初中数学竞赛专项训练找规律题
初中数学找规律题及其答案
初中数学找规律——专题训练与提升1、根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.2、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有个.3、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.4、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.5、观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.6、如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是,第n个“广”字中的棋子个数是.7、如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°,下图2是二环四边形,可得S=∠A1+∠A2+…+∠A7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n边形(n≥3的整数)中,S=度.(用含n的代数式表示最后结果)8、观察下列图形(每幅图中最小的三角形都是全等的),请写出第n个图中最小的三角形的个数有 个.9、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n = .(用含n 的代数式表示)10、用正三角形和正六边形按如图所示的规律拼所剪次数 …正三角形个数0 3 …图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).11、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.12、根据下列图形的排列规律,第2008个图形是福娃(填写福娃名称即可).13、用火柴棒按照如图所示的方式摆图形,则第n个图形中,所需火柴棒的根数是.14、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.15、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子把.16、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n(n≥2个圆点时,图案的圆点数为S n.按此规律推断S n关于n的关系式为:S n= .17、如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)18、观察下列图形的构成规律,根据此规律,第8个图形中有个圆.19、观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:0 0 1 2 3 … ....1 3 5 7 … ....2 5 8 1 11 … ....3 7 1 11 5 15 … ....… ....… ....… ....… ....… ....表二:表三:20、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n层有 个白色正六边形.21、把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正111 414a1 11 3 13 7 17 b三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.22、观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2008个图形是(填名称).23、下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,按照图示的规律摆下去,则第n幅图中有个菱形.24、如图,观察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有个.25、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n 的代数式表示)27、如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第三行有4个三角形,第四行有8个三角形,…,你是否发现三角形的排列规律,请写出第七行有个三角形.28、如图,用3根小木棒可以摆出第(1)个正三角形,加上2根木棒可以摆出第(2)个正三角形,再加上2根木棒可以摆出第(3)个正三角形…这样继续摆下去,当摆出第(n)个正三角形时,共用了木棒根.29、观察下列图形,根据变化规律推测第100个与第个图形位置相同.30、如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,…,则搭n条小鱼需要根火柴棒.(用含n的代数式表示)参考答案1.n2-n+1 2.(2n-1)3.302 4.121 5.49 6.152n+5 7.360(n-2) 8.4n-19.3n+1 10.2n+2 11.181 12.欢欢13.3n+1 14.88 15.20 16.4n-417.2n(n+1)18.65 19.37 20.6n 21.1522.正方形 23.(2n-1)24.136 26.3n+1 27.64 28.2n+1 29.1或4 30.6n+211。
七年级找规律经典题汇总带答案
一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
初中数学找规律练习题(有答案)
精心整理一、简答题1、已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?(4分)2、先阅读,再解题:因为,?,?……所以.参照上述解法计算:3、目前市场上有一种数码照相机,售价为3800元/架,预计今后几年内平均每年比上一年降价4%.3年后这种数码相机的售价估计为每架多少元(精确到1元)?4、已知a、b互为相反数,m、n互为倒数,x绝对值为2,求的值5、如果规定符号“﹡”的意义是﹡=,求2﹡﹡4的值。
6、某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?7、王叔叔家的装修工程接近尾声,油漆工程结束了,经统计,油漆工共做50工时,用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:(1)按工时算,每6工时300元。
(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元。
请你帮王叔叔算一下,用哪种方案最省钱?8、定义一种新的运算:观察下列式子1⊙3=1×4+3=7;3⊙(-1)=3×4+(-1)=11;5⊙4=5×4+4=24;4⊙(-3)=4×4+(-3)=13.⑴请你想一想:a⊙b=??????????;⑵请你判断a⊙b??????b⊙a(填入“=”或“≠”)???⑶若a=-2,b=-4,求(2a-b)⊙(a-2b)的值.9、阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=________;(3)1×2×3+2×3×4+3×4×5=________.10、从2004年8月1日起,浙江省城乡居民生活用电执行新的电价政策:安装“一户一表”的居民用户,按所抄见电量(每家用户电表所表示的用电量)实行阶梯式累进加价,收费标准如下:月用电量不超过50千瓦时的部分超过50千瓦时不超过200千瓦时的部分超过200千瓦时的部分收费标准(元/千瓦时)0.53 0.56 0.63 ????例:若某户月用电300千瓦时,需交电费为????(元)(1)若10月份许老师家用电量为130千瓦时,则10月份许老师家应付电费多少元??(2)已知许老师家10月份的用电量为千瓦时,请完成下列填空(用代数式表示):①若千瓦时,则10月份许老师家应付电费为?????????????元;②若千瓦时,则10月份许老师家应付电费为???????元;③若千瓦时,则10月份许老师家应付电费为??????????元。
初中数学找规律题
探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码〔又叫数字〕:0,1,2,3,4,5,6,7,8,9。
在电子数字电脑中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数〔即当最后一个奇数是19时〕,它们的和是 。
