求A,B两点之间的距离;
(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;
(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.
设运动时间为t秒.
①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)
②求甲乙两小球到原点距离相等时经历的时间.
32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是
∠AOC的平分线;
(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.
【详解】
解:∵一个角的补角是130︒, ∴这个角为:50︒,
∴这个角的余角的度数是:40︒. 故选:B . 【点睛】
此题主要考查了余角和补角,正确把握相关定义是解题关键.
2.B
解析:B 【解析】 【分析】
把x 等于2代入代数式即可得出答案. 【详解】 解:
根据题意可得: 把2x =代入
(1)
2
x x -中得: (1)21
==122x x -⨯, 故答案为:B. 【点睛】
本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.
3.D
解析:D 【解析】 【分析】
根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值. 【详解】
解:∵方程2k-3x=4与x-2=0的解相同, ∴x=2,
把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】
本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.
4.B
解析:B 【解析】 【分析】
直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】
设乙独做x天,由题意得方程:
4 10+
4
15
x
=1.
故选B.
【点睛】
本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.
5.B
解析:B
【解析】
【分析】
根据同底数幂的乘除法法则,进行计算即可.
【详解】
解:(1.8−0.8)×220=220(KB),
32×211=25×211=216(KB),
(220−216)÷215=25−2=30(首),
故选:B.
【点睛】
本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.
6.C
解析:C
【解析】
【分析】
应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.
【详解】
①如图1所示,当点C在点A与B之间时,
∵线段AB=10cm,BC=4cm,
∴AC=10-4=6cm.
∵M是线段AC的中点,
∴AM=1
2
AC=3cm,
②如图2,当点C在点B的右侧时,∵BC=4cm,
∴AC=14cm
M是线段AC的中点,
∴AM=1
2
AC=7cm.
综上所述,线段AM的长为3cm或7cm.
故选C.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.B
解析:B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
8.B
解析:B
【解析】
A. 2x2x1
-+是二次三项式,故此选项错误;
B. 3
2x1
+是三次二项式,故此选项正确;
C. 2x2x
-是二次二项式,故此选项错误;
D. 32
x2x1
-+是三次三项式,故此选项错误;
故选B.
9.A
解析:A
【解析】
【分析】
分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t 值,可得答案. 【详解】
①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50, 解得:t=2;
(2)当两车相遇后,两车又相距50千米时, 根据题意,得120t+80t=450+50, 解得t=2.5.
综上,t 的值为2或2.5, 故选A. 【点睛】
本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.
10.A
解析:A 【解析】
解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2; C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;
D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .
11.C
解析:C 【解析】 【分析】
根据同类项的概念求得m 、n 的值,代入m n +即可. 【详解】
解:∵2m ab -与162n a b -是同类项, ∴2m=6,n-1=1, ∴m=3,n=2, 则325m n +=+=. 故选:C . 【点睛】
本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.
12.A
解析:A 【解析】
要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合
并得,x=
3
1
a
,因为无解,所以a﹣1=0,即a=1.
故选A.
点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题
13.3
【解析】
试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.
解:2﹣(﹣1)=3.
故答案为3
考点:数轴.
解析:3
【解析】
试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.
故答案为3
考点:数轴.
14.09.
【解析】
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为0.09.
【点睛】
本题考查了近似数和
解析:09.
【解析】
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为0.09.
【点睛】
本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般
有,精确到哪一位,保留几个有效数字等说法.
15.【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵,
∴的补角=180°-=.
故填.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒
解析:14210'︒
【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵3750'A ∠=︒,
∴A ∠的补角=180°-3750'︒=14210'︒.
故填14210'︒.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒是60进制.
16.6
【解析】
【分析】
利用负整数指数幂和零指数幂的性质计算即可.
【详解】
解:原式=5+1=6,
故答案为:6.
【点睛】
本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,
解析:6
【解析】
【分析】
利用负整数指数幂和零指数幂的性质计算即可.
【详解】
解:原式=5+1=6,
故答案为:6.
【点睛】
本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
17.两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直
解析:两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.
故答案为:两点确定一条直线.
【点睛】
考核知识点:两点确定一条直线.理解课本基本公理即可.
18.270°-3α
【解析】
【分析】
设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-
x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程
解析:270°-3α
【解析】
【分析】
设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.
【详解】
设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,
∴∠BOD=4x,∠AOC=∠COD=α-x,
由∠BOD+∠AOD=180°,
∴4x+2(α-x )=180°
解得x=90°-α,
∴∠BOE=3x=3(90°-α)=270°-3α,
故答案为:270°-3α.
【点睛】
本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.
19.130°.
【解析】
【分析】
若两个角的和等于,则这两个角互补,依此计算即可.
【详解】
解:与互为补角,


