第10章 膜分离
11级生物工业下游技术复习题
11级生物工业下游技术复习第一章绪论一、生物分离技术的基本路线?二、主要生物分离技术的分离原理?三、生物分离技术的特点?四、生产中怎样选取生物分离技术手段?第二章下游技术的基础理论1.对生物产品进行分离的理论依据有那三个方面?2.化学性分子识别和生物学的特异性相互作用的相似和区别?第三章发酵液预处理一、名词解释1.凝聚: 2.絮凝: 3.过滤: 4.离心沉降: 5.离心过滤: 6.助滤剂: 7.沉降:二、单项选择1.真空转鼓过滤机工作一个循环经过()。
A、过滤区、缓冲区、再生区、卸渣区B、缓冲区、过滤区、再生区、卸渣区C、过滤区、缓冲区、卸渣区、再生区D、过滤区、再生区、缓冲区、卸渣区2.以下哪项不是在重力场中,颗粒在静止的流体中降落时受到的力()A.重力B. 压力C.浮力D. 阻力3.以下哪项不是颗粒在离心力场中受到的力()A.离心力B. 向心力C.重力D. 阻力4.颗粒与流体的密度差越小,颗粒的沉降速度()A.越小B.越大C.不变D.无法确定5.工业上常用的过滤介质不包括()A.织物介质B.堆积介质C.多孔固体介质D.真空介质6.下列物质属于絮凝剂的有()。
A、明矾B、石灰C、聚丙烯类D、硫酸亚铁三、判断对错1.助滤剂是一种可压缩的多孔微粒。
()2.通过加入某些反应剂是发酵液进行预处理的方法之一。
()3.在生物制剂制备中,常用的缓冲系统有磷酸盐缓冲液;碳酸盐缓冲液;盐酸盐缓冲液;醋酸盐缓冲液等。
()四、填空1.发酵液常用的固液分离方法有()和()等。
2.为使过滤进行的顺利通常要加入()。
3.工业离心设备从形式上可分为(),(),(),等型式。
4.典型的工业过滤设备有()和()。
5.常用离心设备可分为()和()两大类;五、简答1.改变发酵液过滤特性的主要方法有哪些?其简要机理如何?2.除去发酵液中杂蛋白的常用方法有哪些?3.试述生物工业中常用固液分离设备的原理、特点及适用范围?第四章细胞破碎一、名词解释1.超声波破碎法2.酶解法二、单项选择1.适合小量细胞破碎的方法是()A.高压匀浆法B.超声破碎法C.高速珠磨法D.高压挤压法2.丝状(团状)真菌适合采用()破碎。
《生物分离工程》课程笔记
《生物分离工程》课程笔记第一章绪论一、生物分离工程的历史及应用1. 历史生物分离工程的历史可以追溯到古代酿酒和面包制作时期,但作为一个独立领域的发展始于20世纪。
早期的生物分离技术主要依靠自然现象,如沉淀、结晶等。
随着科技的发展,尤其是生物技术的崛起,生物分离工程逐渐形成一门独立的学科,并得到了迅速发展。
2. 应用生物分离技术在医药、食品、农业、环境保护等领域有广泛的应用。
例如,在疫苗生产中,需要从细胞培养液中分离出病毒或细菌;在抗生素提取中,需要从发酵液中提取抗生素;在蛋白质纯化中,需要从混合蛋白质中分离出目标蛋白质;在果汁澄清中,需要去除果汁中的悬浮固体等。
二、生物分离过程的特点1. 复杂性生物分离过程涉及生物大分子(如蛋白质、核酸、多糖等)的分离和纯化,这些生物大分子在结构和性质上具有很高的复杂性,因此生物分离过程也具有较高的复杂性。
2. 多样性生物分离过程中,针对不同的生物大分子和混合物,需要采用不同的分离方法和工艺,因此生物分离过程具有很高的多样性。
3. 灵敏度生物大分子在分离过程中容易受到外界因素的影响,如温度、pH值、离子强度等,因此生物分离过程需要严格控制条件,具有很高的灵敏度。
4. 易失活性生物大分子在分离过程中容易发生变性、降解等失活现象,因此生物分离过程需要尽量减少这些失活现象的发生。
5. 高价值生物大分子往往具有很高的经济价值,如药物、生物制品等,因此生物分离过程需要高效、高收率地分离目标物质,以满足市场需求。
第二章过滤一、过滤基本概念及预处理1. 过滤基本概念过滤是一种基于孔径大小实现固体与流体分离的技术。
在生物分离工程中,过滤技术被广泛应用于细胞培养液、发酵液、酶反应液等混合物的初步分离和纯化。
过滤过程中,混合物通过过滤介质(如滤纸、滤膜等),固体颗粒被拦截在过滤介质上,而流体则通过过滤介质流出,从而实现分离。
2. 预处理为了提高过滤效率,通常需要对混合物进行预处理。
第十章_渗透汽化(PV)
32
20
乙二醇/水
Glycol/water separation process
21
Dehydration of Ethylene Dichloride (EDC) 1,2-二氯乙烷
22
Photograph of a 50-m2 GFT plate-and-frame module and an ethanol dehydration system fitted with this type of module.
