直流双闭环调速系统(课程设计)[1]

合集下载

双闭环直流调速系统设计

双闭环直流调速系统设计

一、课程设计目的在《电机与拖动》、《电力电子技术》、《伺服系统》和《电力拖动自动控制系统》课程知识的基础上,完成课程的综合性设计。

通过课程设计环节的训练,包括设计方案的论证、参数计算、系统仿真和设计报告的撰写,掌握系统综合应用项目的设计流程和方法,加深对完整项目开发的的理解和掌握,培养应用系统的设计能力,初步积累双闭环直流调速系统的设计方法,以及分析问题和解决问题的能力,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

电力系统综合课程课程设计是电气工程及其自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练,其主要目的是:1、理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。

2、对一种典型的双闭环调速自动控制系统进行综合性分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。

加强基本技能训练。

3、掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。

4、培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。

为下学期毕业设计作准备。

5、通过设计熟练地查阅有关资料和手册。

二、课程设计内容与要求1、本课程设计的对象直流伺服电机:学生自行查找电机型号直流测速机:学生根据设计任务选择2、本课程设计的内容要求设计一个直流双闭环调速系统。

其主要内容为:1、测定综合实验中所用控制对象的参数(在实验室完成)。

2、根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。

3、按设计结果组成系统,以满足给定指标。

4、研究参数变化对系统性能的影响。

5、在时间允许的情况下进行调试。

3、本课程设计的设计要求a.调速范围D=5~10,静差率S≤5%。

b.空载启动时电流超调σi≤5%,转速超调σn≤10%(在额定转速时)。

c.动态速降小于10%。

d.振荡次数小于2次。

直流电机双闭环调速课程设计

直流电机双闭环调速课程设计

直流电机双闭环调速及其MATLAB仿真摘要:在工业现场,绝大数场合需要运动控制,而提供运动的部分主要是电机,因此,对电机的调速控制是十分必需而重要的。

在各种调速方法中,双闭环调速调速是最为常用,也是最为有效的方法,本文根据直流调速双闭环控制系统的工作原理,运用MATLAB进行直流电动机双闭环调速系统的数建模和系统仿真的研究,最后显示控制系统模型并对仿真结果并加以分析。

关键词:直流电机;双闭环调速;MATLAB仿真1引言由于直流电动机适宜于在广泛范围内调速,其调速控制系统历来在工业控制具有要的地位,直流调速控制系统中最典型一种就是转速、电流双闭环调速系统。

在当今,仿真技术已经成为分析、研究各种系统复杂系统的重要工具,为了解决工程设计设计中可能出现的问题,利用MATLAB数学仿真软件实用工具对直流电动机的双闭环统进行仿真和系统分析就成为我们今天探讨的课题。

2调速系统的设计及其仿真在此,我以教材《电力拖动自动控制系统》中的例题2-1(P79)为题目,设计一个控制系统,并对其进行MATLAB仿真。

例题2-1 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机:220V,136A,1460r/min,Ce=0.132V.min/r,允许过载倍数λ=1.5;晶闸管装置放大系数Ks=40;电枢回路总电阻R=0.5Ω;时间常数Tl=0.03s,Tm=0.18s;电流反馈系数β=0.049V/A,转速反馈系数α= 0.00685 V.min/r。

设计要求:电流超调量σi≤5%,转速无静差,从空载到理想转速时的转速超调量σn≤10%。

解:一、电流环设计1.确定时间常数1)整流装置滞后时间常数Ts。

由表1-1可知,三相桥式电路的平均失控时间Ts=0.0017s。

表1-1 各种整流电路的失控时间2) 电流滤波时间常数Toi 。

三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波 头,应有(1-2)Toi=3.33ms ,取Toi=2ms=0.002s 。

双闭环直流调速系统课程设计

双闭环直流调速系统课程设计

双闭环调速系统的工作原理及其调试一、双闭环调速系统的分析1.双闭环调速系统的原理图图2-1 转速、电流双闭环调速系统ST ——转速调节器 LT ——电流调节器 SF ——测速发电机LH ——电流互感器 gn U 、fn U ——转速给定和速度反馈电压2.双闭环调速系统的工作原理采用双闭环调速系统即可保证在起动过程中,起动电流不超过某一最大值,而使电机和可控硅元件不会被烧坏,又能保证稳态精度,这主要是依靠电流环和转速环的作用。

