涡旋压缩机的使用

合集下载

英华特 SF202008 半封闭涡旋压缩机 操作指导书说明书

英华特 SF202008 半封闭涡旋压缩机 操作指导书说明书

尊敬的客户:感谢您选用我公司生产的圣菲系列半封闭涡旋压缩机。

我公司是一家专注于涡旋式制冷压缩机研发,制造和销售的高科技企业。

公司提供热泵热水器,冷冻冷藏产品和空调,冷水机组等专用涡旋式压缩机产品及相关的技术咨询服务,我们愿与客户联合开发并为客户提供Turn-Key的整体解决方案!本操作指导书将提供英华特圣菲系列半封闭涡旋压缩机的结构特点,命名规则,外形尺寸,安装注意事项,故障检修等各方面内容,为了充分发挥英华特圣菲系列半封闭涡旋压缩机在整个系统的能效,在压缩机安装使用前,请您仔细阅读本使用说明书,并遵守本指导书的操作规程。

本操作指导书版权为苏州英华特涡旋技术股份有限公司所有,未经本公司许可,不得翻印。

本公司保留不预先通知便可自行改变产品的权利。

本操作指导书若有更新,恕不另行通知。

苏州英华特涡旋技术股份有限公司应用工程部前言01 01 03 05 15 16 18 18 18 18 19 20 23 24 25 25 26 27 28 29 3031 31 33 35 36 38 38 38 38 39 39 40 40 41 4244英华特涡旋压缩机按照中国相关标准要求设计和制造。

本安全须知适用于英华特圣菲系列半封闭涡旋压缩机。

建议存档本操作指导书,以便于维护、保养或维修的相关人员能够很容易获取到本操作指导书,进行相关作业时必须遵循本安全须知及当地相关的法律法规的要求。

安全申明1) 制冷压缩机只能用于正确的应用场合。

2) 安装,调试及维护人员必须持证上岗(空调、暖通或制冷相关)。

3) 电气连接必须由持电工证的人员进行。

4) 安装、服务、维护电气或制冷系统时,需严格遵循所有相关法律法规的要求。

电击危险1) 维修前必须断开并锁定电源。

2) 维修前请释放所有电容。

3) 电气系统必须接地。

4) 当地法规或规范有要求时必须用电气预绝缘端子。

5) 必须参考设备制造商的电气接线图。

6) 电气连接必须由持电工证的人员操作。

涡旋压缩机的使用

涡旋压缩机的使用

涡旋压缩机的使用涡旋压缩机的工作原理是通过转子的旋转运动将气体吸入机内,然后压缩气体,并将其排出。

涡旋压缩机通常由一个主转子和一个从转子组成。

主转子是一条螺旋线形状的曲线,通常被称为蜗杆,而从转子是一个外形与主转子相似的曲线。

主转子和从转子通过齿轮等机械装置连接并驱动,使得从转子沿着主转子旋转。

1.结构简单:涡旋压缩机的结构相对简单,由于没有需要冷却和润滑的活塞引擎,因此减少了一些机械故障和维护成本。

2.体积小:相对于其他类型的压缩机,涡旋压缩机的体积较小,因此占用的空间较小,适用于空间有限的场所。

3.低噪音:涡旋压缩机的工作过程相对较平稳,因此产生的噪音较低。

这对于需要安静工作环境的场所是一个优势。

4.运行稳定:涡旋压缩机由于没有冲击和振动,因此在运行过程中比较稳定,容易实现自动化控制。

除了以上的优势之外,涡旋压缩机还有一些需要注意的使用事项:1.需要润滑:涡旋压缩机的转子与内腔之间存在间隙,因此需要使用润滑油进行润滑。

在使用涡旋压缩机之前,需要检查润滑油的量和质量,并及时添加和更换。

2.温度控制:涡旋压缩机在工作过程中会产生一定的热量,因此需要采取适当的措施来控制温度。

可以使用风扇、散热片、冷却水等方法来降低温度。

3.定期维护:涡旋压缩机需要定期检查和维护,包括清洁滤芯、检查和更换密封件、检查电机和控制系统的正常运行等。

总之,涡旋压缩机作为一种常见的压缩机类型,具有广泛的应用和一些特点优势,但在使用过程中也需要注意一些事项。

在正确使用和维护的前提下,涡旋压缩机可以有效地提供压缩气体,满足各种使用要求。

艾默生涡旋变频压缩机和电控解决方案说明书

艾默生涡旋变频压缩机和电控解决方案说明书

艾默生全系列涡旋变频压缩机和电控解决方案全面的安全保护和可靠性谷轮涡旋TM 压缩机传承了CoreSense TM 保护技术,将产品可靠性提升到新的高度。

通过将主动保护算法集成于电机控制变频器中,确保压缩机和变频器在各种异常工况运行的安全性。

主要有以下保护特征:• 电机和涡旋温度保护• 电机堵转检测• 相序保护和更正• 最大运行电流检测• 排气温度保护• 频繁启停循环保护该系列变频压缩机产品建立在高度的可靠性和经过验证的高性能基础之上,融合了艾默生25年的涡旋压缩机技术及全世界超过1亿台的运行经验。

为了帮助客户应对变频化的市场趋势,艾默生开发了4~25HP 变频压缩机和变频器的整体解决方案,全系列产品搭载多项创新技术,以业界顶级能效水平助力系统进入能效升级新时代。

结合谷轮引以为豪的喷气增焓技术,超低温环境下也能保证系统强效制热安全可靠。

同时推出的艾默生EVD 系列变频器专门针对永磁电机设计,完美匹配变频压缩机,一站式解决方案帮助客户快速响应市场需求。

变频压缩机型谱图浮动密封圈变容积比涡旋喷气增焓技术(可选)导油管高效集中卷六极永磁电机3.4mm厚壳设计柔性液体刹车容积式油泵谷轮涡旋™变频压缩机优势:• 优异的性能和噪音表现• 卓越的可靠性• 搭载高效艾默生永磁电机有效提升节能效果• 中国研发中心为亚太市场应用量身打造,苏州生产• 广泛适用于变频多联机、柜式空调、地暖等应用• 900-7200rpm 宽广频率范围,让系统设计更加游刃有余• 可变容积比技术(VVR)显著改善涡旋低转速下的能效运行范围喷气增焓(EVI)技术特点:• 专利技术的喷气增焓结构设计• EVI 回路气体进入压缩机后,通过特殊设计的通道注入涡旋, 注入涡旋的气体经过压缩,和吸气口吸入的气体一起排出,进入制冷循环• 喷气增焓带来制热能力的上升和排气温度的降低• 喷气增焓可取代系统辅助电加热艾默生谷轮涡旋™变频压缩机给家用制冷和制热系统带来了变革。

涡旋压缩机的特性与应用技术

涡旋压缩机的特性与应用技术
二.涡旋压缩机的应用
11.适用范围:
一切所以R
22、R134a、R
404A、R
407C、R410的蒸发xx制冷系统
12.压缩机保护器件
压力控制器由于涡旋压缩机有时高低压会快速平衡,对于要求抽空停机的系统需要配合温度控制器或电气延时控制
建议配置相序和缺相保护器(除ZB92KC,ZB11MC和ZF24以上压缩机外)建议配置吸气过滤器防止杂质进入压缩机损坏压缩机涡盘
ZF压缩机的结构和ZB压缩机的异同
最佳蒸发温度范围:
+10℃--40℃(R22和R404A)
吸排气口全部是螺纹连接
全部带油视镜
ZF24以上压缩机都有保护模块
所有ZF压缩机都有喷液冷却口:
ZF18以下压缩机配喷液阀,ZF24以上压缩机配喷液组件(须另配”电磁阀)
其余和ZB型压缩机基本相同
ZF压缩机的低温性能特别好,超过半封闭碟阀压缩机
润滑油失效压缩机运行时视油镜中可见润滑油发黑,低压表压力正常,短时运行系统降温正常压缩机曾经发生过热导致润滑油碳化,系统太脏导致润滑油变性更换润滑油
19.液击
加入太过量的制冷剂压缩机剧烈震动,声音很大立即停机,释放制冷剂至0.3-
0.4MP表压,再次开机,缓慢加入制冷剂,重新调试通常压缩机不会坏
20.压缩机故障及损坏
17.电源跳闸
压缩机刚启动就跳闸电源问题,检查交流接触器或空气开关
压缩机不转,测量显示3相阻值不平衡,绝缘电阻很小压缩机线圈坏
18.压缩机过热原因
回汽量不足排气温度高、高压表压力不高
制冷剂充注太少视液镜中制冷剂不连续,有气泡;(可略多加,不可少加)膨胀阀太小低压表压力偏低,相应蒸发温度低于允许范围(膨胀阀选择留有余量)