29
Pervaporation on Debutanizer Sidedraw
Methods of integrating pervaporation membranes in the recovery of methanol from the MTBE production process
30
(共沸物)
差小,则组分与聚合物间的亲和力大,组分在聚合物中
的溶解量大。 C. 极性相似和溶剂化原则 D. 定性的亲憎水平衡理论
16
膜材料选择性的预测 ① 溶解度参数 ② 聚合物的亲水性、疏水性 如,亲水性聚合物能
优先透过水,是脱水膜最好的候选材料。 ③ 弹性体聚合物与玻璃态聚合物 弹性体材料通
常优先吸附有机溶剂,是从水中脱除有机溶剂渗 透汽化膜最好的候选材料。
19
8. 渗透汽化的应用
1. 有机溶剂脱水 这是PV过程研究最多,产业化最早,
应用最普遍,技术最成熟的领域。无水乙醇的生产、异 丙醇的脱水浓缩、苯中微量水的脱除、碳六溶剂中微量 水的脱除。 一般采用亲水性的聚乙烯醇(PVA)为分离层,聚丙烯腈 (PAN)多孔膜为支撑层的PVA/PAN复合膜。 从国际上已投产的PV工业装置的运行结果表明,与传统 的恒沸蒸馏和萃取精馏相比,采用PV技术生产无水乙醇, 可使能耗大大降低,仅为蒸馏法的1/2 ~ 1/3,整个生产装 置总投资为传统分离方法总投资的40%~80%。
第十章 渗透汽化(PV)PPT课件
Once-through pervaporation system design. This design is most suitable for removal of VOCs with modest separation factors for which concentration polarization is not a problem
② 通过扩散在膜内渗透; ③ 在膜的另一侧变成气相
脱附而与膜分离。
PV过程原理示意图
10
下游抽真空或惰气吹扫渗透汽化过程示意图
11
12
Cross-section of a composite membrane
13
5. 渗透汽化过程传递机理
1。溶解~扩散模型 ① 料液中组分吸收进入膜料液测表面; ② 组分扩散透过膜; ③ 从下游侧表面解吸进入气相。 2。孔流模型 ① 液体组分通过孔道传输到膜内某处的液~气相界
8
渗透汽化适用的分离过程
① 具有一定挥发性的物质的分离(先决条件); ② 从混合液中分离出少量物质; ③ 恒沸物的分离; ④ 精馏难以分离的沸点相近物质的分离; ⑤ 与反应过程结合.