3.KZS-1型晶闸管直流调速实验装置其面板布置图如图2-2所示。

4.转速调节器STST 的作用是在起动过程中的大部分时间里,转速调节器ST 处于饱和限幅状态,转速环相当于开环,系统表现为恒值电流调节的单环系统,只有转速超调后,ST 退出饱和后,才真正发挥线性调节作用,使转速不受负载变化的影响。

ST 能将输入的给定和反馈信号进行加法、减法、比例、积分微分等运算,使其输出量按某种规律变化,其原理电路如图2-8所示。

图2-2 面板布置图图2-3 转速调节器(ST )原理电路图ST 采用集成电路运算放大器组成,它具同相输入和反相输入两个输入端,其输出电压与两个输入端电压之差成正比。

2端为给定输入端,1端为反馈信号输入端。

搓在运算放大器输入端前面的阻抗为输入阻抗网络。

接在反相输入端和调节器输出端之间的网络为反馈阻抗网络。

改变输入与反馈阻抗网络参数,就能得到各种运算特性。

反向输入端与调节器输出端之间的场效应管起零速封锁作用。

零速时56端为零电平,场效应管导通,调节器输出锁零,56端为-15V 时,场效应管关断,调节器投入工作。

输出采用二极管箍位的外限幅电路。

电位器1RW 用以调节正向输出限幅值,电位器2RW 用以调节负向输出限幅值。

5.电流调节器LT电流调节器LT 的作用是保证在各种正常工作的条件下不发生过电流,在起、制动情况下维持电流恒定。

达到怛流起、制动,从而加快了起、制动过程。

在电网电压波动时,由于LT 反应快可以很快予以制止,减小了电网电压波动时对转速的影响,提高了抵抗电网电压波动能力。

直流电动机双闭环调速系统设计

直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制那么很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。

其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。

正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。

本次课程设计目的就是旨在对双闭环进展最优化的设计。

整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。

共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。

变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当a=0°时的工作情况。

双闭环直流调速系统的课程设计

双闭环直流调速系统的课程设计

双闭环直流调速系统的课程设计————————————————————————————————作者:————————————————————————————————日期:自动控制原理课程设计——双闭环直流调速系统课程设计班级电气自动化二班姓名程传伦学号110101225指导教师张琦2013年6月10日目录摘要第1章系统方案设计1.1 任务分析1。

2 方案比较论证1.3 系统方案确定第2章系统主电路设计及参数计算2。

1 主电路结构设计与确定2.2 主电路器件选择与计算2.2.1 整流变压器的参数计算和选择2.2.2 整流元件晶闸管的选型2.3 电抗器的设计2.4 主电路保护电路的设计2.4.1 过压保护设计2。

4.2 过流保护设计第3章双闭环调节系统调节器的设计3.1 电流调节器的设计3.2转速调节器的设计小结心得体会参考文献摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。

从控制的角度来看,直流调速还是交流拖动系统的基础。

该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的.该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流.并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。

第1章系统方案设计1。

1 任务分析本课题所涉及的调速方案本质上是改变电枢电压调速。

该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案.但电机的开环运行性能远远不能满足要求.按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。

双闭环直流调速系统课程设计

双闭环直流调速系统课程设计

SHi-MAML;皿;TI hlHI 门JI iljCi g ^iJtKJ-h直流拖动控制系统课程设计报告目: 双闭环直流调速系统设计院: 沈阳工业大学工程学院业: 电气工程及其自动化级: 1101 班名: 孔令慧号: 120112724指导教师: 佟维妍起止日期:2014年6月16日〜2014年6月22日设计概述.2... 第一章系统总体设计 3...1.1 系统电路结构 3...1.2 两个调节器的作用.4..第二章整体电路分析 6...2.1 电流环设计 6...2.2 转速环设计 6...2.3 典型 I 型系统介绍2.4 典型n型系统介绍.8..2.5 转速调节器的实现.9..2.6 电流调节器的实现.9..2.7 校核转速超调量9...第三章参数计算 1..03.1 相关参数 1...03.2 主要参数计算.1..03.2.1 电流环参数计算 1...03.2.2 转速环参数的计算 1..2 MATLAB 仿真 1..5课程设计体会 1...9.双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点。