涡旋压缩机运转范围

涡旋压缩机运转范围

涡旋压缩机运转范围
涡旋压缩机是一种常见的压缩机类型,广泛应用于工业生产和能源领域。

它以其高效、节能的特点而备受青睐。

涡旋压缩机的运转范围包括以下几个方面。

涡旋压缩机的运转范围涵盖了不同的工作压力。

它可以适应各种压缩比要求,从低压到高压都能胜任。

无论是气体输送、气体增压还是气体压缩,涡旋压缩机都能稳定运行,确保工艺过程的顺利进行。

涡旋压缩机的运转范围还包括了不同的工作流量。

无论是小型的家用压缩机还是大型的工业压缩机,涡旋压缩机都能根据需求进行调节。

它具有灵活的运行特性,可以应对不同的气体流量变化,为生产过程提供稳定的气体供应。

涡旋压缩机的运转范围还涉及不同的工作介质。

无论是气体、液体还是混合介质,涡旋压缩机都能胜任。

它采用特殊的涡旋叶片设计,可以有效地处理各种介质,包括空气、天然气、石油气等。

同时,涡旋压缩机还能适应不同的工作温度和湿度条件,确保设备在各种环境下的可靠运行。

涡旋压缩机的运转范围还与其应用领域密切相关。

无论是化工、电力、石油、制药还是食品等行业,涡旋压缩机都有广泛的应用。

它可以用于气体输送、气体增压、气体压缩、气体循环等多种工艺过程,为各个行业提供稳定可靠的气体动力支持。

涡旋压缩机的运转范围广泛而多样。

它不仅适应不同的压力、流量和介质要求,还广泛应用于各个行业。

涡旋压缩机的高效、节能特点使其成为现代工业生产和能源领域不可或缺的重要设备。

转子、涡旋空调用压缩机基础知识及维修注意事项

转子、涡旋空调用压缩机基础知识及维修注意事项

转子、涡旋空调用压缩机基础知识及维修注意事项制冷压缩机是整个制冷系统的心脏,是制冷系统中最重要的,也是最复杂的一个部件。

压缩机在制冷系统里面的主要作用是把从蒸发器来的低温低压气体压缩成高温高压气体,为整个制冷循环提供源动力。

目前市场上生产的家用空调中主要使用的有活塞式、滚动转子式、涡旋式等三种压缩机。

一般情况下,3HP以下空调用的都是转子式压缩机。

压缩机工作原理与基本结构介绍转子式压缩机:偏心轴带动活塞环在泵体中旋转,压缩冷媒;涡旋式压缩机:偏心轴带动涡旋盘,使动盘在静盘中转动,压缩冷媒;活塞式压缩机:通过活塞与缸体的往复运动,压缩冷媒(略)。

空调器的工作原理压缩机引出线连接方法S:START(辅绕组 AUX WINDING)R:RUN(主绕组MAIN WINDING)C:COMMON(共通)RC:运转电容 RUNNING CAPACITOR转子式压缩机基本作用:压缩气体,产生高温高压的冷媒气体。

涡旋式压缩机涡旋压缩过程如何预防压缩机工程不良压缩机仓储运输注意事项室内防潮保管:还未装配到空调的压缩机,要放在室内保存,不要风吹日晒雨淋。

保管时温度在-10~65℃范围。

包装箱外罩防尘塑料袋,不能绝对阻止露天雨水侵入箱体。

★雨水侵入后果:----压缩机接线端子生锈,导电不良,或绝缘性能下降;----端子盖固定螺栓生锈,作业不便;----压缩机底座,接地螺钉等生锈。

两层放置时:压缩机整箱堆放不应超过两层,否则会压碎支撑木托,造成压缩机塌箱问题。

单台压缩机搬运方法拔胶塞顺序及异物防治拔胶塞顺序:排气管→吸气管原因:如果先拔吸气管胶塞,聚集在储液器滤网上的冷冻机油将随氮气喷出,所以先拔排气管胶塞;降低压缩机内氮气压力,缓解及消除喷油现象。

异物防止:1.异物来源:1)拔胶塞后从吸、排气管落入2)铜管烧焊过程中氧化皮、焊渣落入3)空调系统异物2.防治措施:1)加强生产现场管理2)铜管烧焊过程中操作手法及时间的控制3)保证空调系统清洁度几种品牌压缩机接线方式空气运行端子飞出绝缘耐压不良冰堵定转子间隙不良接错线压缩机脚垫的安装(主要针对旋转式压缩机)压缩机脚垫与压缩机地脚固定螺母之间必须保证一定的间隙,否则压缩机本身的振动容易通过地脚螺栓传递到底盘引起系统的振动大。

