人教版七年级初一数学第二学期第八章 二元一次方程组单元达标质量专项训练试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级初一数学第二学期第八章 二元一次方程组单元达标质量专项训
练试题
一、选择题
1.若关于x 、y 的二元一次方程组3234x y a
x y a
+=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为
( ) A .a <−2
B .a >−2
C .a <2
D .a >2
2.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )
A .2256x y x y +=⎧⎨=⎩
B .22
65x y x y +=⎧⎨=⎩
C .22310x y x y +=⎧⎨=⎩
D .22103x y x y +=⎧⎨=⎩
3.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )
小月:您好,我要买5支签字笔和3本笔记本 售货员:好的,那你应付款52元
小月:刚才我把两种文具的单价弄反了,以为要付44元
A .10元
B .11元
C .12元
D .13元
4.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是4
2x y =⎧⎨=⎩,则关于x 、y 的方程组
232232316ax by a c
ax by a c -+=⎧⎨
++=⎩
的解是 ( )
A .42x y =⎧⎨=⎩
B .3
2x y =⎧⎨=⎩
C .5
2x y =⎧⎨=⎩
D .5
1x y =⎧⎨=⎩
5.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )
A .
1
5
B .
16
C .
17
D .
18
6.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)
B .(0,﹣1)
C .(﹣1,0)
D .(1,0)
7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱( ) A .128元
B .130元
C .150 元
D .160元
8.解方程组232261s t s t +=⎧⎨-=-⎩①
②
时,①—②,得( )
A .31t -= .
B .33t -=
C .93t =
D .91t =
9.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为1
1x y =⎧⎨=-⎩
,则a ﹣2b 的值是
( ) A .﹣2 B .2 C .3 D .﹣3
10.下列方程组的解为3
1x y =⎧⎨
=⎩
的是( ) A .2
24x y x y -=⎧⎨
+=⎩
B .25
3x y x y -=⎧⎨
+=⎩
C .3
2x y x y +=⎧⎨
-=⎩
D .25
36x y x y -=⎧⎨
+=⎩
二、填空题
11.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额
为____元.
12.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下: 购票人数 1~50 51~100 100以上 门票价格
13元/人
11元/人
9元/人
如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.
13.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________
14.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的9
16
种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的
19
40
.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.
15.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍. 16.两位同学在解方程组时,甲同学正确地解出
,乙同学因把c 写
错而解得
,则a=_____,b=_____,c=_____.
17.定义一种新运算“※”,规定x ※y =2
ax by ,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.
18.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.
19.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、
丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.
20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.
三、解答题
21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B 型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.
(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?
(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.
22.阅读下列材料,然后解答后面的问题.
已知方程组
3720
41027
x y z
x y z
++=
⎧
⎨
++=
⎩
,求x+y+z的值.
解:将原方程组整理得
2(3)()20
3(3)()27
x y x y z
x y x y z
++++=
⎧
⎨
++++=
⎩
①
②
,
②–①,得x+3y=7③,
把③代入①得,x+y+z=6.
仿照上述解法,已知方程组
6422
641
x y
x y z
+=
⎧
⎨
--+=-
⎩
,试求x+2y–z的值.
23.我国古代的“河图”是由33
⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河
图”的部分点图,可以得到:
15
15
P
++=⎧
⎨
++=
⎩
●●●●●●●●●●●●●●●
●●●●●●●●●
如图2,已知33
⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y
,的值并在图3中填出剩余的数字.
24.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.
(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.
(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.
(3)若AM=BN,MN=4
3
BM,求m和n值.
25.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.
(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;
(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).
①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;
②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.26.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:
月份用水量(m3)收费(元)
357.5
4927
(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;
(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【分析】
先解根据关于x ,y 的二元一次方程组3234x y a x y a +=+⎧⎨
+=-⎩①
②
①+②得4x+4y=2-3a ,
234
a
x y -+=
;然后将其代入x +y >2,再来解关于a 的不等式即可. 【详解】 解:3234x y a x y a +=+⎧⎨
+=-⎩
①
②
①+②得 4x+4y=2-3a
234
a
x y -+=
∴由x+y>2,得 2324a
-> 即a<-2 故选A 【点睛】 本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质: (1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.