3、小王利用电脑设计了一个计算程序,输入和输出的数据如下表:输入 (1)2345… 输出…2152 103 174 265…那么,当输入数据是8时,输出的数据是〔 〕 A 、618 B 、638 C 、658 D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。
6、如以下列图是用棋子摆成的“上”字:(1)(2)(3)第4题第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:〔1〕第四、第五个“上” 字分别需用 和 枚棋子;〔2〕第n 个“上”字需用 枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、根据以下5个图形及相应点的个数的变化规律:猜想第6个图形有 个点,第n 个图形中有 个点。
(完整版)七年级找规律经典题汇总带答案
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
初中数学找规律专题练习
找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,2、如以下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按 同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去; (1)填表:(2)如果剪n 次,共剪出多少个小正方形?(3)如果剪了 100次,共剪出多少个小正方形? (4)观察图形,你还能得出什么规律?3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住局部的整数的和是4、填表并答复以下问题x0.010.11101001000( 100 1 2x(1)根据上表结果,描述所求得的一列数的变化规律 (2)当x 非常大时,学的值接近于什么数? x5、现有黑色三角形“▲和△〞共200个,根据一定规律排列如下:那么黑色三角形有 个,白色三角形有 个7、用火柴棒按如下方式搭三角形:(1)填写下表:反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第 64根细面条.次后可拉出第一次捏合第三次捏合剪的次数 1 2 3 4 5正方形个数第二次捏合 6、仔细观察以下图形.当梯形的个数是n 时,图形的周长是12的规律填空: 502, 第n 个式子呢?①张桌子拼在一起可坐 ________ 入.3张桌子拼在一起可坐 _________ 人,n 张桌子拼在一起可坐 __________ 人. ②一家餐厅有40张这样的长方形桌子,根据上图方式每 5张桌子拼成1张大桌子,那么40张桌子可 拼成8张大桌子,共可坐 ____________ 人.③假设在②中,改成每8张桌子拼成1张大桌子,那么共可坐 __________________ 人. 12、用计算器计算以下各式,并将结果填写在横线上.① 1X7X15873= ______________ ② 2X7 X15873= _____________ ③ 3X7 X15873= _____________ ④ 4X7 X15873= _____________你发现了什么规律?把你发现的规律用简练的语言写出来;13、观察以下顺序排列的等式:9 >0+1=19 >1+2=11 9>2+3=21 9>3+4=31 9X4+5=41猜测:第n 个等式(n 为正整数)应为.14、 一个两位数的个位数是a,十位数字是b,请用代数式表示这个两位数是15、观察以下各式:31=3, 32 =9, 33=27, 34=81, 35=243, 36=729…你能从中发现底数为 3的事的9、一列数:1,- -2 , 3,- -4, 5, —6, 7,…将这列数排成第1行 1第2行 一23第3行 —45 一 6第4行 7 一 8 9 -10第5行 11 -1213 —141510、观察以下算式:1 5 4 32 , 2 6 4 42 ,3 74 52 , 4 8 4 62 ,请你在察规律之后并用你得到(2)照这样的规律搭下去,搭n 个这样的三角形需要 _______________ 根火柴棒8、把编号为1, 2, 3, 4,…的假设干盆花按右图所示摆放,花盆中 蓝、紫的颜色依次循环排列,那么第 8行从左边数第6盆花的颜色为 色.根据上述规律排下去,那么第10行从左边数第5个数等于的花按红、黄、卜列形式:个位数有什么规律吗?根据你发现的规律答复:3 2004的个位数字是16、观察以下各式,你会发现什么规律?3X5=15,而 15=42 1 0 5X7=35,而 35= 62 111X13=143,而 143= 122 1将你猜测到的规律用只含一个字母的式子表示出来:.17、问题:你能比拟20052006和20062005的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比拟n n+1和(n+1)n 的大小(n为正整数),我们从n=1,n=2,n=3 ••…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.(1)通过计算,比拟以下各组数字大小① 12 22 ② 23 32 ③ 34 43④ 45 54⑤ 54 65⑥ 67 7(2)把第(1)题的结果经过归纳,你能得出什么结论?你能用只含有一个字母的式子表示吗? (3)根据上面的归纳猜测得到的结论,试比拟两个数的大小(1分) 20052006200召005 (填〞 >〞," <"),“二〞18、为了美化城市,某商场在门前的空地上用花盆按如下图的方式搭正方形,(1)填写下表正方形的层 数12345花盆的个数4(2)按这个规律搭下去,搭第n 层正方形,需要 _______________________________ 盆花?19、下面有三组数,请你填上适宜的运算符号,使每一组数的结果都为 10. (1) 1 5 5 9 =10 ; (2) 3 3 3 3=10 ; (3) 1 1 9 9 =10请你修忙算一算得多少?21、黑蚂蚁和红蚂蚁都认为自己跑得比对方快,刚好它们看到地上的几个半圆(图 1),于是它们决定比 一比.黑蚂蚁沿着大半圆从甲处跑到乙处;红蚂蚁沿着两个小半圆也从甲处跑到乙处.两只蚂蚁同时起 跑,说也奇怪,两只蚂蚁同时到达了乙处.(1)两只蚂蚁请你帮助判断:谁跑得快?20、小红和小花在玩一种计算的游戏,计算的规那么是a b ........................... 1 2=ad- bCo 现在轮到小红计算的值,c d3 4(2)两只蚂蚁对你的判断结果很不满意,决定再到(图 2)的几个半圆处再比赛一次,请你猜一猜,哪 一只蚂蚁先从甲处跑到乙处?,总的比赛场数是多少? 4个球队呢? m23.按一定规律排列的一串数:1 23 1 2 34 51 2Q , Q , G ,匚, 匚,匚,匚,匚,7,73 3 3 5 5 5 5 57714.下面的算式里,符号.、△、和口分别代表三个不同的自然数,这三个数的和是1111 118. △口24. 一群整数朋友根据一定的规律排成一排,可排在口位置的数跑掉了,请帮它们把跑掉的朋友找回来.(1) 5, 8, 11, 14, □ , 20; (2) 1, 3, 7, 15, 31, 63, □;(3) 1, 1, 2, 3, 5,8, □, 21 25.以下两列数:2, 4, 6, 8, 10, 12,……1994;6, 13, 20, 27, 34, (1994)这两列数中,相同的数的个数是( )A 、 142B 、 143C 、 284D 、 28526. 一串数字的排列规律是:第一个数是 20,从第二个数起,每一个数比前一个数小 8(1)第10个数是多少? ( 2)第n 个数是多少? ( 3)第几个数是一6027.某仓库堆放一批圆木,一共 20层,第一层3根,每往下一层多1根,问这堆圆木一共有多少根? 28.在如下图的2003年1月份的日历中,用一个方框圈出任意 3X3个数 星期日星期一星期二 星期三 星期四 星期五 星期六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920212223242526 27 28 29 30 31(1)从左下角到右上角的三个数字之和为 45,那么这9个数的和是多少?这9个日期中最后一天是 1月几日?(2)用这样的方框能否圈出总和为162的9个数? 37,…中,第98个数是 ______________22. (1) 3个球队进行单循环赛 (参赛的每一个队都与其它所有各队比赛一场) 个球队呢?(代数式表示出来)(2)当m=12时,总共比赛几场?29 .