故答案为:.
【点睛】
此题考查了补角的定义.补角:如果两个角的和等于(平角),
解析:130°.
【解析】
【分析】
若两个角的和等于180︒,则这两个角互补,依此计算即可.
【详解】
解:α与β互为补角,
180αβ∴+=︒,
180********βα∴=︒-=︒-︒=︒.
故答案为:130︒.
【点睛】
此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.
20.①④
【解析】
【分析】
根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.
【详解】
①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;
②令a=1,b=-1,此
解析:①④
【解析】
【分析】
根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.
【详解】
①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;
②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;
③两直线平行,内错角相等,故③是假命题,不符合题意;
④对顶角相等,真命题,符合题意,
故答案为:①④.
【点睛】
本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.
21.8
【解析】
【分析】
根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.
【详解】
把代入方程2x-3y=5得
2a-3b=5,
所以2a-3b+3=5+3=8,
故答案为:8
解析:8
【解析】
【分析】
根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.
【详解】

x a
y b
=


=

代入方程2x-3y=5得
2a-3b=5,
所以2a-3b+3=5+3=8,
故答案为:8.
【点睛】
本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.
22.﹣5
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是
解析:﹣5
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.17
【解析】
【分析】
【详解】
解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
解析:17
【解析】
【分析】
【详解】
解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
24.【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制.
【详解】
根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=
24°+17′+0.4×60″=24°17′
解析:241724
︒'"
【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制.
【详解】
根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.
【点睛】
此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.
三、压轴题
25.(1)4;(2)-3.5或-0.5;(3)t的值为11
16

13
16

13
8

11
8

【解析】
【分析】
(1)先求出AB的长,由长方形ABCD的面积为12,即可求出AD的长;
(2)由三角形ADP面积为3,求出AP的长,然后分两种情况讨论:①点P在点A的左边;②点P在点A的右边.
(3)分两种情况讨论:①若Q在B的左边,则BQ= 3-3t.由|S△BDQ-S△BPC |=1
2
,解方程
即可;②若Q在B的右边,则BQ= 3t-3.由|S△BDQ-S△BPC |=1
2
,解方程即可.
【详解】
(1)AB=1-(-2)=3.
∵长方形ABCD的面积为12,∴AB×AD=12,∴AD=12÷3=4.故答案为:4.
(2)三角形ADP面积为:1
2
AP•AD=
1
2
AP×4=3,
解得:AP=1.5,
点P在点A的左边:-2-1.5=-3.5,P点在数轴上表示-3.5;
点P在点A的右边:-2+1.5=-0.5,P点在数轴上表示-0.5.
综上所述:P点在数轴上表示-3.5或-0.5.
(3)分两种情况讨论:①若Q在B的左边,则BQ=AB-AQ=3-3t.
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t , 1(66)22
t t --=,680.5t -=±,解得:t =1316或1116; ②若Q 在B 的右边,则BQ =AQ -AB =3t -3.
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t , 1(66)22
t t --=,460.5t -=±,解得:t =138或118. 综上所述:t 的值为
1116、1316、138或118. 【点睛】
本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离公式.
26.(1)6,-1;(2)2019或2014;(3)234
【解析】
【分析】
(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
(2)可先计算出这三个数的和,再照规律计算.
(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.
【详解】
(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.
∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.
(2)∵6+(-1)+(-2)=3,∴2019÷3=673.
∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.
故答案为:2019或2014.
(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.
故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.
【点睛】
本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.
27.(1)详见解析;(2)35;(3)﹣5、15、112
3
、﹣7
6
7