2.A
解析:A 【分析】
设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x 、y 的二元一次方程组,此题得解. 【详解】
设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,
根据题意得:22
56x y x y +=⎧⎨=⎩
.
【点睛】
此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
3.C
解析:C
【分析】
设购买1支签字笔应付x元,1本笔记本应付y元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y的值.
【详解】
设购买1支签字笔应付x元,1本笔记本应付y元,
根据题意得
5352 3544 x y
x y
+
⎧
⎨
+
⎩
=
=
,
解得8x+8y=96,
即x+y=12,
所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元,
故选C.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
4.B
解析:B
【分析】
方程组
2322
32316
ax by a c
ax by a c
-+=
⎧
⎨
++=
⎩
可化为
2132
31216
a x by c
a x by c
+-=
⎧
⎨
++=
⎩
()
()
,由方程组
232
3216
ax by c
ax by c
-=
⎧
⎨
+=
⎩
的解是
4
2
x
y
=
⎧
⎨
=
⎩
即可求得方程组
2322
32316
ax by a c
ax by a c
-+=
⎧
⎨
++=
⎩
的解为
3
2
x
y
=
⎧
⎨
=
⎩
.
【详解】
方程组
2322
32316
ax by a c
ax by a c
-+=
⎧
⎨
++=
⎩
可化为
2132
31216
a x by c
a x by c
+-=
⎧
⎨
++=
⎩
()
()
,
∵方程组
232
3216
ax by c
ax by c
-=
⎧
⎨
+=
⎩
的解是
4
2
x
y
=
⎧
⎨
=
⎩
,
∴
14
2
x
y
+=
⎧
⎨
=
⎩
,
即方程组
2322
32316
ax by a c
ax by a c
-+=
⎧
⎨
++=
⎩
的解为
3
2
x
y
=
⎧
⎨
=
⎩
.
故选B.
本题考查了二元一次方程组的解,把方程组232232316ax by a c
ax by a c
-+=⎧⎨
++=⎩化为
213231216a x by c a x by c +-=⎧⎨
++=⎩(
)()是解决问题的关键. 5.B
解析:B 【分析】
观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比. 【详解】
解:根据题意、结合图形可得:
330
433a b a a b +=⎧⎨
=+⎩
, 解得:155a b =⎧⎨=⎩
,
∴阴影部分面积2
2
3()310300=-=⨯=a b , 整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比3001
18006
==, 故选B . 【点睛】
本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.
6.D
解析:D 【解析】 【分析】
根据新定义运算法则列出方程 {ax by a ay bx b +=+=①
②
,由①②解得关于x 、y 的方程组,解方程组
即可. 【详解】
由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b), 则 {
ax by a ay bx b +=+=①
②
由①+②,得:(a+b)x+(a+b)y=a+b,
∵a,b是任意实数,∴x+y=1,③
由①−②,得
(a−b)x−(a−b)y=a−b,∴x−y=1,④
由③④解得,x=1,y=0,
∴(x,y)为(1,0);
故选D.
7.C
解析:C
【解析】
设甲每件x元,乙每件y元,丙每件z元,根据题意可列方程组:
①+②得:
4x+4y+4z=600
等号两边同除以4,得:
x+y+z=150
所以购甲、乙、丙三种商品各一件共需150元钱.
故选C.
8.C
解析:C
【分析】
运用加减消元法求解即可.