观察以下数据,按某种规律在横线上填上适当的数:♦ 3 5 7 9 1, 一, 一, 一,——, ,…49162530 .如图,△ ABC 中,D 是边BC 上的中点, F 是线段CD 的中点,E 是边AC 的中点,那么图中有 条线段,有 个角,假设4 DEF 的面积是2,那么△ ABC 的面积是31 .平面内两两相交的 6条直线,其交点个数最少为 m 个,最多为n 个,那么m+n 等于〔〕A 、12B 、16C 、20D 、以上都不对32 .如图,可以看成是边长为4的小正方形的巧克力糖,请你用尽可能多的不同方法把它分成形状、大小完全相同的四块,要求不把正方形糖块划破〔至少五种方法〕40、观察公式:公式 1 : (x a)3 x 3 3x 2a 3xa 2 a 333 .在某月日历上一个竖列相邻的五个数之和为 80,这五个数是34 .某月日历有一竖列四个日期,其中第二个日期与第四个日期的和是 36,那么第三个日期是35 .今年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是 36 .如果这个月的5号是星期三,那么20号是星期 37 .三个连续偶数中,n 是最小的一个,这三个数的和为 , 38 .以下图形中三角形的个数是〔〕A.4 个B.6 个C. 9 个D.10 个 91,那么李老师是 号回家的39、至少找出以下几何体的 4个共同点4 4 3_22 3 4公式2:(x a) x 4x a 6x a 4xa a(1) 这两个公式有什么特点?(2) 利用公式计算:_ 4 _ 3 1 __2 1 2 _ 1 3 1242()62()42()() 2 2 2 241、下面有三组数,请你填上适宜的运算符号,使每一组数的结果都为10.(1) 1 5 5 9 =10 ; (2) 3 3 3 3 =10 ; (3) 1 1 9 9 =1042 .造一个含有字母p和q的代数式,使得不管p、q取何值,代数式的值永远不是正的.43 .图是2002年6月份的日历,现用一矩形在日历中任意框出4个数| a b] ,请用一个等式表示,a、b、c、d之间的关系. c d日一一三四五六12345678910111213141516171819202122232425262728293044 .右图,是用火柴棒摆成的一个大三角形,它是由九个小三角形组成的,试将1、2、3、4、5、6、7、8、9分别填入这9个小三角形哪(每个小三角形内只填一个数) ,要求靠近大三角形每条边的每五个数相加的和相等,请想一想,怎样填这些数才能使五个数的和尽可能大一些,这五个数的和最大是多少?45.王容许了大臣的一个要求:即在国际象棋棋盘上2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到64格〞.但是不久国王九发现国库里没有这么多米,然而国王的话不能不算数,国王又不好意思向别人借,怎么办呢?请你帮国王想一个好方法来解决这个问题. (方法必须符合情理,有创意者可适当多加分.方法多者亦可多加分)46.如果连结多边形的一边上一点与其余各顶点可将某多边形分割成2004个三角形,求该多边形的边数47 .如图1-26,在ABC中,点D,E,F分别是AB,BC,AC三边中点,图中与BOD面积相等的三角形有几个?48 .观察图1-27中有几个三角形?由此你发现三角形的个数有什么规律呢49.求个数图 1-29(1)将下表填写完整. 图形符号52、以下图形经过折叠能否围成一个正方体?一个三角形3个三角形个三角形个三角形(n 个点)(3)(4)53、某种细胞每过54、有一张厚度是 30分便由1个分裂成2个,经过5小时,这种细胞由1个能分裂成0 .1毫米的纸,将它对折 1次后,厚度为2X0.1毫米.(1)图1-28(1)中有多少个三角形?(2)图1-28(2)中有多少个四边形?50.如图1-29所示,图①是一个三角形别连结图②中间的小三角形三边的中点,分别连结这个三角形三边的中点(将这条边分为相等的两局部的点 ,得到图③,按此方法继续下去,请你根据图中三角形个数的规律)得到图②;再分 ,完成以下问(2)〔1〕、对折2次后,厚度为毫米. 〔2〕对折20次后,厚度为毫米.〔3〕对折n次后,厚度为毫米.55、以下图〔1〕表示1张餐桌和6张椅子〔每个小半圆代表1张椅子〕,假设按这种方式摆放20张餐桌需要的椅子张数是.你认为220的末位数字是〔〕.57、某种细菌在培养过程中,每半小时分裂1次,每次一分为二.假设这种细菌由1个分裂到16个,那么这个过程要经过〔〕A. 1.5小时B , 2小时C , 3小时D , 4小时58、计算:1—2+3—4+……+2001 —2002+2003= . .会在与数字2所在的平面相对的平面上.,4 5 6 _1 2pv2 , 22 4, 23 8, 24 1 6, 25 32, 26 64, 27 1 28, 28 2 56, 根据上述算式中的规律,63、(A)观察以下数据,(B)按某种规律在横线上填上适当的数:4 9一列数7二72,7一,1673…72003 ,其中末位数是3的有个.56、观察以下算式: 2159、当下面这个图案被折起来组成一个正方体,数字61、根据规律填上适宜的数:〔1〕—9, —6, —3, /64、在下面的图形中〔62、〕是正方体的展开图.66、指出以下平面图形是什么几何体的展开图〔 6分〕:67、在下面的图形中,〔 〕是正方体的外表展开图68、探索规律:用棋子按下面的方式摆出正方形①按图本规律填写下表: 图形编号 (1) ⑵ (3) (4) ⑸ (6)棋子个数②根据这种方式才g 下去,摆第 n 个正方形需要多少个棋子? ③根据这种方式才g 下去,第第 20个正方形需要多少个棋子?69、,13 1 - 12 22,4,3 c3 c 1 -2 八21 2 9 — 2 3, 4□ □ □ □ □ □,3 八3 八3 "1 2 3 36 32 42⑴猜测填空:1323 334()(2)假设1323 33 240 2,试求n的值.70、用火柴棒按下面方式搭图形,那么20个图形需要的火柴棒是根. 第1 2。
初中数学找规律专项练习题(有答案)
2 2 2 21、观察规律:1=1 ; 1+3=2; 1+3+5=3 ; 1+3+5+7=4 ;,,则2+6+10+14+, +2014 的值是__________________2、用四舍五入法对31500取近似数,并精确到千位,用科学计数法可表示为_____________________________3、观察下面的一列数:0,- 1, 2,- 3 , 4,- 5, 6,请你找出其中排列的规律,并按此规律填空.(1 )第10 个数是__________________________ ,第21个数是 ______________________ .(2)- 40是第 _个数,26是第 ____________ 个数.1 3 _5 _94、一组按规律排列的数:’-,,'■,!■,请你推断第9个数是100 101(-2 ) + (-2 )=6、若@ 寸 + 0 + 1)'二0 ,则严 + 严= ________________________ .7、大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成 ___________ 个。
2 4 _16 32 648、猜数字游戏中,小明写岀如下一组数:■,,丨,丨’1, !■,,小亮猜想岀第六个数字是,,根据此规律,第n个数是_已知疔—1、则___________________9、10、若(盘-2严"与丨b+5|的值互为相反数,则= _______11、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等,而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:请将二进位制10101010(二)写成十进位制数为 _______________________ .12、为求1 I _ _ ■ L 111值,可令S=1 丨 _ 」_ ■ L 111,贝0 2S= _•二丨 _ - ■ _ 1 1,因此O20ll 12S-S = - 1 ,所以- - + 二‘二—1。
初中数学找规律习题大全