谷轮ZW系列(中间补气涡旋)压缩机应用指南

谷轮ZW系列(中间补气涡旋)压缩机应用指南

AE4-1381May 2011ZW21 to ZW61KAE and ZW30 to ZW61KSECopeland Scroll® Water Heating CompressorsTABLE OF CONTENTSSection Page Section PageIntroduction (2)ZW**KA Application (2)ZW**KS ApplicationVapour Injection - Theory of Operation (2)Heat Exchanger and Expansion Device Sizing (3)Flash Tank Application (3)Intermediate Pressure and Vapour Injection Superheat (3)Application ConsiderationsHigh Pressure Cut-Out (4)Low Pressure Cut-Out (4)Discharge Temperature Protection (4)Discharge Temperature Control (4)Discharge Mufflers (4)Oil Dilution and Compressor Cooling (4)Electrical Considerations (5)Brazing and Vapour Injection Line (5)Low Ambient Cut-Out (5)Internal Pressure Relief Valve (5)Internal Temperature Protection (5)Quiet Shutdown (5)Discharge Check Valve (5)Motor Protector (5)Accumulators (5)Screens (6)Crankcase Heat-Single Phase (6)Crankcase Heat-Three Phase (6)Pump Down Cycle (6)Minimum Run Time (6)Reversing Valves (6)Oil Type (7)System Noise & Vibration (7)Single Phase Starting Characteristics (7)PTC Start Components (7)Electrical Connections (7)Deep Vacuum Operation (7)Shell Temperature (7)Suction & Discharge Fittings (7)Three Phase Scroll Compressors (8)Brief Power Interruptions ..........................................8Assembly Line ProceduresInstalling the Compressor (8)Assembly Line Brazing Procedure (8)Pressure Testing (8)Assembly Line System Charging Procedure (8)High Potential (AC Hipot) Testing (9)Unbrazing System Components (9)Service ProceduresCopeland Scroll Functional Check (9)Compressor Replacement After Motor Burn (10)Start Up of a New or Replacement Compressor (10)FiguresBrief Product Overview (11)ZW21KAE Envelope (R-134a) (11)ZWKAE Envelope (R-407C, Dew Point) (12)ZWKA Envelope (R-22) (12)ZWKS Envelope (R-22) (13)ZWKSE Envelope (R-407C, Dew Point) (13)Heat Pump with Vapour Injection – EXV Control (14)Heat Exchanger Schematic (14)Heat Pump with Flash Tank (15)Possible Flash Tank Configuration (15)Oil Dilution Chart (16)Crankcase Heater (17)Compressor Electrical Connection (17)Scroll Tube Brazing (17)How a Scroll Works (18)IntroductionThe ZW**KA and ZW**KS Copeland Scroll®compressors are designed for use in vapour compression heat pump water heating applications. Typical model numbers include ZW30KA-PFS and ZW61KSE-TFP. This bulletin addresses the specifics of water heating in the early part and deals with the common characteristics and general application guidelines for Copeland Scroll compressors in the later sections. Operating principles of the scroll compressor are described in Figure 15 at the end of this bulletin.As the drive for energy efficiency intensifies, water heating by fossil-fueled boilers and electric elements is being displaced by vapour compression heat pumps. Emerson Climate Technologies has developed two lines of special water heater compressors to meet the requirements of this demanding application. ZW**KA compressors are designed for lighter duty applications where the ambient temperature does not fall below 0°C and where lower water temperatures can be accepted as the ambient temperature falls. ZW**KS compressors are equipped with a vapour injection cycle which allows reliable operation in cold climates with significantly enhanced heating capacity, higher efficiency, and minimal requirement to reduce water outlet temperatures. Figure 1gives a brief product overview.Water heating is characterized by long operating hours at both high load and high compression ratios. Demand for hot water is at its highest when ambients are low and when conventional heat pump capacity falls off. On the positive side, the system refrigerant charge is usually small, so the risk to the compressor from dilution and flooded starts will usually be lower than in split type air-to-air heat pumps.Water heaters must operate in a wide range of ambient temperatures, and many systems will require some method of defrost. Some systems such as Direct Heating, Top Down Heating or Single Pass Heating operate at a constant water outlet temperature with variable water flow. Others such as Recirculation Heating, Cyclic Heating or Multipass Heating use constant water flow with the water outlet and inlet temperatures both rising slowly as the storage tank heats up. Both system types need to cope with reheating a tank where the hot water has been partially used, and reheating to the setpoint temperature is required. More complex systems deliver water at relatively low temperatures for under-floor heating circuits and are switched over to sanitary water heating a few times per day to provide higher temperature water for sanitary use. In addition, some countries have specific water temperature requirements for legionella control.ZW**KA ApplicationThe application envelopes for ZW**KA compressors are shown in Figures 2 - 4.Appropriate system hardware and control logic must be employed to ensure that the compressor is always operating within the envelope. Small short-term excursions outside the envelope are acceptable at the time of defrost when the load on the compressor is low. Operation with suction superheat of 5 -10K is generally acceptable except at an evaporating tem-perature above 100C when a minimum superheat of 10K is required.ZW**KS ApplicationThe ZW**KS* vapour-injected scroll compressors differ from ZW**KA models in many important details:• Addition of vapour injection• Significantly different application envelopes• Some differences in locked rotor amps (LRA), maximum continuous current (MCC), andmaximum operating current (MOC) – seenameplatesThe application envelopes for ZW**KS compressors are shown in Figures 5 and 6.Vapour Injection – Theory of Operation Operation with vapour injection increases the capacity of the outdoor coil and in turn the capacity and efficiency of the system – especially in low ambient temperatures. A typical schematic is shown in Figure 7. A heat exchanger is added to the liquid line and is used to cool the liquid being delivered to the heating expansion device. Part of the liquid refrigerant flow is flashed through an expansion valve on the evaporator side of the heat exchanger at an intermediate pressure and used to subcool the main flow of liquid to the main expansion device. Vapour from the liquid evaporating at intermediate pressure is fed to the vapour injection port on the ZW**KS compressor. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. Heating capacity is increased, because low temperature liquid with lower specific enthalpy supplied to the outdoor coil increases the amount of heat that can be absorbed from the ambient air. Increased heat absorbed from the ambient increases the system condensing temperature and in turn the compressor power input. The increase in power inputalso contributes to the improvement in the overall heating capacity.Vapour Injection can be turned on and off by the addition of an optional solenoid valve on the vapour injection line on systems using a thermostatic expansion valve. Alternatively, an electronic expansion valve can be used to turn vapour injection on and off and to control the vapour injection superheat. A capillary tube is not suitable for controlling vapour injection.The major advantage of the electronic expansion valve is that it can be used to optimise the performance of the system and at the same time control the discharge temperature by injecting “wet vapour” at extreme operating conditions.The configurations and schematics shown are for reference only and are not applicable to every system. Please consult with your Emerson Application Engineer.Heat Exchanger and Expansion Device Sizing Various heat exchanger designs have been used successfully as subcoolers. In general they should be sized so that the liquid outlet temperature is less than 5K above the saturated injection temperature at the customer low temperature rating point. At very high ambient temperatures, it will normally be beneficial to turn vapour injection off to limit the load on the compressor motor. Application Engineering Bulletin AE4-1327 and Emerson Climate Technologies Product Selection Software can be used to help size the subcooling heat exchanger and thermal expansion valves, but selection and proper operation must be checked during development testing. Plate type subcoolers must be installed vertically with the injection expansion device connected at the bottom through a straight tube at least 150mm long to ensure good liquid distribution. See the schematic in Figure 8. Flash Tank ApplicationA possible flash tank configuration is shown in Figure9. This particular configuration is arranged to have flow through the flash tank and expansion devices in heating, and it bypasses the tank in defrost mode. The flash tank system works by taking liquid from the condenser and metering it into a vessel through a high-to-medium pressure expansion device. Part of the liquid boils off and is directed to the compressor vapour injection port. