龙山区二中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙山区二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4
B .5
C .6
D .7
2. 如图,程序框图的运算结果为( )
A .6
B .24
C .20
D .120
3. 函数f (x )
=有且只有一个零点时,a 的取值范围是( )
A .a ≤0
B .0<a
< C
.<a <1 D .a ≤0或a >1
4. 已知ω>0,0<φ<π,直线
x=和
x=
是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,则φ=
( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A.B.C.D.
5.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B 两点,若△AF
B的周长为4,则C的方程为()
1
A.+=1 B.+y2=1 C.+=1 D.+=1
6.已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为
,x,y,则+的最小值是()
A.20 B.18 C.16 D.9
7.在△ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2﹣c2=3bc,则A等于()A.30°B.60°C.120°D.150°
8.已知椭圆,长轴在y轴上,若焦距为4,则m等于()
A.4 B.5 C.7 D.8
9.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()
A.B.C.D.
10.已知函数f(x)=2x,则f′(x)=()
A.2x B.2x ln2 C.2x+ln2 D.
11.如果a>b,那么下列不等式中正确的是()
A.B.|a|>|b| C.a2>b2D.a3>b3
12.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为()
A.15,10,25 B.20,15,15 C.10,10,30 D.10,20,20
二、填空题
13.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.
14.在极坐标系中,点(2,)到直线ρ(cos θ+
sin θ)=6的距离为 .
15.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
= .
16.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .
17.已知一个算法,其流程图如图,则输出结果是 .
18.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
三、解答题
19.(本小题满分12分) 已知函数2
()x
f x e ax bx =--.
(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2
x ∈时,()1f x <.
20.已知函数f (x )=|x ﹣m|,关于x 的不等式f (x )≤3的解集为[﹣1,5]. (1)求实数m 的值;
(2)已知a ,b ,c ∈R ,且a ﹣2b+2c=m ,求a 2+b 2+c 2
的最小值.
21.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,4
5a b a b x ++⎡⎤
∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.
22.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;
(2)已知函数g (x )=log ,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.
23.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60o
ABC ∠=,侧面PDC 为等边三角形,
且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;
(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.
24.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象
ππ
(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;
(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面
积.
龙山区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6

若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
2.【答案】B
【解析】解:∵循环体中S=S×n可知程序的功能是:
计算并输出循环变量n的累乘值,
∵循环变量n的初值为1,终值为4,累乘器S的初值为1,
故输出S=1×2×3×4=24,
故选:B.
【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.
3.【答案】D
【解析】解:∵f(1)=lg1=0,
∴当x≤0时,函数f(x)没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
4.【答案】A
【解析】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,
所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,
所以φ=.
故选A.
【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.
5.【答案】A
【解析】解:∵△AF
B的周长为4,
1
∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,
∴4a=4,
∴a=,
∵离心率为,
∴,c=1,
∴b==,
∴椭圆C的方程为+=1.
故选:A.
【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.
6.【答案】B
【解析】解:由已知得=bccos∠BAC=2⇒bc=4,
故S△ABC=x+y+=bcsinA=1⇒x+y=,
而+=2(+)×(x+y)
=2(5++)≥2(5+2)=18,
故选B.
【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算.要注意灵活利用y=ax+的形式.
7.【答案】C
【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,
可得a2=7c2,
所以cosA===﹣,
∵0<A<180°,
∴A=120°.
【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.
8.【答案】D
【解析】解:将椭圆的方程转化为标准形式为,
显然m﹣2>10﹣m,即m>6,
,解得m=8
故选D
【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.
9.【答案】A
【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.
如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.
对照选项知,只有A符合此要求.
故选A.
【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
10.【答案】B
【解析】解:f(x)=2x,则f'(x)=2x ln2,
故选:B.
【点评】本题考查了导数运算法则,属于基础题.
11.【答案】D
【解析】解:若a>0>b,则,故A错误;
若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;
若a>0>b且a,b互为相反数,则a2>b2,故C错误;
函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
12.【答案】B
【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为
800×=20,600×=15,600×=15,
故选B.
【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.
二、填空题
13.【答案】6
【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,
所以四棱锥A﹣BB1D1D的体积为V==6.
故答案为:6.
14.【答案】1.
【解析】解:点P(2,)化为P.
直线ρ(cosθ+sinθ)=6化为.
∴点P到直线的距离d==1.
故答案为:1.
【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
15.【答案】﹣5.
【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得
x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,
故,解得
故==﹣5
故答案为:﹣5
16.【答案】(2,2).
【解析】解:∵log a1=0,
∴当x﹣1=1,即x=2时,y=2,
则函数y=log a(x﹣1)+2的图象恒过定点(2,2).
故答案为:(2,2).
【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.
17.【答案】5.
【解析】解:模拟执行程序框图,可得
a=1,a=2
不满足条件a2>4a+1,a=3
不满足条件a2>4a+1,a=4
不满足条件a2>4a+1,a=5
满足条件a2>4a+1,退出循环,输出a的值为5.
故答案为:5.
【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.
18.【答案】.
【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,
∴3aa=1(1﹣2a),解得a=﹣1或a=,
经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
三、解答题
19.【答案】(1)当
2
(0,)
4
e
a∈时,有个公共点,当
2
4
e
a=时,有个公共点,当
2
(,)
4
e
a∈+∞时,有个公共
点;(2)证明见解析. 【解析】
试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x
e a x
=,构造函数2()x e h x x =,利用()'h x 求出
单调性可知()h x 在(0,)+∞的最小值2
(2)4
e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数
2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1
试题解析:
当2
(0,
)4
e
a ∈时,有0个公共点; 当2
4e a =,有1个公共点;
当2
(,)4
e a ∈+∞有2个公共点.
(2)证明:设2()1x h x e x x =---,则'()21x
h x e x =--,
令'
()()21x
m x h x e x ==--,则'
()2x
m x e =-,
因为1(,1]2x ∈,所以,当1[,ln 2)2
x ∈时,'()0m x <;()m x 在1[,ln 2)2
上是减函数,
当(ln 2,1)x ∈时,'
()0m x >,()m x 在(ln 2,1)上是增函数,
考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.
【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 20.【答案】
【解析】解:(1)|x ﹣m|≤3⇔﹣3≤x ﹣m ≤3⇔m ﹣3≤x ≤m+3,由题意得,解得m=2;
(2)由(1)可得a ﹣2b+2c=2,
由柯西不等式可得(a 2+b 2+c 2)[12+(﹣2)2+22]≥(a ﹣2b+2c )2
=4,
∴a 2+b 2+c 2