1找规律专项训练一:数式问题1.(湛江)已知 22 222,3 3 323,4 4 424,⋯⋯,若 8a82a( a 、 b 为正整数)则 a b33 88 1515bb.2.(贵阳)有一列数 a 1, a 2, a 3,a 4, a 5,⋯, a n ,其中 a 1= 5× 2+ 1, a 2=5× 3+ 2,a 3= 5× 4+ 3, a 4= 5× 5+ 4, a 5= 5× 6+ 5,⋯,当 a n = 2009 时, n 的值等于()A . 2010B .2009C .401D . 3343.(沈阳)有一组单项式:a2,- a 3 , a 4 ,- a 5,⋯.观察它们构成规律,用你发现的规律写出第 10 个单2 34项式为.4.(牡丹江)有一列数1 2 3 47 个数是.2 ,,, ,⋯,那么第510 175.(南充)一组按规律排列的多项式:a b , a 2b 3 , a 3 b 5 , a 4b 7 ,⋯⋯,其中第 10 个式子是 ()A . a 10b 19B . a 10b 19C . a 10b 17D . a 10b 216.(安徽)观察下列等式:1 1 12 22 3 331, 23, 34,⋯⋯2234( 1)猜想并写出第 n 个等式;( 2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数 2009 应排的位置是第行第列.第 1 列第 2 列 第 3 列 第 4 列第 1 行 12 3第 2 行65 4第 3 行 7 8 9 第 4 行 121110⋯⋯8.(台州)将正整数 1,2,3,⋯从小到大按下面规律排列.若第 4 行第 2 列的数为 32,则① n▲ ;②第 i 行第 j 列的数为▲ (用 i , j 表示).第 1列第 2 列第 3 列⋯第 n 列1123⋯n第 行2第 2 行n 1n 2n 3⋯2n第 3 行2n 12n 22n 3⋯3n⋯⋯⋯⋯⋯⋯二:定义运算问题1.(定西)在实数范围内定义运算“”,其法则为: a b a2b2,求方程( 43)x24 的解.2.有一列数,,,,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a12,a1 a2a3a n 则 a2007为()A. 2007B. 2C.1D. 1 2三:剪纸问题1.(2004年河南)如图( 9),把一个正方形三次对折后沿虚线剪下则得到的图形是()2.(2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()3.(2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,⋯⋯,根据以上操作方法,请你填写下表:3操作次数 N 1 2 3 4 5 ⋯N ⋯正方形的个数47 10⋯⋯3. (莆田) 如图, 在 x 轴的正半轴上依次截取 OA 1 A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 5 ,过点 A 1、A 2、A 3、 A 4、A 5分别作 x 轴的垂线与反比例函数 y2 x 0 的图象相交于点P 1、 P 2、 P 3、 P 4、 P 5 ,得直角三角形xOP 1 A 1、 A 1P 2 A 2、 A 2 P 3 A 3、A 3P 4 A 4、 A 4 P 5 A 5,并设其面积分别为2yxS 、S 、S 、S 、S , .y12345则S 5的值为P 1P 2P 3P 4 P 5O12 A 345xA A A A (第 10 题图)4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个 图案多一个正六边形和两个正三角形,则第 n 个图案中正三角形的个数为 (用含 n 的代数式表示) .(第 4题)5.(丹东)如图 6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第 1004个图案需棋子枚.⋯⋯图案 1图案 2图案 3图 6的三角形都是全等的),请写出第 n 个图中最小的三角形的个数有6.(抚顺)观察下列图形(每幅图中最小....个.第1个图第2个图第3个图第4个图(第 16 题图)7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16 个图形共有个★.五:对称问题1.(伊春)在平面直角坐标系中,已知 3 个点的坐标分别为 A1 (1,1) 、 A2 (0 ,2) 、 A3 ( 1 ,1). 一只电子蛙位于坐标原点处,第 1 次电子蛙由原点跳到以1A1为对称中心的对称点 P1,第 2 次电子蛙由 P 点跳到以 A2为对称中心的对称点P2,第 3 次电子蛙由 P2点跳到以 A3为对称中心的对称点 P3,⋯,按此规律,电子蛙分别以 A1、 A2、 A3为对称中心继续跳下去.问当电子蛙跳了 2009 次后,电子蛙落点的坐标是P2009( _______,_______ ) .2. ( 2004 年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
初中数学找规律习题大全
1找规律专项训练一:数式问题223344aa2222,?4??48??8??3?2,,3???2?为正整数)……,若b(1.(湛江)已知a、1515bb3388a?b?则.2.(贵阳)有一列数a,a,a,a,a,…,a,其中a=5×2+1,a=5×3+2,a=5×4+3,a45122n3314=5×5+4,a=5×6+5,…,当a=2009时,n的值等于()n5A.2010 B.2009 C.401 D.334345aaa23.(沈阳)有一组单项式:a,-,,-,….观察它们构成规律,用你发现的规律写出第10个单234项式为.1234,??,,,…,那么第7个数是.4.(牡丹江)有一列数105172 233547a?ba?ba?b b?a,……,其中第10,,,个式子是5.(南充)一组按规律排列的多项式:()1910191017102110b?ba?bbaa?a?B. D .C.A.112233?1?2??2?3??3?1?(安徽)观察下列等式:6.,,……,422343 2)证明你写出的等式的正确性.n个等式;((1)猜想并写出第7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第行第列.第1列第2列3第列4列第?n;▲22,3,…从小到大按下面规律排列.若第4行第列的数为32,则①18.(台州)将正整数,jj ii.表示)▲(用②第,行第列的数为n321第…列列第第列第列n1312…第行22n3??2nn?1n2…第行33n3?2n?22nn2?1…第行………………二:定义运算问题22b?a?a?b???24x? 3,其法则为:),求方程(4(定西)在实数范围内定义运算“1.的解.”aaaa?a21,与它前面那个数的倒数的差,每一个数都等于,,若,2.有一列数从第二个数开始,,,1321n a 为(则)200712007?21D.B.A.C.2三:剪纸问题1.(2004年河南)如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是()2.(2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()3.(2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,……,根据以上操作方法,请你填写下表:3N 4 5 1 2 3 操作次数N ……7 10 4 正方形的个数……x A、A、AA、A、A?A?OAAA?AA?AA过点,轴的正半轴上依次截取3.(莆田)如图,在??x P、、PP、P、P0?xy?,得直角三角形轴的垂线与反比例函数的图象相交于点分别作53214532314142253124x,PAPA、AAAP、APA、AAOP、并设其面积分别为514224131243352?y x yS,、S、S、S、SS的值为则.551432P1P 2 P3PP4 5O x AAAAA5 3 4 1 2 10题图)(第(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个4.的代数式n (用含n图案多一个正六边形和两个正三角形,则第个图案中正三角形的个数为. 表示)题)(第4100,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第6(丹东)如图5.4枚.个图案需棋子……32图案图案1图案6图n个图中最小的三角形的个数有 6.(抚顺)观察下列图形(每幅图中最小的三角形都是全等的),请写出第....个.个图第4 第3个图第1个图第2个图题图)(第167.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有个★.五:对称问题、1.(伊春)在平面直角坐标系中,已知3个点的坐标分别为、. 一只电子蛙位于,A1)(11) 1,A(0,2)A(132坐标原点处,第1次电子蛙由原点跳到以为对称中心的对称点,第2次电子蛙由点跳到以为对APAP2111称中心的对称点,第3次电子蛙由点跳到以为对称中心的对称点,…,按此规律,电子蛙分别PPAP3223以、、为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是(_______ ,AAAP3122009_______).2.(2004年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