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. The remaining liquid is cooled, exits from the bottom of the tank at intermediate pressure, and flows to the medium-to-low pressure expansion device which feeds the outdoor coil. Low temperature liquid with lower specific enthalpy increases the capacity of the evaporator without increasing mass flow and system pressure drops.Recommended tank sizing for single compressor application in this size range is a minimum of 200 mm high by 75 mm in diameter with 3/8 in. (9.5mm) tubing connections, although it is possible to use a larger tank to combine the liquid/vapour separation and receiver functions in one vessel. A sight tube (liquid level gauge) should be added to the tank for observation of liquid levels during lab testing. See schematic diagram Figure 10 for clarification.It is important to maintain a visible liquid refrigerant level in the tank under all operating conditions. Ideally the liquid level should be maintained in the 1/3 to 2/3 full range.Under no circumstances should the level drop to empty or rise to a full tank. As the tank level rises, liquid droplets tend to be swept into the vapour line leading to “wet” vapour injection. Although this can be useful for cooling a hot compressor, the liquid quantity cannot be easily controlled. Compressor damage is possible if the tank overflows. If liquid injection is required for any reason, it can be arranged as shown in Figures 7 and 9.Since liquid leaves the tank in a saturated state, any pressure drop or temperature rise in the line to the medium-to-low pressure expansion device will lead to bubble formation. Design or selection of the medium-to-low pressure expansion device requires careful attention due to the possible presence of bubbles at the inlet and the low pressure difference available to drive the liquid into the evaporator. An electronic expansion valve is the preferred choice. Intermediate Pressure and Vapour Injection SuperheatPressure in the flash tank cannot be set and is a complex function of the compressor inlet condition and liquid condition at the inlet of the high-to-medium pressure expansion device. However, liquid level can be adjusted, which in turn will vary the amount of liquid subcooling in the condenser (water to refrigerant heat exchanger) and vary the injection pressure. Systems with low condenser subcooling will derive the biggest gains by the addition of vapour injection. Systems operating with high pressure ratios will show the largest gains when vapour injection is applied. Such systems will have higher vapour pressure and higher injectionmass flow. Intermediate pressures in flash tank and heat exchanger systems should be very similar unless the subcooling heat exchanger is undersized and there is a large temperature difference between the evaporator and the liquid sides. Vapour exiting a flash tank will be saturated and may pick up 1 - 2K superheat in the vapour line to the compressor. Vapour injection superheat cannot be adjusted on flash tank systems. Heat exchanger systems will be at their most efficient when the vapour injection superheat is maintained at approximately 5K.APPLICATION CONSIDERATIONSHigh Pressure Cut OutIf a high pressure control is used with these compressors, the recommended maximum cut out settings are listed in Figure 1. The high pressure control should have a manual reset feature for the highest level of system protection. It is not recommended to use the compressor to test the high pressure switch function during the assembly line test.Although R-407C runs with higher discharge pressure than R-22, a common setting can be used. The cutout settings for R-134a are much lower, and the switches must be selected or adjusted accordingly.Low Pressure Cut OutA low pressure cut out is an effective protection against loss of charge or partial blockage in the system. The cut out should not be set more than 3 - 5K equivalent suction pressure below the lowest operating point in the application envelope. Nuisance trips during defrost can be avoided by ignoring the switch until defrost is finished or by locating it in the line between the evaporator outlet and the reversing valve. This line will be at discharge pressure during defrost. Recommended settings are given in Figure 1. Discharge Temperature ProtectionAlthough ZW compressors have an internal bi-metal Therm-O-Disc®(TOD) on the muffler plate, external discharge temperature protection is recommended for a higher level of protection and to enable monitoring and control of vapour injection on ZW**KS* models. The protection system should shut down the compressor when the discharge line temperature reaches 125°C. In low ambient operation, the temperature difference between the scroll center and the discharge line is significantly increased, so protection at a lower discharge temperature, e.g. 120°C when the ambient is below 0°C, will enhance system safety. For the highest level of system protection, the discharge temperature control should have a manual reset feature. The discharge sensor needs to be well insulated to ensure that the line temperature is accurately read. The insulation material must not deteriorate over the expected life of the unit.Discharge Temperature ControlSome systems use an electronic expansion valve to control the vapour injection superheat and a thermistor to monitor the discharge temperature. This combination allows the system designer to inject a small quantity of liquid to keep the discharge temperature within safe limits and avoid an unnecessary trip. Liquid injection should begin at approximately 115°C and should be discontinued when the temperature falls to 105°C. Correct functioning of this system should be verified during system development. It is far preferable to use liquid injection into the vapour injection port to keep the compressor cool rather than inject liquid into the compressor suction which runs the risk of diluting the oil and washing the oil from the moving parts. If some operation mode requires liquid injection but without the added capacity associated with “wet” vapour injection, a liquid injection bypass circuit can be arranged as shown in Figures 7 and 9.Caution: Although the discharge and oil temperature are within acceptable limits, the suction and discharge pressures cannot be ignored and must also fall within the approved application envelope.Discharge MufflersDischarge mufflers are not normally required in water heaters since the refrigerant does not circulate within the occupied space.Oil Dilution and Compressor CoolingThe oil temperature diagram shown in Figure 11is commonly used to make a judgment about acceptable levels of floodback in heat pump operation. Systems operating with oil temperatures near the lower limit line are never at their most efficient. Low ambient heating capacity and efficiency will both be higher if floodback is eliminated and the system runs with 1 - 5K suction superheat. Discharge temperature can be controlled by vapour injection, “wet” vapour injection, or even liquid injection if necessary. In this situation, the oil temperature will rise well into the safe zone, and the compressor will not be at risk of failure from diluted oil. The oil circulation rate will also be reduced as crankcase foaming disappears. Special care needs to be taken at the end of defrost to ensure that the compressor oil is not unacceptably diluted. The system will resume heating very quickly and bearing loads willincrease accordingly, so proper lubrication must be ensured.Electrical ConsiderationsMotor configuration and protection are similar to those of standard Copeland Scroll compressors. In some cases, a larger motor is required in the ZW**KS* models to handle the load imposed by operating with vapour injection. Wiring and fuse sizes should be reviewed accordingly.Brazing the Vapour Injection LineThe vapour injection connection is made from copper coated steel, and the techniques used for brazing the suction and discharge fittings apply to this fitting also. Low Ambient Cut-OutA low ambient cut-out is not required to limit heat pump operation with ZW**KS compressors. Water heaters using ZW**KA compressors must not be allowed to run in low ambients since this configuration would run outside of the approved operating envelope causing overheating or excessive wear. A low ambient cut-out should be set at 0°C for ZW**KA modelsIn common with many Copeland Scroll compressors, ZW models include the features described below: Internal Pressure Relief (IPR) ValveAll ZW compressors contain an internal pressure relief valve that is located between the high side and the low side of the compressor. It is designed to open when the discharge-to-suction differential pressure exceeds 26 - 32 bar. When the valve opens, hot discharge gas is routed back into the area of the motor protector to cause a trip.Internal Temperature ProtectionThe Therm-O-Disc® or TOD is a temperature-sensitive snap disc device located on the muffler plate between the high and low pressure sides of the compressor. It is designed to open and route excessively hot discharge gas back to the motor protector. During a situation such as loss of charge, the compressor will be protected for some time while it trips the protector. However, as refrigerant leaks out, the mass flow and the amperage draw are reduced and the scrolls will start to overheat.A low pressure control is recommended for loss of charge protection in heat pumps for the highest level of system protection. A cut out setting no lower than 2.5 bar for ZW**KA* models and 0.5 bar for ZW**KS* models is recommended. The low pressure cut-out, if installed in the suction line to the compressor, can provide additional protection against an expansion device failed in the closed position, a closed liquid line or suction line service valve, or a blocked liquid line screen, filter, orifice, or TXV. All of these can starve the compressor for refrigerant and result in compressor failure. The low pressure cut-out should have a manual reset feature for the highest level of system protection. If a compressor is allowed to cycle after a fault is detected, there is a high probability that the compressor will be damaged and the system contaminated with debris from the failed compressor and decomposed oil.If current monitoring to the compressor is available, the system controller can take advantage of the compressor TOD and internal protector operation. The controller can lock out the compressor if current draw is not coincident with the contactor energizing, implying that the compressor has shut off on its internal protector. This will prevent unnecessary compressor cycling on a fault condition until corrective action can be taken.Quiet Shut downAll scrolls in this size range have a