在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。

由于直流电机双闭环调速是各种电机调速系统的基础,本人就直流电机调速进行了比较系统的研究,从直流电机的基本特性到单闭环调速系统,再进行双闭环直流电机设计方案的研究,用实际系统进行工程设计,并用所学的MATLABS 行仿真,分析了双闭环调速系统的工程设计方法中由于忽略和简化造成的误差。

在双闭环直流调速系统中,转速和电流调节器的结构选择与参数设计需从动态校正的需要来解决,设计每个调节器是,都必须先求该闭环的原始系统开环对数频率特性,再根据性能指标确定校正后系统的预期特性,对于经常正反转运动的系统,尽量缩短启、制动过程的时间是提高生产率的重要因素。

为此,在电机最大允许电流和转矩受到限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流为允许的最大值,是电力拖动系统以最大的加速度启动,到达稳定转速时,立即让电流降下来,使转矩马上与负载相平衡,从而装入稳态运行。

课程设计-直流双闭环调速系统-----带原理图的

课程设计-直流双闭环调速系统-----带原理图的

摘要本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。

文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。

此外,本文中还采用了芯片IR2112S作为直流电机正转调速功率放大电路的驱动模块来完成了在主电路中对直流电机的控制。

另外,本系统中使用了光电编码器对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。

在软件方面,文章中详细介绍了PI运算程序,单片机产生PWM波形的程序,初始化程序等的编写思路和具体的程序实现,M法数字测速及动态LED显示程序设计,A/D转换程序及动态扫描LED显示程序和故障检测程序及流程图。

关键词: PWM信号直流调速双闭环 PI调节前言本文主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

PWM控制技术就是以该结论为理论基础,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。

到目前为止,已经出现了多种PWM控制技术。

PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。

双闭环直流调速系统(课程设计)

双闭环直流调速系统(课程设计)

4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。

双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。

直流调速是现代电力拖动自动控制系统中发展较早的技术。

就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。

且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。

由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。

所以加深直流电机控制原理理解有很重要的意义。

2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。

从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。

每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。

同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。

正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。

(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。

3.3速度调节器设计电流环等效时间常数1/K。

取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。

直流电动机双闭环调速系统课程设计

直流电动机双闭环调速系统课程设计

直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。

在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。

传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。

因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。

二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。

速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。

两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。

三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。

其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。

2.软件设计软件设计包括PID控制器设计和程序编写。

PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。

程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。

四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。

2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。

3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。

五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。

其优点是调速范围广、调速精度高、调速响应快、负载能力强等。

六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。

双闭环直流电机调速系统课程设计

双闭环直流电机调速系统课程设计

学院: 专业班级: 姓名: 学号:双闭环直流调速系统的方案设计设计内容和要求设计内容:1. 根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。

2. 调速系统主电路元部件的确定及其参数计算。

3. 驱动控制电路的选型设计。

4.动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。

5. 绘制V —M 双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。

设计要求(假想参数):1. 该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。

2. 系统静特性良好,无静差(静差率2S ≤)。

3. 动态性能指标:转速超调量8%n δ<,电流超调量5%i δ<,动态最大转速降810%n ∆≤~,调速系统的过渡过程时间(调节时间)1s t s ≤。

4. 系统在5%负载以上变化的运行范围内电流连续。

5. 调速系统中设置有过电压、过电流保护,并且有制动措施。

6. 主电路采用三项全控桥。

学院: 专业班级: 姓名: 学号:双闭环直流调速系统总设计框图在生活中,直接提供的是三相交流760V 电源,而直流电机的供电需要三相直流电, 因此要进行整流,本设计采用三相桥式整流电路将三相交流电源变成三相直流电源,最后达到要求把电源提供给直流电动机。

如图2-1设计的总框架。

双闭环直流调速系统设计总框架三相交流电路的交、直流侧及三相桥式整流电路中晶闸管中电路保护有电压、电流保护。

一般保护有快速熔断器,压敏电阻,阻容式。

根据不同的器件和保护的不同要求采用不同的方法。

驱动电路是电力电子主电路与控制电路之间的接口,是电力电子装置的重要环节, 它将信息电子电路传来的信号按照其控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通 或关断的信号。