【详解】
解:解方程组
232
261
s t
s t
+=
⎧
⎨
-=-
⎩
①
②
时,①-②,得3t-(-6t)=2-(-1),
即,9t=3,
故选:C.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
9.B
解析:B
【详解】
把
1
1
x
y
=
⎧
⎨
=-
⎩
代入方程组
23
1
ax by
ax by
+=
⎧
⎨
-=
⎩
得:
23
1
a b
a b
-=
⎧
⎨
+=
⎩
,
解得:43
13a b ⎧=⎪⎪⎨
⎪=-⎪⎩
, 所以a−2b=43−2×(1
3
-)=2. 故选B.
10.D
解析:D 【解析】 把3
1x y =⎧⎨
=⎩
代入选项A 第2个方程24x y +=不成立,故错误; 把3
1x y =⎧⎨
=⎩
代入选项B 第2个方程3x y +=不成立,故错误; 把3
1x y =⎧⎨
=⎩
代入选项C 第1个方程3x y +=不成立,故错误; 把3
1x y =⎧⎨
=⎩
代入选项D 两个方程均成立,故正确; 故选D.
二、填空题
11.【分析】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于
解析:【分析】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可. 【详解】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,
2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩
,
即25217251
942a b c b c ++=⎧⎨+=⎩
,
其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩
(其中n 为整数),
又∵a ,b ,c 均是正整数,易得n =1.
所以546a b c =⎧⎪=⎨⎪=⎩
. ∴150a +60b +40c =150×5+60×4+40×6=1230.
故答案为:1230.
另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可.
【点睛】
本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.
12.15
【分析】
根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数
解析:15
【分析】
根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.
【详解】
解:设人数较少的部门有x 人,人数较多的部门有y 人,
∵945不能被11和13整除且945÷9=105(人),
∴两个部门的人数之和为105(人),
∵1245不能被11和13整除,
∴1≤x ≤50,51≤y ≤100,
依题意,得:10513111245
x y x y +=⎧⎨+=⎩, 解得:4560
x y =⎧⎨=⎩, ∴15-=x y ,
故答案为:15.
【点睛】
本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方
程是解题的关键.
13.【解析】
【分析】
题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可. 【详解】
两组条件:每人分七两,则剩余四两;
解析:
74
98
x y x y
+=⎧
⎨
-=⎩
【解析】
【分析】
题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.
【详解】
两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;
解:
74
98
x y x y
+=⎧
⎨
-=⎩
【点睛】
本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 14.3:20
【解析】
【分析】
设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数
解析:3:20
【解析】
【分析】
设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为
(x+y),川香已种植面积1
3
x、贝母已种植面积
1
4
x、黄连已种植面积
5
12
x,依题意列出
方程组,用y的代数式分别表示x、y,然后进行计算即可.
【详解】
解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为
(x+y),川香已种植面积1
3
x、贝母已种植面积
1
4
x、黄连已种植面积
5
12
x
依题意可得,
5919
()
121640
191
:3:4 3164
x y x y
x y y z x z
⎧
+=+
⎪⎪
⎨⎡⎤
⎛⎫⎛⎫
⎪+--+=
⎪ ⎪
⎢⎥
⎪⎝⎭⎝⎭
⎣⎦
⎩
①
②
由①得
3
2
x y =③
将③代入②得
3
8 z y =
∴贝母的面积与该村种植这三种中药材的总面积之比=
3
3
8
320
2
y
z
x y y y
==
++
故答案为3:20.
【点睛】
本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键
15.5
【解析】
设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,
则:0.5(x+a)+(2x-a)=0.5(y-a),
解得:y=5x
即快艇静水速度是快船的
解析:5
【解析】
设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,
则:0.5(x+a)+(2x-a)=0.5(y-a),
解得:y=5x
即快艇静水速度是快船的静水速度的5倍,
故答案为:5.
【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.
16.﹣2 ﹣2 ﹣2
【解析】
分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=
解析:﹣2 ﹣2 ﹣2
【解析】
分析:先把代入得,由方程组中第二个式子可得:
c=-2,然后把解代入ax+by=-2即可得出答案.
解答:解:把代入,
得,解得,c=-2.