fast acting valve in the center of the fixed scroll which provides a very quiet shutdown solution. Pressure will equalize internally very rapidly and a time delay is not required for any of the ZW compressors to restart. Also refer to the section on “Brief Power Interruption”. Discharge Check ValveA low mass, disc-type check valve in the discharge fitting of the compressor prevents the high side, high pressure discharge gas from flowing rapidly back through the compressor. This check valve was not designed to be used with recycling pump down because it is not entirely leak-proof.Motor ProtectorConventional internal line break motor protection is provided. The protector opens the common connection of a single-phase motor and the center of the Y connection on three-phase motors. The three-phase protector provides primary single-phase protection. Both types of protectors react to current and motor winding temperature.AccumulatorsThe use of accumulators is very dependent on the application. The scroll’s inherent ability to handle liquid refrigerant during occasional operating flood back situations often makes the use of an accumulator unnecessary in many designs. If flood back is excessive, it can dilute the oil to such an extent thatbearings are inadequately lubricated, and wear will occur. In such a case, an accumulator must be used to reduce flood back to a safe level that the compressor can handle.In water heaters, floodback is likely to occur when the outdoor coil frosts. The defrost test must be done at an outdoor ambient temperature of around 0°C in a high humidity environment. Liquid floodback must be monitored during reversing valve operation, especially when coming out of defrost. Excessive floodback occurs when the sump temperature drops below the safe operation line shown in Figure 11 for more than 10 seconds.If an accumulator is required, the oil return orifice should be 1 - 1.5mm in diameter depending on compressor size and compressor flood back results. Final oil return hole size should be determined through testing. ScreensScreens with a mesh size finer than 30 x 30 (0.6mm openings) should not be used anywhere in the system with these compressors. Field experience has shown that finer mesh screens used to protect thermal expansion valves, capillary tubes, or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.Crankcase Heater - Single PhaseCrankcase heaters are not required on single phase compressors when the system charge is not over 120% of the limit shown in Figure 1. A crankcase heater is required for systems containing more than 120% of the compressor refrigerant charge limit listed in Figure 1. This includes long line length systems where the extra charge will increase the standard factory charge above the 120% limit.Experience has shown that compressors may fill with liquid refrigerant under certain circumstances and system configurations, notably after longer off cycles when the compressor has cooled. This may cause excessive start-up clearing noise, or the compressor may lock up and trip on the protector several times before starting. The addition of a crankcase heater will reduce customer noise and light dimming complaints since the compressor will no longer have to clear out liquid during startup. Figure 12lists the crankcase heaters recommended for the various models and voltages.Crankcase Heat – Three-PhaseA crankcase heater is required for three-phase compressors when the system charge exceeds the compressor charge limit listed in Figure 1and an accumulator cannot be piped to provide free liquid drainage during the off cycle.Pump Down CycleA pump down cycle for control of refrigerant migration is not recommended for scroll compressors of this size. If a pump down cycle is used, a separate external check valve must be added.The scroll discharge check valve is designed to stop extended reverse rotation and prevent high-pressure gas from leaking rapidly into the low side after shut off. The check valve will in some cases leak more than reciprocating compressor discharge reeds, normally used with pump down, causing the scroll compressor to cycle more frequently. Repeated short-cycling of this nature can result in a low oil situation and consequent damage to the compressor. The low-pressure control differential has to be reviewed since a relatively large volume of gas will re-expand from the high side of the compressor into the low side on shut down. Minimum Run TimeThere is no set answer to how often scroll compressors can be started and stopped in an hour, since it is highly dependent on system configuration. Other than the considerations in the section on Brief Power Interruptions, there is no minimum off time. This is because scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after startup.Since water heaters are generally of compact construction, oil return and short cycling issues are rare. Oil return should not be a problem unless the accumulator oil hole is blocked.Reversing ValvesSince Copeland Scroll compressors have very high volumetric efficiency, their displacements are lower than those of comparable capacity reciprocating compressors. As a result, Emerson recommends that the capacity rating on reversing valves be no more than 2 times the nominal capacity of the compressor with which it will be used in order to ensure proper operation of the reversing valve under all operating conditions.The reversing valve solenoid should be wired so that the valve does not reverse when the system isshut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shutoff, suction and discharge pressures are reversed to the compressor. This results in pressures equalizing through the compressor which can cause the compressor to slowly rotate until the pressures equalize. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.Oil TypeThe ZW**K* compressors are originally charged with mineral oil. A standard 3GS oil may be used if the addition of oil in the field is required. See the compressor nameplate for original oil charge. A complete recharge should be ~100 ml less than the nameplate value.ZW**K*E are charged with POE oil. Copeland 3MAF or Ultra 22 CC should be used if additional oil is needed in the field. Mobil Arctic EAL22CC, Emkarate RL22, Emkarate 32CF and Emkarate 3MAF are acceptable alternatives. POE oil is highly hygroscopic, and the oil should not be exposed to the atmosphere except for the very short period required to make the brazing connections to the compressor.System Noise and VibrationCopeland Scroll compressors inherently have low sound and vibration characteristics, but the characteristics differ in some respects from those of reciprocating or rotary compressors. The scroll compressor makes both a rocking and a torsional motion, and enough flexibility must be provided to prevent vibration transmission into any lines attached to the unit. This is usually achieved by having tubing runs at least 30cm long parallel to the compressor crankshaft and close to the shell. ZW compressors are delivered with rubber grommets to reduce vibration transmission to the system baseplate.Single Phase Starting CharacteristicsStart assist devices are usually not required, even if a system utilizes non-bleed expansion valves. Due to the inherent design of the Copeland Scroll, the internal compression components always start unloaded even if system pressures are not balanced. In addition, since internal compressor pressures are always balanced at startup, low voltage starting characteristics are excellent for Copeland Scroll compressors. Starting current on any compressor may result in a significant “sag” in voltage where a poor power supply is encountered. The low starting voltage reduces the starting torque of the compressor and subsequently increases the start time. This could cause light dimming or a buzzing noise where wire is pulled through conduit. If required, a start capacitor and potential relay can be added to the electrical circuit. This will substantially reduce start time and consequently the magnitude and duration of both light dimming and conduit buzzing.PTC Start ComponentsFor less severe voltage drops or as a start boost, solid state Positive Temperature Coefficient devices rated from 10 to 25 ohms may be used to facilitate starting for any of these compressors.Electrical ConnectionThe orientation of the electrical connections on the Copeland Scroll compressors is shown in Figure 13 and is also shown on the wiring diagram on the top of the terminal box cover.Deep Vacuum OperationScrolls incorporate internal low vacuum protection and will stop pumping (unload) when the pressure ratio exceeds approximately 10:1. There is an audible increase in sound when the scrolls start unloading. This feature does not prevent overheating and destruction of the scrolls, but it does protect the power terminals from internal arcing.Copeland Scroll compressors(as with any refrigerant compressor) should never be used to evacuate a refrigeration or air conditioning system. The scroll compressor can be used to pump down refrigerant in a unit as long as the pressures remain within the operating envelope. Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and internal seal. (See AE24-1105 for proper system evacuation procedures.)Shell TemperatureCertain types of system failures, such as condenser or evaporator blockage or loss of charge, may cause the top shell and discharge line to briefly but repeatedly reach temperatures above 175ºC as the compressor cycles on its internal protection devices. Care must be taken to ensure that wiring or other materials, which could be damaged by these temperatures, do not come in contact with these potentially hot areas. Suction and Discharge FittingsCopeland Scroll compressors have copper plated steel suction and discharge fittings. These fittings are far more rugged and less prone to leaks than。