9
4. 渗透汽化(PV)的原理
其分离机理可分为3步: (溶解~扩散模型)
① 被分离的物质在膜表面 上有选择地被吸附并被 溶解;
2. 渗透汽化的分类
I. 减压渗透汽化 II. 加热渗透汽化 III. 吹扫渗透汽化 IV. 冷凝渗透汽化
3
4
第十章电泳技术介绍
(2) 电渗
电渗现象是一种在外加电压作 用下,和固体支持物接触的液体的 移动现象。
如果支持物质带有羧基、磺酸基、羟基 等功能团时,在一定的pH值溶液中,它们会 电离,使支持物带负电荷,与支持物相接触 的溶液(通常是水)带正电荷,在电场的作用 下,此溶液层会向负极移动。
反之,若支持物带上正电荷,与支持物 相接触的溶液就带上负电荷,溶液层会向正 极移动。
电渗会对样品的迁移率造成影响。
如果电渗方向与样品的电泳迁移方向
一致,样品的表观迁移率就加快,如
果二者的方向不一致,样品的表观迁
移率就降低。
(3) 吸附
支持物吸附溶质,会延缓电泳分离。
在某些情况下,如果它们能选择性的 吸附低电泳迁移率的组分,则可以提高 分离的质量。
(4) 分子筛分离
当采用凝胶如淀粉、聚丙烯酰胺、葡聚糖 凝胶作支持物,在伸展的凝胶中,其空间属于 大分子尺寸,这样就表现出分子筛的效应。
相应地,最小的分子透入凝胶结构中,由 于它们沿着一条非常曲折且较长的路程移动, 所以迁移被延缓。 根据这一现象,可在样品组分分离时,调 整诸如凝胶的聚合程度和浓度,孔的尺寸等因 素,就能得到一个高的分辨率。
(5) 扩散
扩散会影响分离的分辨率,这 是因为扩散可使几个分离的区带相 互重叠。
(6) 缓冲液的性质
(10-7) (10-8)
上式表明,用实验最终所得的 (dA-dB),来确定A和B两种物质 的分离,电泳需要持续的时间t。
10.2 影响电泳迁移率的因素
1.颗粒的性质
颗粒所带净电荷量越大,直径越 小或其形状越接近于球形,在电场 中的迁移率就越大。
2.电场强度
电场强度越高,带电颗粒的迁 移速度越快。 常压电泳控制的电场强度为210V/cm。
第10章-亲和与印迹分离技术
亲和配基与配体的相互作用
静电 作用
配体
H H
氢键
配基
2020/8/21
疏水 作用
changes of the chemical structure of the membranes surface
W(%) C F O N
Unmodifica 55. 38.3 5.6 0.6
ted
• 可减小空间位阻,增大亲和容量; • 间隔臂一般为基质与配基间的长链分子; • 间隔臂长度要适当,过短起不到减小空间
位阻的作用,过长会弯曲封闭膜上的相邻 的活性位; • 一般取含六个碳原子的化合物:己二胺、 6-氨基己酸等。
2020/8/21
间隔臂种类
疏水性间隔臂 己二胺
亲水性间隔臂 1,3-二氨基-2-丙醇、 小肽、 低聚甘氨酸 聚(L-赖氨酸)等。
间隔臂的亲、疏水性对配基的亲和力大小 及特异性吸附能力影响。
2020/8/21
配基的种类
• 生物特异性配基
生物特异性配基是指利用自然界中特异性相互作 用生物物质对之一做配基,如酶-底物、酶-抑制 剂、激素-互补接受体、抗体-抗原等。
• 基团特异性配基
基团特异性配基是指对具有某一类基团或结构 的生物大分子均有特异性作用的配基,如氨基酸 、蛋白质A、活性染料、金属螯合离子等。
-
HDA grafted
(532.12) 100
(532.12) 100
-
Affinity
(530.73) 20.39 (532.17) 79.61
-
membrane
2020/8/21
亲和膜的制备过程
2020/8/21
活化方法
1. 环氧氯丙烷活化法 2. 1,1’-羰基双咪唑(CDI )法 3. 三氯三嗪法 4. 过碘酸钠法 5. 戊二醛法 • 双环氧试剂活化法
膜分离工程-第十章-膜污染要点
层面积. • Tansel在此基础上提出了一种超滤系统通量下降模型, • (Rm+Rc) t=t/(Rm+Rc)t=0=1-α+αe1/γ • 式中,γ为污染时间常数;α表征膜污染的程度.此数学模型
1.水温5-40℃ 2.好氧量<3mg/L 3.游离氯<0.2mg/L 4.铁<0.3mg/L
5.锰<0.1mg/L 6.浊度<0.3mg/L 7.淤泥密度指数<3-5mg/L
醋酸纤维RO膜对进水水质的要求
⑴原料液预处理(SDI的测定)
判断反渗透和纳滤进水胶体和颗粒污
染程度的最好技术是测量进水淤积指 数(Silt density index, SDI值),有时也 称为污染指数(FI值)。它是设计 RO/NF预处理系统之前应该进行测定 的重要指标,同时在RO日常操作时也 需定时地检测。
上沉积引起的膜通量下降,则一种标准阻塞模型被建立: • (Rm+Rc) t=t/(Rm+Rc)t=0=(1+Bt)2, • B=KsJv0 • 式中,Ks指每单位流体横截面面积的下降.此表达式表示系
统阻力的依时性.