双闭环直流调速系统课程设计

双闭环直流调速系统课程设计

电力拖动自动控制系统课程设计报告题目:晶闸管双闭环直流调速系统摘要双闭环直流调速系统即速度和电流双闭环直流调速系统,是由单闭环直流调速系统发展起来的,调速系统使用比例积分调节器,可以实现转速的无静差调速。

又采用电流截止负反馈环节,限制了起(制)动时的最大电流。

这对一般的要求不太高的调速系统,基本上已经能满足要求。

但是由于电流截止负反馈限制了最大电流,加上电动机反电势随着转速的上升而增加,使电流到达最大值后迅速降下来,这样,电动机的转矩也减小了,使起动加速过程变慢,起动的时间比较长。

在这些系统中为了尽快缩短过渡时间,所以就希望能够充分利用晶闸管元件和电动机所允许的过载能力,使起动的电流保护在最大允许值上,电动机输出最大转矩,从而转速可直线迅速上升,使过渡过程的时间大大的缩短。

另一方面,在一个调节器的输出端有综合几个信号,各个参数互相调节比较困难。

为了克服这一缺点就应用转速,电流双闭环直流调速系统。

关键词:双闭环直流调速系统 ASR ACR1.设计要求直流电动机设计双闭环直流晶闸管调速系统,技术要求如下:1.1直流电动机的额定参数P N=1.1KW、U N=110V、I N=1.2A、n N=1500r/min,电枢电阻R=1a Ω,电枢绕组电感L a=28mH,系统飞轮矩GD2=0.1375Kg·m2,电流过载倍数λ=1.5。

1.2电压参数电网电压:线电压U=380V采用三相晶闸管桥式整流电路供电1.3设计要求稳态无静差,电流超调量σi≤5%;转速超调量σn≤10%。

2.双闭环直流调速系统系统总设计为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如下图所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。

该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。

因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。

双闭环直流调速系统课程设计说明书1 精品

双闭环直流调速系统课程设计说明书1 精品

《交直流调速系统》课程设计说明书双闭环直流调速系统目录交直流调速系统课程设计指导书 (III)一、课程设计大纲 (III)二、课程设计任务书 (IV)摘要 (4)1 绪论 (6)2直流调速系统的方案确定 (7)2.1 系统技术数据及要求 (7)2.2 调速系统的方案选择 (7)2.2.1 主电路的选择 (8)2.2.2 触发电路的选择 (8)3主电路设计与计算 (9)3.1 主电路的设计 (9)3.2整流变压器的设计 (10)3.2.1变压器二次侧电压U2的计算 (10)3.2.2 一次、二次相电流I1、I2的计算 (10)3.2.3变压器容量的计算 (11)3.3晶闸管元件的选择 (11)3.3.1晶闸管的额定电压 (11)3.3.2晶闸管的额定电流 (11)3.4 主电路的保护设计与计算 (12)3.4.1 过电压保护 (12)3.4.2 过电流保护 (14)3.4.3 缺相与无励磁或弱磁保护 (15)3.5 平波电抗器的计算 (15)3.6 励磁电路元件的选择 (17)4 触发电路的设计 (18)4.1 触发电路的选择 (18)4.2 同步变压器设计 (19)4.3 控制电路的直流电源 (19)5 双闭环的动态设计和校验 (20)5.1电流调节器的设计和校验 (20)5.2转速调节器的设计和校验 (22)6 系统MATLAB仿真 (24)6.1 系统的建模与参数设置 (24)6.1.1 系统的建模 (24)6.1.2 模型参数设置 (25)6.2 系统仿真结果的输出及结果分析 (25)7 设计心得 (27)参考文献 (27)交直流调速系统课程设计指导书一、课程设计大纲适用专业:电气自动化、电气工程及其自动化总学时:2周1.课程设计的目的课程设计室本课程教学中极为重要的实践性教学环节,它不但起着提高本课程教学质量、水平和检验学生对课程内容掌握程度的作用,而且还将起到从理论过度到实践的桥梁作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。

直流电机是最常见的一种电机,在各领域中得到广泛应用。

研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。

电机调速问题一直是自动化领域比较重要的问题之一。

不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。

本文基于PWM的双闭环直流调速系统进行了研究,并设计出应用于直流电动机的双闭环直流调速系统。

首先描述了变频器的发展历程,提出了PWM调速方法的优势,指出了未来PWM调速方法的发展前景,点出了研究PWM调速方法的意义。

应用于直流电机的调速方式很多,其中以PWM变频调速方式应用最为广泛,而PWM变频器中,H型PWM变频器性能尤为突出,作为本次设计的基础理论,本文将对PWM的理论进行详细论述。