涡旋压缩机充油和无油涡旋压缩机

涡旋压缩机充油和无油涡旋压缩机

如果他们说“活塞式压缩机”——寻找活塞,你一定会找到的。

如果“螺杆式压缩机”——它意味着它有一个螺杆,而且很可能不止一个。

好吧,说到涡旋压缩机,很明显它们最重要的细节是一个涡旋,或者更确切地说,两个涡旋。

BITECH中的充油涡旋压缩机FINI大多数人无需进一步解释就明白了。

首先想到的是热电器的发热元件的炽热螺旋或儿童玩具和成人手表的螺旋形发条。

尽管在自然界中有更大螺旋的例子。

银河系是一个直径10万光年的棒旋星系,离它的外围更近的是太阳系和地球。

银河系不是唯一的螺旋星系。

它的卫星——大麦哲伦星云和小麦哲伦星云,以及仙女座星系、三角座星系等也是如此。

螺旋线是围绕一个点的曲线,取决于它是扭曲还是展开,接近还是远离该点。

涡旋压缩机的工作主体通常以阿基米德或渐开线螺旋的形式制成。

其他选项也是可能的,例如由圆弧形成的曲线。

阿基米德螺线可以比作一个点沿一条从中心O开始的射线均匀移动而留下的痕迹,该射线本身围绕它均匀旋转。

圆的渐开线,相对于经典的代数螺线,即阿基米德螺线,属于所谓的。

赝螺旋或螺旋曲线。

它可以表示为从位于直螺纹末端的点的轨迹,从圆柱形线圈盘绕或缠绕在它周围;在这种情况下,螺纹总是与圆相切——线圈圆柱的横截面。

甚至在直观的层面上也结合了螺杆和涡旋压缩机。

而不是偶然的。

他们的“血缘关系”甚至表现在词汇上。

的确,根据大百科辞典,螺旋线是“空间螺旋曲线”。

螺钉不过是“螺旋螺纹杆”。

螺杆式和涡旋式压缩机不仅通过词汇结合在一起,而且通过传记模式结合在一起。

包含这些机器操作原理的发明出现的时间远远早于它们不仅能够在工业规模上实施,甚至能够制造实验样品。

正如他们所说,两者都是开放的,“在笔尖”。

这些发现比他们的时代早了几十年,或者更确切地说,比当时现有的金属加工水平早了很多。

能够生产具有涡旋压缩机工作元件所需精度的零件的机床直到最近才出现。

开发涡旋压缩机装置的想法出现在19世纪。

他们在20世纪初的1905年找到了和谐的设计。

涡旋式压缩机工作过程

涡旋式压缩机工作过程

涡旋式压缩机工作过程
涡旋式压缩机是一种常见的压缩机类型,它采用旋转式压缩原理,通过高速旋转的螺杆来将气体压缩,下面将从不同的角度来介绍涡旋式压缩机的工作过程。

1. 压缩过程
涡旋式压缩机的压缩过程是通过两个相互啮合的螺杆来实现的,其中一个螺杆为定子,另一个螺杆为转子,两个螺杆的啮合形成了一个密闭的腔室。

当转子开始旋转时,气体就会被吸入腔室中,随着螺杆的旋转,气体被逐渐压缩,并最终被排出。

2. 冷却过程
在涡旋式压缩机的工作过程中,由于气体被不断地压缩,会产生大量的热量,因此需要对气体进行冷却。

一般情况下,涡旋式压缩机会采用空气冷却或水冷却的方式来降低气体的温度,以保证压缩机的正常工作。

3. 润滑过程
在涡旋式压缩机的工作过程中,由于螺杆之间需要密切啮合,因此需要对螺杆进行润滑。

一般情况下,涡旋式压缩机会采用油润滑的方式来保证螺杆的正常工作,并且在压缩过程中将油与气体分离,以避免油污染气体。

4. 控制过程
涡旋式压缩机的工作过程需要进行控制,以保证压缩机的正常运转。

一般情况下,涡旋式压缩机会采用电子控制系统来进行控制,通过对
压缩机的电子控制,可以实现对压缩机的启动、停止、转速等参数的
控制。

总的来说,涡旋式压缩机的工作过程是一个复杂的系统,需要对压缩、冷却、润滑和控制等方面进行综合考虑,以保证压缩机的正常工作。

电动汽车压缩机涡旋原理

电动汽车压缩机涡旋原理

电动汽车压缩机涡旋原理
电动汽车压缩机是一种用于压缩冷媒的装置,用于使空调系统正常工作。

涡旋压缩机是一种被广泛使用的压缩机类型,因为它的结构简单,效率高。

涡旋压缩机的工作原理基于涡旋流动,具有很高的压缩比和低噪音特性。

以下将介绍电动汽车压缩机涡旋原理的详细解释。

涡旋压缩机是一种利用涡旋流动原理来压缩气体的机械装置。

它由一个涡旋器和一个定子组成,涡旋器是由两个交叉放置的螺旋线组成的叶片,定子则是由一个螺旋线形的管道组成。

在涡旋压缩机中,冷媒在涡旋器中被压缩,在压缩过程中,冷媒的体积不断减小,从而达到压缩的目的。

涡旋器的设计使得冷媒能够在不断旋转的螺旋线中流动。

涡旋器的两个叶片通过旋转,将冷媒从进气端抽入,并在转动的同时将冷媒向出气端排出。

当冷媒被进入涡旋器后,会因为涡旋器的旋转产生离心力,从而将冷媒压缩。

压缩后的冷媒会随着涡旋器的旋转,沿着螺旋线向出气端移动,并最终被压缩到所需的压力。

涡旋压缩机相对于其它类型的压缩机的优势在于其结构简单,噪音低,效率高。

由于涡旋压缩机采用涡旋流动原理进行压缩,因此可以达到很高的压缩比,同时还具有很低的噪音特性。

相比较于往复式压缩机,涡旋压缩机在空气动力学方面具有优势,因此效率更高。

总之,电动汽车压缩机涡旋原理是一种利用涡旋流动原理来压缩冷媒的机械装置,具有压缩比高,噪音低,效率高等特点。

理解这个原理可以帮助我们更好地了解电动汽车空调系统的工作原理,进而提高我们的技术水平。

涡旋压缩机的并联使用

涡旋压缩机的并联使用
( 安交 通大学 ) 西
摘 要 结合 并 联 涡旋 压 缩 机 组 的结 构 特 点 , 绍 涡 旋 压 缩 机 并 联 使 用 的优 点 , 重 分 析 其 使 用 过 程 中 的 介 着
回油 问题 , 根 据 试 验 结果 客观 分析 比较 目前 市 场 中 两 种 并 联 结 构 一 高 压 内 部 供 油 机 组 和 低 压 均 油 均 气 并
在 制 冷 系 统 中,压缩 机 工 作 时 ,必 定 有 一 少
部分 润滑油 会连 续 不 断地 从 汽 缸 中与制 冷 剂 一起 被压 出 ,进入制 冷 系统 的管路 及冷 凝 器 和蒸 发器 。
分别 用 时间延 迟方法 分开 ;
收 稿 日期 :0 60—0 2 0 —71 通 讯 作 者 : 庆 云 , ma :q @ s .j .d .n 严 E i yy t xt eu c l u u
目前 市场 上 广 泛 应 用 的 涡旋 压 缩 机 可 分 为 2
维普资讯 http://www.cq 组成 与大规格 压缩 机等 容 量 的机 组 而 替代 大 规 格
压 缩 机使用 ( 1 。它具有 以下优 点 : 图 ) 1 )可 有效进行 容量 控制 : 过 开 / 机组 中压 通 停
缩机( 或通过 调节 变频压 缩机运 行频 率 ) 调节 ; 来
2 )提 高可靠性 : 单 台压 缩机停 开次 数少 ; 较 3 )启动 负 荷 降低 : 台压 缩 机 的启 动 时 间 可 各
继面世 。 目前在 空调领 域 , 联涡旋 压缩 机 已经 在 并
单元 机方 面得 到广泛 的应 用 , 以下 着重介 绍涡旋 压
缩机并 联使 用 的特点及 其存 在的 问题 。
1 并 联涡 旋压 缩机 的优点 2台( 多 台 ) 同 或不 同规 格 的压 缩 机 并 联 或 相

涡旋式空气压缩机的特点与工作原理

涡旋式空气压缩机的特点与工作原理

涡旋式空气压缩机的特点与工作原理涡旋式空气压缩机是近年来开发出来的最新型的空气压缩机,它与传统空气压缩机相比,具有结构新颖、体积小、重量轻、噪音低,寿命长,输气平稳连续,操作简便,维护费用少等一系列优异的技术性能,被行业内誉为“无需维修空气压缩机”和“新革命空气压缩机”,是50HP以下空气压缩机理想机型。

涡旋空气压缩机是由两个双函数方程型线的动、静涡盘相互啮合而成。

在吸气、压缩、排气工作过程中,静盘固定在机架上,动盘由偏心轴驱动并由防自转机构制约,围绕静盘基圆中心,作很小半径的平面转动。

气体通过空气滤芯吸入静盘的外围,随着偏心轴旋转,气体在动静盘噬合所组合的若干个月牙形压缩腔内被逐步压缩,然后由静盘中心部件的轴向孔连续排出。

涡旋空气压缩机的特点:1、可靠性高。

2、噪音极低。

3、能耗最低。

4、维护费用最低。

1、可靠性高。

1)涡旋式割据压缩机的主机零件少,是活塞机数量的1/8,零件的大量减少是可靠性提高的关键要素。

2)回转半径小,线速度仅为2m/s,因而磨损小,机械效率高,振动小。

3)科学控制的整机系统更确保稳定性的提高2、噪音最低。

1)因无吸、排气阀和复杂的运动机构而消除了阀片的敲击声和气流的爆破声,使噪音急剧降低。

2)吸、排气连续稳定,每分钟6000次以上,使气流脉动极微小。

3)1台20HP(15KW)的涡旋式空气压缩机只有62dBA的噪音,使其能在任何地方安装使用,节省大量安装费用,更符合环保要求。

3、能耗最低。

1)因为吸气增压效应和没有余隙容积,故涡旋式空气压缩机的容积效率高达98%以上。

2)因为若干个工作腔逐渐压缩,故相邻工作腔的压差非常小,因此泄露自然极少。

一个压缩过程分几次压缩,热效率高。

3)无吸、排气阀,故进、排气的阻力损失几乎为零。

无运动机构的磨擦磨损,机械效率高,这是涡旋式压缩机比其它空气压缩机大大节能的主要原因。

例如:(1台20HP15KW)的涡旋式空压机一年工作6000小时,节省电费可达18000元。

ZF低温涡旋压缩机应用指南CNZF-001-08

ZF低温涡旋压缩机应用指南CNZF-001-08

润滑油 矿物油 POE油
下列润滑油可以使用于该系列压缩机: R22: Suniso 3GS Capella WF32
R404A/R134a: Copeland Ultra 22CC Mobil EAL Arctic 22CC ICI Emkarate RL 32CF Thermzl Zone 22CC
DTC阀已经被认可用于该产品范围的所有制冷剂。
高压压力开关
冷凝器
储液罐
ห้องสมุดไป่ตู้干燥过滤器
排气温度 控制器
毛细管
开关电磁阀
S
干燥过滤器
压缩机
低压压力开关 蒸发器
谷轮低温涡旋K4系统液体喷射 图2
热力膨胀阀
3
阀的参数
设定点:89.4 ± 2.8℃ 液体管路接口:3/8" (9.5 mm)
ZF**K4系列低温涡旋压缩机 CNZF-001-08
application engineering bulletin
应用工程手册 CNZF-001-08
ZF**K4 系列 低温涡旋压缩机应用指南 (适用型号:ZF06 / ZF08 / ZF09 / ZF11 / ZF13 / ZF15 / ZF18)
application engineering bulletin
2
冷凝温度℃
application engineering bulletin
应用工程手册
液体喷射
低温涡旋压缩机开有一喷射孔,可以与液体制冷剂管道相连接。该孔通过设于压缩机内部的 特殊通道与涡旋盘的中间腔相通。因为该中间腔和吸气腔相隔离,因此液体喷射不会损失制 冷量或制冷剂流量。详见图2。
只允许使用ZF压缩机随机配套的DTC阀用于喷液冷却控制。

谷轮涡旋压缩机应用指南

谷轮涡旋压缩机应用指南
最小运行时间
关于涡旋压缩机在 1 小时内究竟能启动和停机多少次还没有肯定的答复,因为它很大程 度上取决于系统配置。因为涡旋压缩机是在卸载条件下启动的,即使在不平衡压力下,所以 没有最短停机时间的规定。最关键的考虑是在启动后需要让油返回压缩机的最小运行时间。 由于这些压缩机装有玻璃视镜,所以很容易进行测试。最短的运行时间就是当压缩机启动时 失油至油返回压缩机油池至恢复视镜中正常油位时所需要的时间。如果将压缩机在比该时间 短的时间间隔进行循环停开,例如为了保持非常精确的温度控制,会造成逐渐失去润滑油以 致损坏压缩机。进一步关于防止压缩机频繁循环停开的资料可查阅应用工程手册 17-1262.
4-1316
ZR90K3~ZR19M3 和 ZR250KC~ZR300KC 谷轮涡旋压缩机应用指南
筑龙网
前言 本手册叙述 7.5~25HP R22 和 R407C 谷轮涡旋压缩机的运行特性,设计特点和应用要求。
典型机型是 ZR90K3-TWC, ZR16M3-TW7 和 ZR300KC-TWD。如 需 得 到 更 多 详 情 , 请 上 网 页 查询产品资料。谷轮涡旋压缩机的工作原理已在谷轮工程应用 手册 4-1312 中叙述了。以下叙述的压缩机运行特性和设计特点有一些是与小型的谷轮涡 旋压缩机不同的。
在接近 0.05MPa(表)(7psig)(-32℃/-25°F 饱和吸气温度)压力下运行明显地超出图 2 表 示的允许运行范围了。但是,由于环境温度低,热泵在某些地理位置必须运行在这些范围。 只要冷凝温度不超过 32℃(90°F)且排气温度不超过 135℃(275°F),这是允许的。在这些工 况下有些液体返回压缩机有助于保持排气温度在控制范围内。某些情况下甚至 0.05MPa (表)(7psig)低压控制器还会造成噪扰性跳闸。这可能在换向阀动作时发生的短暂性吸气阻塞 或在热泵启动时节流元件前没有足够的液体压力。因此,可以将低压控制器移至液管,在那 里不会发生会引起噪扰性跳闸的短暂性吸气压力下降。但是,必需增加一排气温度控制器。 另一种方法是将低压控制器仍放在吸气管路而给低压控制器 60 秒钟(最大)的低压延时时间。 让机组在 60 秒钟内不理采低压控制器的讯号而让压缩机继续运行。