再把代入ax+by=-2,
得,
解得:,
所以a=-2,b=-2,c=-2.
故答案为-2,-2,-2.
点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.
17.11
【解析】
分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y =1时,ax+by2=3,由此列二元一次方程组求a,b的值后,再求解.
详解:根据题意得,解得.
解析:11
【解析】
分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax +by2=3,由此列二元一次方程组求a,b的值后,再求解.
详解:根据题意得
45
23
a b
a b
⎧
⎨
⎩
+=
+=
,解得
1
1
a
b
⎧
⎨
⎩
=
=
.
当a=1,b=1时,x※y=x+y2.
所以2※3=2+32=11.
故答案为11.
点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.
18.5
【解析】
根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.
故答案为4和5.
点睛:本题考查了二元一
解析:5
【解析】
根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B
的高度×2,依两个等量关系列出方程组23233222x y x y +=⎧⎨+=⎩,再求解45x y =⎧⎨=⎩
. 故答案为4和5.
点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.
19.90
【分析】
首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁
解析:90
【分析】
首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.
【详解】
解:设道路一侧植树棵数为x 棵,则
78x
+=2+102610
x -⨯+, 解得x =180,
实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010
y
-+﹣5=()18078678y -+++, 解得y =5, 则丁植树的时长为1805610
-⨯=15, 所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).
故答案为:90.
【点睛】
本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过计算两人的植树时间进行比较.
20.【分析】
可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据
等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙
解析:【分析】
可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.
【详解】
解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩
, 解得19812688x y z =⎧⎪=⎨⎪=⎩
.
故甲堆原来有198个苹果.
故答案为:198.
【点睛】
考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.
三、解答题
21.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.
【分析】
(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;
(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.
【详解】
解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元, 35502331x y x y +=⎧⎨+=⎩,解得,57
x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;
(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)
只,费用为w 元, 5720021400w a a a +-+=()=-,
3200a a ≤-(),
150a ∴≤,
∴当150a =时,w 取得最小值,此时110020050w a =,﹣=
答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.
【点睛】
本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
22.3
【分析】
根据题目的解法,把x+2y-z看成一个整体,进行解方程即可.
【详解】
解:由题意得,
将原方程整理得
(2x2y z)+2(2x+z)=22①-3(x+2y-z)+(2x+z)=-1②⎧+-
⎨
⎩
②×2得
(6x2y-z)+2(2x+z)=-2
-+③
①-③得
(8x+2y z)=24
-
解得:x+2y-z=3.
【点睛】
本题主要考查了解三元一次方程组,解题的关键是要运用整体思维解方程组.
23.
1
1
x
y
=-
⎧
⎨
=
⎩
,见解析.
【分析】
根据题中的和为3先列出二元一次方程组,解出x,y的值,之后再补全图3即可.【详解】
解:根据题意,得
2323 243 x y
x y y
++=
⎧
⎨
++=
⎩
①
②
解得:
1
1 x
y
=-⎧
⎨
=⎩
填出剩余的数字如图所示:
【点睛】
本题是材料阅读题,注意正确阅读材料理解题意,列出方程组,求解之后即可顺利完成本
题.
24.(1)n-m;(2)①M是AN的中点,n=2m+3;②A是MN中点,n=-m-6;③N是AM
的中点,
13 22 =-
n m;(3)
4
m
n
=
⎧
⎨
=
⎩
或
6
2
m
n
=-
⎧
⎨
=-
⎩
或
9
5
1
5
m
n
⎧
=-
⎪⎪
⎨
⎪=-
⎪⎩
.
【解析】
【分析】
(1)由两点间距离直接求解即可;
(2)分三种情况讨论:①M是A、N的中点,n=2m+3;②当A点在M、N点中点时,n=﹣6﹣m;③N是M、A的中点时,n
3
2
m
-+
=;
(3)由已知可得|m+3|=|n﹣1|,n﹣m
4
3
=|m+3|,分情况求解即可.