初中数学找规律习题大全
初中数学找规律习题大全TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】找规律专项训练一:数式问题 1.(湛江)已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a ab b +=⨯(a 、b 为正整数)则a b += .2.(贵阳)有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于( )A .2010B .2009C .401D .3343.(沈阳)有一组单项式:a 2,-a 32,a 43,-a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为 .4.(牡丹江)有一列数1234251017--,,,,…,那么第7个数是 . 5.(南充)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( )A .1019a b +B .1019a b -C .1017a b -D .1021a b -6.(安徽)观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,…… (1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.(台8.州)将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n = ▲ ;②第i 行第j 列的数为 ▲ (用i ,j 表示).第1列 第2列 第3列 … 第n 列 第1行 … 第2行 … 第3行 … ………………二:定义运算问题1.(定西)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解. 2.有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2007a 为( ) A.2007B.2C.12D.1-三:剪纸问题1. (2004年河南)如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是( )2. (2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )3. (2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,……,根据以上操作方法,请你填写下表:第4行 12 11 10 ……操作次数N1 2 34 5 … N …3.(莆田)如图,在x 轴的正半轴上依次112233445OA A A A A A A A A ====,截取过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 .4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).5.(丹东)如图6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.6.(抚顺)观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有 个.7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★. 五:对称问题1.(伊春)在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A -,. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,…,按此规律,电子蛙分别以1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P (_______ ,_______).2.(2004年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
初中数学找规律试题
找规律试题练习1.一根1m 长的小棒,第一次截去它的13 ,第二次截去剩下的13 ,如此截下去,第N 次后剩下的小棒的长度是( )m 。
2.如图,按一定的规律用牙签搭图形:① ② ③(1)按图示的规律填表:3. 已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
4. 如图,在的内部从引出3条射线,那么图中共有___个角;如果引出5条射线,有___个角;如果引出条射线,有_ _个角。
5. 在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
6. 如果有理数a,b 满足∣ab -2∣+(1-b)2=0,求+…+的值。
7.在一单位为1cm 的方格纸上,依右图所示的规律,设定点A 1、A 2、A 3、A 4…、A n ,连结点A 1、A 2、A 3组成三角形,记为,连结点A 2、A 3、A 4组成三角形,记为…,连结点A n 、A n+1、A n+2组成三角形,记为(n 为正整数).请你推断,当的面积为100cm 2时,n= .8.请观察下列算式:(8分),,,则第10个算为 = ,第n 个算式为 =请计算+++…+9、x, -3x2,5x3,-7x4, 9x5 ……10、如图:数出第n个图形的点数和线数。
∣∣∣—·——·—·—∣∣∣……?—·—·—∣∣1个“·”,4条“—”4个“·”,12条“—”……个“·”,条“—”11、数出第n个图中三角形的个数:一个三角形在里面内切倒三角形再切……?(1个)(5个)(9个)……()12、N=2时,S=5;N=3时,S=9;N=4时,S=13 ……N与S之间什么关系? 13.细心观察图形,认真分析各式,然后解答问题:(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出的值.14.如图,每一个图形都是由小三角形“△”拼成的:……⑴⑵⑶⑷观察发现,第10个图形中需要个小三角形,第n个图形需要个小三角形。
完整)初中数学找规律专项练习题(有答案)
完整)初中数学找规律专项练习题(有答案)1、观察规律:1=1;1+3=4;1+3+5=9;1+3+5+7=16;…,则2+6+10+14+…+2014的值是多少?2、用四舍五入法对取近似数,并精确到千位,用科学计数法表示为多少?3、观察下面的一列数:-1,2,-3,4,-5,6…请找出其中排列的规律,并按此规律填空。
(1)第10个数是多少?第21个数是多少?(2)-40是第几个数?26是第几个数?4、一组按规律排列的数:1,3,6,10,15…请推断第9个数是多少?5、计算:(-100)+(-101)=多少?(-2)+(-2)=多少?6、若。
则等于多少?7、大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成多少个?8、猜数字游戏中,XXX写出如下一组数:1,3,5,7,9…n个数是…,XXX猜想出第六个数字是多少?根据此规律,第9、10个数字分别是多少?9、若。
与|b+5|的值互为相反数,则等于多少?10、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制二进制 1 1 2 10 3 11 4 100 5 101 6 110 …… 请将二进位制xxxxxxxx(二)写成十进位制数为多少?11、为求。
值,可令S=。
则2S=。
因此所以。
仿照以上推理计算出的值是多少?二、选择题13、的值是多少?【】A.-2 B.-1 C.0 D.114、已知8.62=73.96,若x=0.7396,则x的值等于()A.86.2B.862C.±0.862D.±86215、计算:(-2)+(-2)的值是多少?A.2B.-1C.-2D.-416、计算等于多少?A. B. C. D.17、已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么的值是多少?A.3 B.2 C.1 D.018、若。
七年级数学找规律专项练习题