日立无油涡旋机SRL7.5,11取扱说明书全项

日立无油涡旋机SRL7.5,11取扱说明书全项

̨̎

安 全 注 意 事 项 ʢ续ʣ

本文记载了在安全方面的注意事项。
其他方面的注意事项请参照正文,并严格遵守。

‫ ࠂܯ‬
〇全无油涡旋式压缩机吸入压缩和加压的气体仅限于空气,请禁止使用于空气以外的其他气体。
〇请勿将全无油涡旋式压缩机使用于呼吸器用器械或维持生命相连的用途。 ʢ本机器如发生破损或事故时,有可能会造成重大事故。ʣ
̏ɽ 请确认附属品是否齐全。
安放用橡胶板 使用说明书
̐张
̍本
型号 标牌
●请确认型号、频率、 制造编号、规格。


注意
请勿在不同的电压、频率下使用。

̎ 移动时

搬运办法
̍ɽ使用叉车进行移动


在叉车与压缩机空隙间放置

些填充物,以防止机器受伤。

、触电、骨折、中毒等留下的后遗症。 以及需要入院、长期治疗的严重伤害。 伤 害ɿ 指无需入院治疗、长期治疗的伤害、烫伤以及触电等。 财务损害ɿ 指财产损失以及与机器相关的扩大性损害。
此符号为告知禁止行为。 图中有对具体禁止内容的描述。 这些安全注意事项是为确保安全使用全无油涡旋式压缩机而补充的重要提案, 请依照各种标准和基准确立安全措施,以确保机器及设备的安全运行和维护。 对无视这些安全注意事项而造成的后果,日立产机系统概不负责。
掌握机器的常理、安全信息、注意事项后再进行使用。
警告标记、注意标记为强调危险以及重要信息。

警告ɾ注意标记
此标记为促进警告、注意内容的符号。

‫ ࠂܯ‬若无视此标记,进行错误操作,有可能导致人身死亡或重伤。

螺杆式涡旋空气压缩机操作规程

螺杆式涡旋空气压缩机操作规程

螺杆式涡旋空气压缩机操作规程目的本操作规程旨在确保螺杆式涡旋空气压缩机的安全运行,并提供操作人员所需的必要指导。

适用范围本操作规程适用于所有使用螺杆式涡旋空气压缩机的工作场所和操作人员。

操作人员要求1. 操作人员必须经过相关培训,并获得合格的操作证书,以确保他们具备操作螺杆式涡旋空气压缩机所需的知识和技能。

2. 操作人员应熟悉螺杆式涡旋空气压缩机的结构、原理和工作过程。

3. 操作人员应了解涡旋空气压缩机的运行参数及相应的安全预防措施。

操作步骤1. 操作人员应进行日常巡检,检查螺杆式涡旋空气压缩机的外观、各部件的连接情况和润滑油的供给情况。

2. 在使用螺杆式涡旋空气压缩机之前,操作人员应确认所需压力和流量,并调整相应参数。

3. 操作人员应按照操作界面或控制面板上的指示操作涡旋空气压缩机,包括启动、停止和调整运行参数等。

4. 在操作过程中,操作人员应随时注意涡旋空气压缩机的运行状态,并及时处理异常情况,如异响、过热等。

5. 在维修和保养涡旋空气压缩机时,操作人员应按照相关程序进行,确保安全和有效性。

安全措施1. 在操作涡旋空气压缩机之前,操作人员应戴好个人防护装备,如安全帽、护目镜、耳塞等。

2. 涡旋空气压缩机应设有可靠的电气保护装置和紧急停车装置,以应对突发情况。

3. 操作人员应定期检查涡旋空气压缩机的安全阀和压力表等,确保其正常运行。

4. 禁止操作人员未经许可进行未经授权的操作和改动涡旋空气压缩机的设备和部件。

总结螺杆式涡旋空气压缩机操作规程的遵守是保证涡旋空气压缩机安全运行的基础。

操作人员应通过培训和熟悉操作步骤,掌握涡旋空气压缩机的操作技能,并始终遵循相关的安全措施。

只有这样,才能更好地确保工作场所的安全和高效运行。

松下涡旋压缩机说明书5Cd

松下涡旋压缩机说明书5Cd

松下涡旋压缩机说明书5Cd1前言首先感谢您使用我公司的系列汽车空调压缩机产品。

正确地使用,是优质产品得以充分体现的重要保证,因此,当您购买了我们的产品后,请仔细阅读。

警世:请找专业人员维修,不正确的维修方式会导致人身伤害。

请使用正确的压缩机制冷剂和润滑油,使用不当会造成汽车空调系统故障。

2安装维修注意事项2.1正确使用制冷剂正确使用制冷剂包括使用纯正的制冷剂和正确的加注量。

2.1.1使用纯正的制冷剂纯正的制冷剂在含水量、杂质等各种性能指标上都有严格的要求。

使用了假冒伪劣的制冷剂,将可能使汽车空调系统出现故障。

劣质制冷剂包括:用R12、R22或其他低成本的化合物,假冒R134a制冷剂;水分、杂质及不凝性气体含量超标的R134a制冷剂;2.1.2正确的加注量整车厂对于空调系统制冷剂加注量都有严格的规定,加注制冷剂的量必须严格按整车厂的规定进行。

2.2正确使用冷冻油正确使用压缩机冷冻油包括使用正确的牌号和正确的加注量。

2.2.1使用正确牌号的冷冻油在空调系统中,制冷剂与冷冻油需要完全互溶,这样才能保证压缩机能源源不绝地得到润滑。

矿物油与R12相溶,却与R134a完全不相容:各种压缩机采用了不同类型和不同牌号的冷冻油,使用时应严格遵守规定,不能混淆,否则会损坏压缩机,造成系统故障。

本公司采用的均为PAG类冷冻油。

冷冻油在含水量、杂质、润滑性能等各个方面均有严格的性能指标要求,严格禁止使用不合格的冷冻油。

另外,请注意:由于冷冻油有一定的吸水能力,即使最初是合格的冷冻油,如果在空气中裸放过一定的时间,造成油中水分过多,加入系统后,会造成系统故障。

本公司采用的均为PAG类冷冻油。

冷冻油在含水量、杂质、润滑性能等各个方面均有严格的性能指标要求,严格禁止使用不合格的冷冻油。

另外,请注意:由于冷冻油有一定的吸水能力,即使最初是合格的冷冻油,如果在空气中裸放过一定的时间,造成油中水分过多,加入系统后,会造成系统故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解在冷冻机油中,因此需安装曲轴加热器以防止溶解。
• 运转中不应使含有液体的制冷剂回到压缩机中,即保证压
缩机吸气有过热度
• 起动及除霜时,不应产生回液现象
• 避免在过度过热状态下运转,避免油劣化
• 气液分离器的回油孔大小应适当
①孔径过大会吸入液体制冷剂造成过湿运转 ②孔径过小会使回油不顺畅,使油滞留在气液分离器中
金属屑引起的绕组短路
金属屑的来源包括施工时留下的铜管屑、焊渣、 压缩机内部磨损和零部件损坏时掉下的金属屑等。 在工作时,在气流的带动下,这些金属屑或碎粒会 落在绕组上。压缩机运转时的正常振动,以及每次 启动时绕组受电磁力作用而扭动,都会促使夹杂于 绕组间的金属屑与绕组漆包线之间的相对运动和摩 擦。棱角锐利的金属屑会划伤漆包线绝缘层,引起 短路,导致电机烧毁。
如何减少压缩机的上油率
• 在停机时应保证制冷剂不溶解到冷冻机油中(使用
曲轴加热器)
• 应避免过湿运转,因为会起泡而引起的上油过多
• 内部设置油分离器装置 • 压缩机内部的油起泡使油容易被带出压缩机.
长配管高落差
当配管长比容许值大时, 配管内的压力损失会变大, 使得蒸发器中的冷媒量减少, 导致能力下降。同时,配管 内有油滞留时,使得压缩机 缺油,导致压缩机故障的发 生。当压缩机内冷冻机油不 足时,应从高压侧追加与压 缩机出厂相同牌号的冷冻机 油。
涡旋压缩机的使用
(如何提高使用的可靠性)
压缩机运行中常见的故障:
• 缺油与润滑不足损坏 • 电机损坏
• 液击损坏 • 高温损坏
避免缺油与润滑不足损坏的要点
• 适当的压缩机注油量 • 适当的冷冻机油粘度
• 防止过度的过湿运行
• 防止过度的过热运转
压缩机常见的缺油故障
• 压缩机长时间缺油——机
构部和各摩擦副过热,导 致轴承烧结、抱轴。
电机高温的主要原因
• 电机发热量大
供电不正常会引起电机发热量增大,如:电压不稳、电压太低 或太高、电压不平衡、缺相等都属于电源供电不正常。 压缩机频繁启动、连杆抱轴、活塞咬缸、润滑不足或缺油等问 题均会大大增加发热量。 超范围使用压缩机很容易引起电机过热和损坏 电机冷却不足 蒸发温度低,制冷剂质量流量小导致电机冷却不足。 制冷剂泄漏量比较大时,也会制冷剂质量流量小导致电机冷却 不足。
接触器问题
为了安全可靠,压缩机接触器要同时断开三相电 路。接触器必须能满足苛刻的条件,如快速循环, 持续超载和低电压。它们必须有足够大的面积以散 发负载电流所产生的热量,触点材料的选择必须在 启动或堵转等大电流情况下能防止焊合。否则接触 器触点焊合后,依赖接触器断开压缩机电源回路的 所有控制(比如高低压控制,温度控制,融霜控制 等)将全部失效,压缩机处于无保护状态。因此, 当电机烧毁后,检查接触器是必不可少的工序。
• 异常负荷和堵转 • 金属屑引起的绕组短路 • 接触器问题 • 电源缺相和电压异常 • 冷却不足 • 用压缩机抽真空
导致异常负荷或者堵转的主要原因
压比过大,或压差过大,会使压缩过程更为困难; 而润滑失效引起的摩擦阻力增加,以及极端情况下 的电机堵转,将大大增加电机负荷。如果负荷增大 到热保护动作,而保护又是自动复位时,则会进入 “堵转-热保护-堵转”的死循环,频繁启动和异 常负荷,使绕组经受高温考验,会降低漆包线的绝 缘性能。绕组绝缘性能变差后,如果有其它因素 (如金属屑构成导电回路,酸性润滑油等)配合, 很容易引起短路而损坏。
压缩机电机冷却不足 制冷剂大量泄漏或者蒸发压力低时会造成 系统质量流减小, 使得电机无法得到良好的 冷却,电机过热后会出现频繁保护。
用压缩机抽真空导致压缩机电机损坏
空气起着绝缘介质的作用。密闭容器内抽真空后, 里面的电极之间的放电现象就很容易发生(真空放 电)。因此,随着压缩机壳体内的真空度的加深,壳 内裸露的接线柱之间或绝缘层有微小破损的绕组之间 失去了绝缘介质,一旦通电,电机可能在瞬间内短路 烧毁。如果壳体漏电,还可能造成人员触电。因此, 禁止用压缩机抽真空,并且在系统和压缩机处于真空 状态时(抽完真空还没有加制冷剂时),严禁给压缩 机通电。