【解析】
【分析】
(1)根据尺规作图的方法按要求做出即可;
(2)根据中点的定义及线段长度的计算求出;
(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.
【详解】
解:(1)如图所示;
(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有
点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35
(3)设乙从M点第一次回到点N时所用时间为t,则
t=2235
22
MN⨯
==35(秒)
那么甲在总的时间t内所运动的长度为
s=5t=5×35=175
可见,在乙运动的时间内,甲在C,D之间运动的情况为
175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有
5t1=2t1+15,t1=5(秒)
而﹣30+5×5=﹣5,﹣15+2×5=﹣5
这时甲和乙所对应的有理数为﹣5.
②设甲乙第二次相遇时的时间经过的时间t2,有
5t2+2t2=25+30+5+10,t2=10(秒)
此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15
这时甲和乙所对应的有理数为15.
③设甲乙第三次相遇时的时间经过的时间t3,有
5t3﹣2t3=20,t3=20
3
(秒)
此时甲的位置:30﹣(5×20
3
﹣15)=11
2
3
,乙的位置:20﹣(2×
20
3
﹣5)=11
2
3
这时甲和乙所对应的有理数为112 3
④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有
5t4﹣112
3
﹣30﹣15+2t4=11
2
3
,t4=9
16
21
(秒)
此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767
这时甲和乙所对应的有理数为﹣7
67. 四次相遇所用时间为:5+10+
203+91621=3137(秒),剩余运行时间为:35﹣3137=347
(秒) 当时间为35秒时,乙回到N 点停止,甲在剩余的时间运行距离为5×3
47=5257⨯=1767
. 位置在﹣7
67+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767

【点睛】
本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.
28.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .
【解析】
【分析】
(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.
【详解】
解:(1)设经过ts 后,点P Q 、相遇.
依题意,有2330t t +=,
解得:6t =.
答:经过6秒钟后,点P Q 、相遇;
(2)设经过xs ,P Q 、两点相距10cm ,由题意得
231030x x ++=或231030x x +-=,
解得:4x =或8x =.
答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;
(3)点P Q 、只能在直线AB 上相遇,
则点P 旋转到直线AB 上的时间为:
()120430s =或()1201801030
s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;
或10306y =-,
解得 2.4y =,
答:点Q 的速度为7/cm s 或2.4/cm s .
【点睛】
本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.
29.(1)45°;(2)45°;(3)45°或135°.
【解析】
【分析】
(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;
(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;
(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.
【详解】
(1)如图,∠AOC=90°﹣∠BOC=20°,
∵OD 、OE 分别平分∠AOC 和∠BOC ,
∴∠COD=∠AOC=10°,∠COE=
12
∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:
∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12
∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,
分两种情况:如图3所示,
∵OD 、OE 分别平分∠AOC 和∠BOC ,
∴∠COD=12∠AOC ,∠COE=12
∠BOC , ∴∠DOE=∠COD ﹣∠COE=
12
(∠AOC ﹣∠BOC )=45°; 如图4所示,∵OD 、OE 分别平分∠AOC 和∠BOC , ∴∠COD=12∠AOC ,∠COE=12
∠BOC , ∴∠DOE=∠COD+∠COE=
12(∠AOC+∠BOC )=12×270°=135°.
【点睛】
此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
30.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13
MN AB =或1. 【解析】
【详解】
(1)根据题意知,CM=2cm ,BD=4cm .
∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;
(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .
∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;
(3)根据C 、D 的运动速度知:BD=2MC .
∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .
∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=
13
AB=4. 故答案为4;
(4)①当点N 在线段AB 上时,如图1.
∵AN﹣BN=MN.
又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,
∴MN
AB
=
4
12
=
1
3

②当点N在线段AB的延长线上时,如图2.
∵AN﹣BN=MN.
又∵AN﹣BN=AB,∴MN=AB=12,
∴MN
AB
=
12
12
=1.
综上所述:MN
AB
=
1
3
或1.
【点睛】
本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.
31.2+t6-2t或2t-6
【解析】
分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.
详解:(1)、由题意知a=-2,b=6,故AB=8.
(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=8
3
,∴C点表示的数为6-
8 3=
10
3

(3)①2+t;6-2t或2t-6.
②当2+t=6-2t时,解得t=4
3
,当2+t=2t-6时,解得t=8.∴t=
4
3
或8.
点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.
32.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.
【解析】
整体分析:
(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.
解:(1)如图②,∠AOC=120°,
∴∠BOC=180°﹣120°=60°,
又∵OM平分∠BOC,
∴∠BOM=30°,
又∵∠NOM=90°,
∴∠BOM=90°﹣30°=60°,
故答案为60°;
(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,
∴∠AOP=1
2
∠AOC,
∴射线OP是∠AOC的平分线;
(3)如图④,∵∠AOC=120°,
∴∠AON=120°﹣∠NOC,
∵∠MON=90°,
∴∠AON=90°﹣∠AOM,
∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

相关文档
最新文档