七年级数学找规律专项练习题一.解答题(共10小题)1.观察下面一列数,探究其中的规律:﹣1,,﹣,,﹣,(1)填空:第11,12,13三个数分别是,,;(2)第2019个数是什么?(3)如果这列数无限排列下去,与哪个数越来越近?2.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+……+99+100+99+……+3+2+1=.3.如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:正方形ABCD内点的个数1234…n分割成的三角形的个数46…(2)前5个正方形分割的三角形的个数和为,前n个正方形分割的三角形的个数和为.(3)原正方形能否被分割成2019个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.4.观察以下等式:第1个等式:﹣+=1,第2个等式:﹣+=1,第3个等式:+=1,第4个等式:﹣+=1,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n(n为正整数)个等式:(用含n的等式表示),并证明.5.观察以下等式:第1个等式:﹣=2,第2个等式:﹣=2第3个等式:﹣=2,第4个等式:﹣=2……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.6.阅读材料:求1+2+22+23+24+…+22017首先设S=1+2+22+23+24+...+22017①则2S=2+22+23+24+25+ (22018)②﹣①得S=22018﹣1即1+2+22+23+24+…+22017=22018﹣1以上解法,在数列求和中,我们称之为:“错位相减法”请你根据上面的材料,解决下列问题(1)求1+3+32+33+34+…+32019的值(2)若a为正整数且a≠1,求1+a+a2+a3+a4+..+a20197.阅读并计算填写以下等式(1)22﹣21=2;23﹣22=22;24﹣23=;25﹣24=;…………2n﹣2n﹣1=.(2)请你根据以上规律计算22018﹣22017﹣22016﹣…﹣23﹣22+28.(1)填空:21﹣20==2()22﹣21==2()…23﹣22==2()(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算20+21+22+..+2100.9.探索规律:观察下面的组成:(1)试猜想1+3+5+7+9+…+29==;(2)第n个等式表示为1+3+5+7+9+…+(2n﹣1)=(用含n的代数式表示);(3)请用上述规律计算:l1+13+15+17+19+ (99)10.用同样规格的黑白两种颜色的正方形瓷砖,按如图的方式铺地面.按照这种规律:(1)第④个图形中需要黑色瓷砖块;(2)第n个图形中需要黑色瓷砖块(用含n的代数式表示);(3)若第n个图形中有6055块黑色瓷砖,求n的值.。
(完整word版)初中数学找规律题及其答案
整式的加减——专题训练与提升1、根据下列5个图形及相应点的个数的变化规律,试猜测第 n 个图中有 ____________3、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.则第5个大三角形中白色三角5、观察下列图形,它们是按一定规律排列的,依照此规律,第 16个图形共有 _______*it ★******* ★ ★ ★ ★ ★ * * * * * *★ ★ ★ * ★ ★ ★* **第1个闍形 第2个罔形第3令图形第4个图形个点.(4}2、找规律•下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第图案34、观察图中每一个大三角形中白色三角形的排列规律,6、如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________________ ,第n个“广”字① ② ③••④中的棋子个数是_____________ .7、如图1是二环三角形,可得S=Z A i+Z A+…+ Z A=360°,下图2是二环四边形,可得S=Z A i+Z A+…+ Z A z=720°,图3是二环五边形,可得S=1080° ,…聪明的同学,请你根据以上规律直接写出二环n边形(n》3的整数)中,S= ________________度.(用含n的代数式表示最后结果)&观察下列图形(每幅图中最小的三角形都是全等的),请写出第n个图中最小的三S39、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n= _______________ •(用含n的代数式表示)所剪次数10、用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第 n 个图案中正三角形的个数为 ____________ (用含n 的代数式表示).心旳X X X11、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面•如果铺成一个2X 2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3X 3的正方形图案(如 图③),其中完整的圆共有13个,如果铺成一个4X 4的正方形图案(如图④), 其中完整的圆共有25个•若这样铺成一个10X 10的正方形图案,则其中完整的 圆共有 个.可).12、根据下列图形的排列规律,第 2008个图形是福娃(填写福娃名称即贝贝13、用火柴棒按照如图所示的方式摆图形,则第n 个图形中,所需火柴棒的根数是 ____________ .口 口 j cm …14、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第 1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第 8个图案需小木棒椅子 _____________ 把.)( r-e-n ) <)i-Oq r-©nO< a)()< )( >-©J-e-0 (D (2)(3)16、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上 有n (n 》2个圆点时,图案的圆点数为含n 的代数式表示)根.15、一张长方形桌子需配 6把椅子,按如图方式将桌子拼在一起,那么8张桌子需S.按此规律推断S 关于n 的关系式为:17、如图是由火柴棒搭成的几何图案,贝U 第n 个图案中有根火柴棒.(用第3第418、观察下列图形的构成规律,根据此规律,第8个图形中有 ____________ 个圆.oo oo ooo oooo 000 oooo oooo ooooo 第3个 第4个19、观察表一,寻找规律•表二,表三分别是从表一中选取的一部分,则 a+b 的值为 ____________ • 表一:0 1 2 3 ・・・・1 3 5 1 7 .・・・2 5 8 11 .・・・ 3711 |15.・・・・・・ ・・・・・・・・表二:11 14a20、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正 六边形,则第n 层有 _____________________ 个白色正六边形.21、把边长为3的正三角形各边三等分,分割得到图①,图中含有 1个边长是1的正 六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有 3个边长 是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有 6 个边长是1的正六边形;…依此规律,把边长为 7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有 ____________ 个边长是1的正六边形.oooo ooo 第1个 第2个22、 观察下列图形的排列规律(其中☆,口,•分别表示五角星、正方形、圆)•口☆…若第一个图形是圆,则第 2008个图形是 ____________(填名称).23、 下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,按照图示的规律摆下去,则第n 幅图中有 ______________ 个 菱形.O <3C> <3SC> <3C> O12 3n24、如图,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有 _____________ 个.25、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子 ___________ 枚•(用含n 的代数式表示)27、如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第行有4个三角形,第四行有8个三角形,…,你是否发现三角形的排列规律,请□图案1第1个團 第2个图 第$个團写出第七行有____________ 个三角形.28、如图,用3根小木棒可以摆出第(1)个正三角形,加上2根木棒可以摆出第(2)个正三角形,再加上2根木棒可以摆出第(3)个正三角形…这样继续摆下去,当摆出第(n)个正三角形时,共用了木棒_____________ 根.29、观察下列图形,根据变化规律推测第100个与第______________ 个图形位置相同.30、如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,…,则搭n条小鱼需要_____________ 根火柴棒.