如何防止过热运转
• 排气温度由压缩比及吸气温度决定
• 压缩机内最高极限温度大约在150℃以下为宜,这时排气
温度大约为120 ℃
• 排气温度上升最高的运转条件是低温制热
• 为防止排气温度上升,需保证以下3个要求:
①吸入的气体冷媒不能过度过热, ②吸气压力不能过低 ③排气压力不能过高
导致压缩机电机损坏的主要原因
• 压缩机短时间缺油——机
构部和各摩擦副异常磨损, 导致振动、噪音大。
如何保证适当的油量
压缩机在排出冷媒时,也会排出微量的冷冻机 油。即使只有0.5%的上油率,如果油不能通过系 统循环回到压缩机中,若以5HP为例,循环量在 ARI工况下约为330kg/h,则在50分钟就可以将压 缩机内的油全部带出,大约在2~5小时内压缩机 将会烧坏。因此为了确保压缩机运行不缺油,应 该从以下二方面着手: 确保排出压缩机的冷冻机油回到压缩机; 减少压缩机的上油率;

导致排气温度过高的主要原因 排气温度过热的原因主要有以下几种:回气温 度高、电机加热量大、压缩比高、冷凝压力高、 制冷剂选择不当。
谢谢大家!
带液启动导致压缩机损坏的主要原因
在油视镜上清楚地可以观察到带液启动时有起泡现象。带液 启动的根本原因是润滑油中溶解的以及沉在润滑油下面了大量的 制冷剂,在压力突然降低时突然沸腾,并引起润滑油的起泡现象。 带液启动的制冷剂是以“制冷剂迁移” 的方式进入曲轴箱的。 由于润滑油中的制冷剂蒸汽分压低,就会吸收油面上的制冷剂蒸 气,造成油池中气压低于蒸发器气压的现象。油温愈低,蒸汽压 力越低,对制冷剂蒸汽的的吸收力就愈大。系统中的蒸汽就会慢 慢向压缩机“迁移”。停机时间越长,迁移到润滑油中的制冷剂 就会越多。制冷剂迁移会稀释润滑油。对低压腔还容易引起液击。 液态冷媒或者油与冷媒的混合物都 不是良好的润滑剂,会造 成磨损甚至卡死。此时由于电机浸在液体中,电机上的过载保护 器不会动作。 安装曲轴箱加热器、气液分离器和采用抽空停机控制可以有效 阻止或降低制冷剂迁移
如何确保排出压缩机的冷冻机油回到压缩机
• 应确保吸气管冷媒的流速(约6m/sec),才能使 • • • • •
油回到压缩机,但最高流速应小于15m/sec来减 小压降与流动噪音,对水平管还应沿冷媒流动方 向有向下的坡度,约0.8cm/m. 防止冷冻机油滞留在蒸发器内 确保适当的气液分离器的回油孔,过大会造成湿 压缩,过小则会回油不足,滞流油在气液分离器 中 系统中不应存在使油滞留的部位 确保在长配管高落差的情况下有足够的冷冻机油 在压缩机里,通常用带油面镜的压缩机确认 压缩机频繁启动不利于回油。
如何防止湿运转
容易引起过湿运转的运转条件顺次为: ①除霜结束,四通阀切换的时候 ②起动时,压缩机吸入溶于油中的液体制冷剂时 ③起动时,压缩机吸入残留在蒸发器中的液体制冷剂时 ④除霜开始,四通阀切换的时候 ⑤正常起动、停机时 以上5点,特别是① ② ③左右着压缩机的寿命。为防止 这些情况,冷媒的控制技术是非常重要的。 另外,如果冷媒的充注量超过系统所需的冷媒量,也容易 发生过湿运转。
导致压缩机液击损坏的主要原因
• 回液,即从蒸发器中流回
压缩机的液态制冷剂或润 滑油
• 带液启动 • 压缩机内的润滑油太多。
回液导致压缩机损坏的主要原因
回液,就很容易引发液击事故。即使没有引起液 击,高压腔结构的回液将稀释或冲刷掉滑动面的润滑 油,加剧磨损。低压腔结构的回液会稀释油池内的润 滑油。含有大量液态制冷剂的润滑油粘度低,在摩擦 面不能形成足够的油膜,导致运动件的快速磨损。另 外,润滑油中的制冷剂在输送过程中遇热会沸腾,影 响润滑油的正常输送。而距离油泵越远,问题就越明 显越严重。如果电机端的轴承发生严重的磨损,曲轴 可能向一侧沉降,容易导致定子扫膛及电机烧毁。 对于回液较难避免的制冷系统,安装气液分离器和 采用抽空停机控制可以有效阻止或降低回液的危害。
电源缺相和电压异常
电源电压变化范围不能超过额定电压的±10%。三 相间的电压不平衡不能超过3%。如果发生缺相时压 缩机正在运转,它将继续运行但会有大的负载电流。 电机绕组会很快过热,正常情况下压缩机会被热保护。 当电机绕组冷却至设定温度,接触器会闭合,但压缩 机启动不起来,出现堵转,并进入“堵转-热保护- 堵转”死循环。 如果缺相发生压缩机启动时,压缩 机将启动不起来,出现堵转,进入“堵转-热保护- 堵转”死循环。 电压不平衡百分数计算方法为,相电压与三相电压平 均值的最大偏差值与三相电压平均值比值. 作为电压 不平衡的结果,在正常运行时负载电流的不平衡是电 压不平衡百分点数的4-10倍。
设置回油弯的必要性
落差超过10m~15m时,应在气 管侧设置回油弯管。 ①必要性 停机时,避免附着在配管中 的冷冻机油返回压缩机,引 起液压缩现象。另一方面, 为了防止气管回油不好导致 压缩机缺油。 ②回油弯设置间隔 每10m落差设置一个回油弯。
如何确保适当冷冻机油粘度
• 冷冻机油和制冷剂有互溶性,停机时,制冷剂几乎全部溶
润滑油太多导致压缩机液击损坏
对低压腔压缩机,高速旋转的部件如转子,会频繁 撞击油面,如果油面过高,引起润滑油大量飞溅。飞 溅的润滑油一旦窜入进气道,带入气缸,就可能引起 液击。
导致压缩机高温损坏的主要原因
由于超范围使用、电源不正常、电机过载、制冷 剂泄漏、冷凝压力太高等问题引起的电机高温、排 气温度过高、润滑油焦糊等过热现象。 压缩机表面温度是判断压缩机是否过热的重要指 标之一。如果表面温度超过135°C,一般认为压缩 机已经处于严重过热状态;而如果表面温度低于 120°C,压缩机温度正常。
相关文档
最新文档