【详解】
(1)MN=n﹣m.
故答案为:n﹣m;
(2)分三种情况讨论:
①M是A、N的中点,
∴n+(-3)=2m,
∴n=2m+3;
②A是M、N点中点时,m+n=-3×2,
∴n=﹣6﹣m;
③N是M、A的中点时,-3+m=2n,
∴n
3
2
m
-+
=;
(3)∵AM=BN,
∴|m+3|=|n﹣1|.
∵MN 43=BM , ∴n ﹣m 43=
|m +3|, ∴3133412m n n m m +=-⎧⎨-=+⎩或3133412m n n m m +=-⎧⎨-=--⎩或3133412m n n m m +=-+⎧⎨-=+⎩
或3133412m n n m m +=-+⎧⎨-=--⎩
, ∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩
或35m n =⎧⎨=-⎩. ∵n >m ,
∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩
. 【点睛】
本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB 的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.
25.(1)C 的坐标为(0,4),点D 的坐标为(1,2);(2)①点E 的坐标为(1,3),F 的坐标为(0,3)或点E 的坐标为(0,1),F 的坐标为(1,1);②存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).
【解析】
【分析】
(1)由点A 和点C 在y 轴上确定出向右平移3个单位,再根据△ACD 的面积求出向上平移的单位,然后写出点C 、D 的坐标即可.
(2)①根据线段EF 平行于线段OM 且等于线段OM ,得出2a +1=﹣2b +3,|a ﹣b |=1,解答即可;
②首先根据题意求出点P 的坐标为(,2),设点E 在F 的左边,由EF ∥x 轴得出a +b =1,求出△PEF 的面积=(b ﹣a )×|2a +1﹣2|=2,得出(b ﹣a )|2a ﹣1|=4,当EF 在点P 的上方时,(b ﹣a )(2a ﹣1)=4,与a +b =1联立得:
,此方程组无
解;当EF 在点P 的下方时,(b ﹣a )(1﹣2a )=4,与a +b =1联立得:
,解得:,或;分别代入点E(a,2a+1)、F(b,﹣
2b+3)即可.
【详解】
解:(1)∵A(﹣3,0),点C在y轴的正半轴上,
∴向右平移3个单位,
设向上平移x个单位,
∵S△ACO=OA×OC=6,
∴×3x=6,
解得:x=4,
∴点C的坐标为(0,4),
﹣2+3=1,﹣2+4=2,
故点D的坐标为(1,2).
(2)①存在;理由如下:
∵线段EF平行于线段OM且等于线段OM,
∴2a+1=﹣2b+3,|a﹣b|=1,
解得:a=1,b=0或a=0,b=1,
即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);
②存在,理由如下:如图2所示:
当点E、F重合时,,
解得:,
∴2a+1=2,
∴点P的坐标为(,2),
设点E在F的左边,
∵EF∥x轴,
∴2a+1=﹣2b+3,
∴a+b=1,
∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,
即(b﹣a)|2a﹣1|=4,
当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:
,此方程组无解;
当EF 在点P 的下方时,(b ﹣a )(1﹣2a )=4,与a +=1联立得:
, 解得:,或;
分别代入点E (a ,2a +1)、F (b ,﹣2b +3)得:E (﹣,0)、F (,0),或E (,4)、F (﹣,4);
综上所述,存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).
【点睛】
本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.
26.(1) 1.56
a c =⎧⎨=⎩;0≤x≤6时,y=1.5x ; x >6时,y=6x-27;(2)该户5月份水费是21元. 【解析】
【分析】
(1)根据3、4两个月的用水量和相应水费列方程组求解可得a 、c 的值;当0≤x≤6时,水费=用水量×此时单价;当x >6时,水费=前6立方水费+超出部分水费,据此列式即可;
(2)x=8代入x >6时y 与x 的函数关系式求解即可.
【详解】
解:(1)根据题意,得:()57.56a 96c 27a =⎧⎨+-=⎩
,。