(用含n的代数式表示)整式的加减——专题训练与提升参考答案21. n -n+1n-18. 4 2. ( 2n-1) 3. 302 9. 3n+1 10. 2n+216. 4n-4 17. 2n ( n+1) 23. (2n-1)18.24. 136 26. 3n+1 4. 12111.18165 19.27.5. 496.12.3764152n+5 7.360 (n-2)欢欢20. 6n28. 2n+113.21.14. 8815 22.正方形29. 1 或4 30.3n+1 15. 206n+211。
初二数学找规律专题训练
初二数学找规律专题训练一、填空题1.课本中有这样一句话:“利用勾股定理可以作出,,…线段(如图所示).”即:OA=1,过A作AA1⊥OA且AA1=1,根据勾股定理,得OA1=;再过A1作A1A2⊥OA1且A1A2=1,得OA2=;…以此类推,得OA2017=______ .2.3.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是______ .4.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是______ .5.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,…,如此作下去,则△B2015A2016B2016的顶点A2016的坐标是______ .第4题第5题6.在直角坐标系中,直线y=x+2与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+2上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…S n,则S n的值为______ (用含n的代数式表示,n为正整数).7.在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n-1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是______ .8.观察下列图形:已知a∥b,在第一个图中,可得∠1+∠2=180°,则按照以上规律,∠1+∠2+∠P1+…+∠P n=______ 度.8. 观察下列一组式的变形过程,然后回答问题:例1:====-1.例2:=-,=-,=-利用以上结论解答以下问题:(1)= ______(2)应用上面的结论,求下列式子的值.+++…+(3)拓展提高,求下列式子的值.+++…+.9.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分-1,根据以上的内容,解答下面的问题:(1)的整数部分是_______,小数部分是______;(2)1+的整数部分是_______,小数部分是____;(3)若设2+的整数部分是x,小数部分是y,求x-y的值。
初中数学竞赛专项训练--找规律题
观察——归纳—猜想——找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是:(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字类基本技巧(一)标出序列号:例如,观察下列各式数:0,3,8,15,24,……。
我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。
序列号:1,2,3,4,5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n 项是2n -1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。
例如:1,9,25,49,(81),(121),的第n 项为(2)12(-n ),1,2,3,4,5.。
,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
(三)增副A :2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.......答案与2的乘方有关即:n2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12-n 。
再看原数列是同时减2得到的新数列,则在12-n 的基础上加2,得到原数列第n 项12+n(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
初三数学规律练习题推荐
初三数学规律练习题推荐在初三阶段,数学规律的学习对于提高数学解题能力和培养逻辑思维能力非常重要。
为了帮助同学们巩固和拓展数学规律的理解,我将在本文推荐几道适合初三学生的数学规律练习题。
这些题目旨在锻炼学生的观察力、归纳总结能力和推理能力,希望对同学们的数学学习有所帮助。
一、数字规律题题目一:找规律1、2、4、7、11、16、?请你继续填写后面的数字。
题目二:数列规律2、4、8、16、?请你根据上面的数列找出规律,填写后面的数字。
题目三:数字矩阵1 2 3 4 52 4 6 8 103 6 9 12 154 8 12 16 20请你根据上面的数字矩阵找出规律,填写后面的数字。
二、图形规律题题目四:图形序号1 3 ?2 5 ?3 7 ?请你根据上面的图形序号找出规律,填写后面的数字。
题目五:图形变换(1) □ □ □ (2) □ □□ □□请你根据上面的图形变换找出规律,填写后面的图形。
题目六:图形推理请根据下面的图形推理,填写后面的图形。
图形A 图形B 图形C■■■ □□□ □■■■ □■□ □□□■■■ □□□ □□□题目七:图形拼凑请根据下面的图形,找出合适的图形填入问号处。
图形A 图形B 图形C□ ■ □ ■ □ ■ ■ ■ ■□ □ □ □ ■ □ ■ ■ ■□ ■ □■ □ ■ ■ ■ ■三、推理规律题题目八:公式推理已知:1 + 0 = 11 + 1 = 22 + 2 = 63 + 3 = 12请根据上面的公式,填写后面的公式。
题目九:逻辑推理已知:A = 4B = 5C = 6D = 7请你根据上面的逻辑关系,找出 E 的值。
题目十:关系推理已知:2、4、8、16、32请你根据上面数字之间的关系,填写后面的数字。
总结:在数学规律的练习中,学生需要观察、思考,从中总结出数学规律,并运用到解题中。
通过这些练习,同学们可以提高自己的观察力、归纳总结能力和推理能力,加深对数学规律的理解和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察——归纳—猜想——找规律 给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是:(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字类基本技巧(一)标出序列号:例如,观察下列各式数:0,3,8,15,24,……。
我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n 项是2n -1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。
例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ), 1,2,3,4,5.。
,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
(三)增副A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n 2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……, 序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12-n 。