当且仅当,即a=,b=﹣,c=时等号成立,
∴a 2+b 2+c 2
的最小值为.
【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题.
21.【答案】(1)在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫

⎪⎝⎭
上单调递增.(2)7b e a ≤<
【解析】【试题分析】(1)先对函数()()ln ln ,0,h x x x x b a x =-+∈∞求导得()'ln 1ln h x x b =+-,再解不
等式()'0h x >得b x e >求出单调增区间;解不等式()'0h x <得b
x e
<求出单调减区间;(2)先依据题设345a b a b ++<得7b a <,由(1)知()m in 0h x ≤,然后分345a b b a b e ++≤≤
、4b a b e +<、35
b a b
e +>三种情形,分别研究函数()()ln ln ,0,h x x x x b a x =-+∈∞的最小值,然后建立不等式进行分类讨论进行求解出
其取值范围7b
e a

<:
解:(1)()()()ln ln ,0,,'ln 1ln h x x x x b a x h x x b =-+∈∞=+-,由()'0h x >得b x e >,()'h x ∴在0,b e ⎛⎫
⎪⎝⎭
上单调递减,在,b e ⎛⎫

⎪⎝⎭
上单调递增. (2)由345a b a b ++<
得7b
a
<,由条件得()min 0h x ≤. ①当345a b b a b e ++≤≤,即345e b e e a e ≤≤
--时,()min b b h x h a e e ⎛⎫
==-+ ⎪⎝⎭
,由0b a e -+≤得 3,5b b e
e e a a e
≥∴≤≤
-. ②当4b a b e +<时,()4,e a b h x a ->∴在3,45a b a b ++⎡⎤
⎢⎥⎣⎦上单调递增, ()min ln ln ln ln 4444a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43?3044e b b
a b e e b e --+-=>=>,矛盾,∴不成立. 由0b
a e
-+≤得.
③当35b a b e +>,即35b e a e >-时,53e a b e ->,()h x ∴在3,45a b a b ++⎡⎤
⎢⎥⎣⎦
上单调递减, ()min 3333ln ln ln ln 5555a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
52?2230553e b b
a b e e b e
----=>=>,∴当35b e a e >
-时恒成立,综上所述,7b e a ≤<. 22.【答案】
【解析】解:(1)f (x )=log 3(1+x )﹣log 3(1﹣x )为奇函数. 理由:1+x >0且1﹣x >0,得定义域为(﹣1,1),(2分) 又f (﹣x )=log 3(1﹣x )﹣log 3(1+x )=﹣f (x ), 则f (x )是奇函数. (2)g (x )
=log
=2log 3
,(5分)
又﹣1<x <1,k >0,(6分) 由f (x )≥g (x )得log 3≥log 3



,(8分)
即k 2≥1﹣x 2,(9分) x ∈[,
]时,1﹣x 2最小值为,(10分)
则k 2
≥,(11分)
又k >0,则k ≥,
即k 的取值范围是(﹣∞,
].
【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.
23.【答案】
【解析】由底面ABCD 为菱形且60o
ABC ∠=,∴ABC ∆,ADC ∆是等边三角形, 取DC 中点O ,有,OA DC OP DC ⊥⊥,
∴POA ∠为二面角P CD A --的平面角, ∴90o
POA ∠=.
分别以,,OA OC OP 所在直线为,,x y z 轴,建立空间直角坐标系如图,
则(0,1,0),2,0),
(0,1,0)A P D B C -. …… 3分
(Ⅰ)由M 为PB 中点,M ∴3
(DM =(3,0,3),PA =-0),0,DC PA DM PA DC =∴== ∴ PA ⊥DM …… 6分
(Ⅱ)由(0,2,0)DC =,0PA DC ⋅=,∴PA ⊥DC , ∴ 平面DCM 的法向量可取(3,0,PA = …… (0,1,PC =, 设直线PC 与平面DCM 所成角为θ则sin |cos ,||
|||||6PC PA PC PA PC PA θ⋅=<>===.即直线PC 与平面DCM 所成角的正弦值为4
.…… 12分 24.【答案】
【解析】解:(Ⅰ)①处应填入

=.
∵T=,
∴,

即. ∵
,∴
,∴,
从而得到f(x)的值域为.
(Ⅱ)∵,
又0<A<π,∴,
得,.
由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,
即,∴bc=3.
∴△ABC的面积.
【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.。

相关文档
最新文档