在此基础上,本文将做出SG3525单片机控制的H型PWM变频调速系统的整体设计,然后对各个部分分别进行论证,力图在每个组成单元上都达到最好的系统性能。

关键词:直流调速,双闭环,PWM,SG3525,直流电机目录第一章直流调速系统的方案设计……………………………………………1.1设计技术指标要求……………………………………………………………………1.2现行方案的讨论与比较………………………………………………………………1.3选择PWM控制调速系统的理由………………………………………………………1.4采用转速、电流双闭环的理由…………………………………………………………第二章 PWM控制直流调速系统主电路设计…………………………………2.1主电路结构设计………………………………………………………………………2.1.1 PWM变换器介绍……………………………………………………………………2.1.2泵升电路…………………………………………………………………………2.2 参数设计………………………………………………………………………………2.2.1 IGBT管的参数………………………………………………………………………2.2.2缓冲电路参数………………………………………………………………………2.2.3泵升电路参数………………………………………………………………………第三章 PWM控制直流调速系统控制电路设计………………………………3.1检测环节………………………………………………………………………………3.1.1电流检测环节………………………………………………………………………3.1.2电压检测环节………………………………………………………………………3.2调节器的选择与调整…………………………………………………………………3.2.1调节器限幅…………………………………………………………………………3.2.2调节器锁零…………………………………………………………………………3.3 系统的给定电源、给定积分器………………………………………………………3.3.1给定电源GS…………………………………………………………………………3.3.2给定积分器…………………………………………………………………………3.4 触发电路的确定………………………………………………………………………3.4.1选用触发电路时须考虑的因素……………………………………………………3.4.2触发电路同步电压的选取…………………………………………………………第四章参数计算………………………………………………………………4.1电流调节器的设计………………………………………………………………………4.2速度调节器设计………………………………………………………………………第五章课程设计总结参考文献第一章 直流调速系统的方案设计1.1 设计技术指标要求1.直流电动机:型号:DJ15;功率:485W ;电枢电压:220V ;电枢电流:1.2A额定转数:1600rpm2.调速范围:1:12003.起动时超调量:电流超调量:%5≤i σ;转速超调量: %5≤n σ1.2 现行方案的讨论与比较直流电动机的调速方法有三种:(1)调节电枢供电电压U 。

(2)改变电动机主磁通Φ。

(3)改变电枢回路电阻R 。

改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。

弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。

因此,自动控制的直流调速系统往往以调压调速为主速。

改变电枢电压调速是直流调速系统采用的主要方法,调节电枢供电电压需要有专门的可控直流电源,常用的可控直流电源有以下三种:(1)旋转变流机组。

(2)静止可控整流器。

(3)直流斩波器或脉宽调制变换器。

用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。

1.3 选择PWM 控制系统的理由脉宽调制器UPW 采用美国硅通用公司(Silicon General )的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM 控制器。