再看原数列是同时减2得到的新数列,则在12-n 的基础上加2,得到原数列第n 项12+n(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例: 4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n项即n2,原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即,4 n2,则求出第一百个数为4*1002=40000(一)等差数列例题:2,5,8,( )。
例题5: 12,15,18,( ),24,27。
.21 C(二)等比数列例题1: 2,1,1/2,( )。
4 C.1/8例题2: 2,8,32,128,( )。
(三)平方数列1、完全平方数列:正序:1,4,9,16,25逆序:100,81,64,49,362、一个数的平方是第二个数。
1)直接得出:2,4,16,( 256 )解析:前一个数的平方等于第二个数,答案为256。
2)一个数的平方加减一个数等于第二个数:1,2,5,26,(677) 前一个数的平方加1等于第二个数,答案为677。
3、隐含完全平方数列:1)通过加减一个常数归成完全平方数列:0,3,8,15,24,( 35 )前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案352)相隔加减,得到一个平方数列:例:65,35,17,( 3 ),1.13 C解析:不难感觉到隐含一个平方数列。
进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,再观察时发现:奇位置数时都是加1,偶位置数时都是减1,所以下一个数应该是2的平方减1等于3,答案是D。
* (四)立方数列立方数列与平方数列类似。
例题1: 1,8,27,64,( 125 )解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125。
例题2:0,7,26,63 ,( 124 )解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124。
(五)、加法数列数列中前两个数的和等于后面第三个数:n1+n2=n3例题1: 1,1,2,3,5,( 8 )。
A8 B7 C9 D10解析:第一项与第二项之和等于第三项,第二项与第三项之和等于第四项,第三项与第四项之和等于第五项,按此规律3 +5=8答案为A。
例题2: 4,5,( 9 ),14,23,37A 6B 7C 8D 9解析:与例一相同答案为D例题3: 22,35,56,90,( 145 ) 99年考题A 162B 156C 148D 145解析:22 +35-1=56, 35+ 56-1=90 ,56+ 90-1=145,答案为D(六)、减法数列前两个数的差等于后面第三个数:n1-n2=n3例题1:6,3,3,( 0 ),3,-3A 0B 1C 2D 3解析:6-3=3,3-3=0 ,3-0=3 ,0-3=-3答案是A 。
(提醒您别忘了:“空缺项在中间,从两边找规律”)(七)、乘法数列1、前两个数的乘积等于第三个数例题1:1,2,2,4,8,32,( 256 )前两个数的乘积等于第三个数,答案是256。
例题2:2,12,36,80,( ) (2007年考题).125 C解析:2×1, 3×4 ,4×9,5×16 自然下一项应该为6×25=150 选C ,此题还可以变形为:212⨯,322⨯,432⨯,245⨯…..,以此类推,得出)1(2+⨯n n 2、两数相乘的积呈现规律:等差,等比,平方等数列。
例题2:3/2, 2/3, 3/4,1/3,3/8 ( A ) (99年海关考题)A 1/6B 2/9C 4/3D 4/9解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/8 3/8×=1/16 答案是 A 。
(八)、除法数列与乘法数列相类似,一般也分为如下两种形式:1、两数相除等于第三数。
2、两数相除的商呈现规律:顺序,等差,等比,平方等。
(九)、质数数列由质数从小到大的排列:2,3,5,7,11,13,17,19…(十)、循环数列几个数按一定的次序循环出现的数列。
例:3,4,5,3,4,5,3,4,5,3,4以上数列只是一些常用的基本数列,考题中的数列是在以上数列基础之上构造而成的,下面我们主要分析以下近几年考题中经常出现的几种数列形式。
1、二级数列这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。
例1:2 6 12 20 30 ( 42 ).42 C解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。
例2:20 22 25 30 37 ( ).45 C解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。
例3:2 5 11 20 32 ( 47 ).45 C解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应该是15,所以答案应该是C。
例4:4 5 7 1l 19 ( 35 ).31 C解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应该是16,所以答案应该是C。
例5:3 4 7 16 ( 43 ).27 C解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。
例6:32 27 23 20 18 ( 17 ).15 C解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应该是-1,所以答案应该是D。
例7:1, 4, 8, 13, 16, 20, ( 25 ).25 C解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要选的答案与20的差应该是5,所以答案应该是B。
例8:1, 3, 7, 15, 31, ( 63 ).62 C解析:后一个数与前一个数的差分别为:2,4,8,16这显然是一个等比数列,因而要选的答案与31的差应该是32,所以答案应该是C。
例9:( 69 ),36,19,10,5,2.69 C解析:前一个数与后一个数的差分别为:3,5,9,17这个数列中前一个数的2倍减1得后一个数,后面的数应该是17*2-1=33,因而33+36=69答案应该是 B。
例10:1,2,6,15,31,( 56 ).56 C解析:后一个数与前一个数的差分别为:1,4,9,16这显然是一个完全平方数列,因而要选的答案与31的差应该是25,所以答案应该是B。
例11:1,3,18,216,( 5184 ).1892 C解析:后一个数与前一个数的比值分别为:3,6,12这显然是一个等比数列,因而要选的答案与216的比值应该是24,所以答案应该是D:216*24=5184。
例12: -2 1 7 16 ( 28 ) 43B.28C.3l解析:后一个数与前一个数的差值分别为:3,6,9这显然是一个等差数列,因而要选的答案与16的差值应该是12,所以答案应该是B。
例13:1 3 6 10 15 ( ).21 C解析:相邻两个数的和构成一个完全平方数列,即:1+3=4=22,6+10=16=42,则15+=36=62呢,答案应该是B。
例14:102,96,108,84,132,( 36 ) ,(228)解析:后项减前项分别得-6,12,-24,48,是一个等比数列,则48后面的数应为-96,132-96=36,再看-96后面应是96X2=192,192+36=228。
二、设计类【例1】在数学活动中,小明为了求的值(结果用n表示),设计如图a 所示的图形。
(1)请你利用这个几何图形求的值为 。
(2)请你利用图b ,再设计一个能求的值的几何图形。
三、动态类 【例3】右图是一回形图,其回形通道的宽与OB 的长均为1,回形线与射线OA 交于点A 1,A 2,A 3,…。
若从O 点到A1点的回形线为第1圈(长为7),从A 1点到A 2点的回形线为第2圈,……,依此类推。
则第10圈的长为 。
【例4】已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度。
在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,……。