由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。

PWM 系统在很多方面具有较大的优越性 :1) PWM 调速系统主电路线路简单,需用的功率器件少。

2) 开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。

3) 低速性能好,稳速精度高,调速范围广,可达到1:10000左右。

4) 如果可以与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。

5) 功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高。

6) 直流电源采用不可控整流时,电网功率因数比相控整流器高。

变频调速很快为广大电动机用户所接受,成为了一种最受欢迎的调速方法,在一些中小容量的动态高性能系统中更是已经完全取代了其他调速方式。

由此可见,变频调速是非常值得自动化工作者去研究的。

在变频调速方式中,PWM 调速方式尤为大家所重视,这是我们选取它作为研究对象的重要原因。

1.4 采用转速电流双闭环的理由同开环控制系统相比,闭环控制具有一系列优点。

在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。

因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。

由于闭环系统的这些优点因此选用闭环系统。

单闭环速度反馈调速系统,采用PI控制器时,可以保证系统稳态速度误差为零。

但是如果对系统的动态性能要求较高,如果要求快速起制动,突加负载动态速降小等,单闭环系统就难以满足要求。

这主要是因为在单闭环系统中不能完全按照要求来控制动态过程的电流或转矩。

另外,单闭环调速系统的动态抗干扰性较差,当电网电压波动时,必须待转速发生变化后,调节作用才能产生,因此动态误差较大。

在要求较高的调速系统中,一般有两个基本要求:一是能够快速启动制动;二是能够快速克服负载、电网等干扰。

通过分析发现,如果要求快速起动,必须使直流电动机在起动过程中输出最大的恒定允许电磁转矩,即最大的恒定允许电枢电流,当电枢电流保持最大允许值时,电动机以恒加速度升速至给定转速,然后电枢电流立即降至负载电流值。

如果要求快速克服电网的干扰,必须对电枢电流进行调节。

以上两点都涉及电枢电流的控制,所以自然考虑到将电枢电流也作为被控量,组成转速、电流双闭环调速系统。

第二章 PWM 控制直流调速系统主电路设计2.1 主电路结构设计2.1.1 PWM 变换器介绍脉宽调速系统的主要电路采用脉宽调制式变换器,简称PWM 变换器。

PWM 变换器有不可逆和可逆两类,可逆变换器又有双极式、单极式和受限单极式等多种电路。

下面分别对各种形式的PWM 变换器做一下简单的介绍和分析。

不可逆PWM 变换器分为无制动作用和有制动作用两种。

图2-1(a )所示为无制动作用的简单不可逆PWM 变换器主电路原理图,其开关器件采用全控型的电力电子器件。

电源电压s U 一般由交流电网经不可控整流电路提供。

电容C 的作用是滤波,二极管VD 在电力晶体管VT 关断时为电动机电枢回路提供释放电储能的续流回路。

图2-1 简单的不可逆PWM 变换器电路(a )原理图 (b )电压和电流波型电力晶体管VT 的基极由频率为f ,其脉冲宽度可调的脉冲电压b U 驱动。

在一个开关周期T 内,当on t t ≤≤0时,b U 为正,VT 饱和导通,电源电压通过VT 加到电动机电枢两端;当T t t on ≤≤时,b U 为负,VT 截止,电枢失去电源,经二极管VD 续流。

电动机电枢两端的平均电压为s s on d U U Tt U ρ== 式中,Tt U U on d ==5ρ——PWM 电压的占空比,又称负载电压系数。

ρ的变化范围在0~1之间,改变,ρ即可以实现对电动机转速的调节。

图2-1(b )绘出了稳态时电动机电枢的脉冲端电压d u 、平均电压d u 和电枢电流d i 的波型。

由图可见,电流是d i 脉动的,其平均值等于负载电流m L dl C T I /=(L T ——负载转矩,m C ——直流电动机在额定磁通下的转矩电流比)。

由于VT 在一个周期内具有开关两种状态,电路电压平衡方程式也分为两阶段,即 在on t t ≤≤0期间 E dtdi L Ri U d d ++=5 在T t t on ≤≤期间 E dtdi L Ri d d ++=0 式中,R ,L ——电动机电枢回路的总电阻和总电感;E ——电动机的反电动势。

PWM 调速系统的开关频率都较高,至少是1~4kHz ,因此电流的脉动幅值不会很大,再影响到转速n 和反电动势E 的波动就更小,在分析时可以忽略不计,视 n 和E 为恒值。

图2-2(a )所示为具有制动作用的不可逆PWM 变换电路,该电路设置了两个电力晶体管VT1和VT2,形成两者交替开关的电路,提供了反向电流的d i -通路。

这种电路组成的PWM 调速系统可在第I 、II 两个象限中运行。

VT1和VT2的基极驱动信号电压大小相等,极性相反,即2b b U U -=。

当电动机工作在电动状态时,在一个周期内平均电流就为正值,电流d i 分为两段变化。

在on t t ≤≤0期间,1b U 为正,VT1饱和导通;2b U 为负,VT2截止。

此时,电源电压5U 加到电动机电枢两端,电流d i 沿图中的回路1流通。

在T t t on ≤≤期间,1b U 和2b U 改变极性,VT1截止,原方向的电流d i 沿回路2经二极管VD2续流,在VD2两端产生的压降给VT2施加反压,使VT2不可能导通。

相关文档
最新文档