膜污染的数学模型
• 而若假设所有粒子到达膜面时不会直接阻塞膜面积,而是附 着在其它已阻塞膜孔粒子上,另一种凝胶化模型则表示为:
ห้องสมุดไป่ตู้
防止膜污染的方法
膜应用过程中产生膜的污染是很难避免的,但 是通过对不同的膜污染情况采取相应的措施来 减小膜的污染程度是可行的。
分离课后习题及答案
第一章绪论1.分离技术的三种分类方法各有什么特点?答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。
(2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。
(32.3.答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。
4.阐述浓缩、富集和纯化三个概念的差异与联系?答:富集:通过分离,使目标组分在某空间区域的浓度增大。
浓缩:将溶剂部分分离,使溶质浓度提高的过程。
纯化:通过分离使某种物质的纯度提高的过程。
根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分:(方法被分离组分的摩尔分数)富集<0.1;浓缩0.1-0.9;纯化>0.9。
5.回收因子、分离因子和富集倍数有什么区别和联系?答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。
(2A SA,B ≈(3第二章分离过程中的热力学2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。
试分析吸附物质的吸附平衡常数K与该气体物质在气相的分压p需满足什么条件才能使朗格缪尔吸附等温线近似为直线。
答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。
在低压时,p K q q p K A A max 1=,《。
第三章 分离过程中的动力学1.相比可2.在无流和有流情况下,溶质分子的迁移分别用什么公式描述?对公式的物理意义做简单的阐述。
答:无流时:22dx c d D dx dc Y dt dc +-=,有流时:22)(dxx d D dx dc v Y dt dc +'+-= 物理意义:(参考费克第一定律物理意义的形式自己描述)3.费克扩散定律描述的是什么样的特殊条件下溶质分子的迁移?答:费克第一定律dxdy A x J dx dc D J -=-=)(或,是假设溶质浓度c 在扩散方向上不随时间变化,其物理意义为:扩散系数一定时,单位时间扩散通过截面积的物质的量(mol )与浓度梯度成正比,负号表示扩散方向与浓度梯度方向相反。
环境工程原理知识重点归纳(最新整理)
第一章绪论1.“环境工程学”的主要研究对象是什么?2. 去除水中的溶解性有机污染物有哪些可能的方法?它们的技术原理是什么?3. 简述土壤污染治理的技术体系。
4. 简述废物资源化的技术体系。
5. 阐述环境净化与污染控制技术原理体系。
6. 一般情况下,污染物处理工程的核心任务是:利用隔离、分离和(或)转化技术原理,通过工程手段(利用各类装置),实现污染物的高效、快速去除。
试根据环境净化与污染防治技术的基本原理,阐述实现污染物高效、快速去除的基本技术路线。
第二章质量衡算与能量衡算第一节常用物理量1.什么是换算因数?英尺和米的换算因素是多少?2.什么是量纲和无量纲准数?单位和量纲的区别是什么?3.质量分数和质量比的区别和关系如何?试举出质量比的应用实例。
4.大气污染控制工程中经常用体积分数表示污染物的浓度,试说明该单位的优点,并阐述与质量浓度的关系。
5.平均速度的涵义是什么?用管道输送水和空气时,较为经济的流速范围为多少?第二节质量衡算1.进行质量衡算的三个要素是什么?2.简述稳态系统和非稳态系统的特征。
3.质量衡算的基本关系是什么?4.以全部组分为对象进行质量衡算时,衡算方程具有什么特征?5.对存在一级反应过程的系统进行质量衡算时,物质的转化速率如何表示?第三节能量衡算1.物质的总能量由哪几部分组成?系统内部能量的变化与环境的关系如何?2.什么是封闭系统和开放系统?3.简述热量衡算方程的涵义。
4.对于不对外做功的封闭系统,其内部能量的变化如何表现?5.对于不对外做功的开放系统,系统能量能量变化率可如何表示?第四章热量传递第一节热量传递的方式1.什么是热传导?2.什么是对流传热?分别举出一个强制对流传热和自然对流传热的实例。
3.简述辐射传热的过程及其特点4.试分析在居室内人体所发生的传热过程,设室内空气处于流动状态。
5.若冬季和夏季的室温均为18℃,人对冷暖的感觉是否相同?在哪种情况下觉得更暖和?为什么?第二节热传导1. 简述傅立叶定律的意义和适用条件。
分离科学简介解读
19世纪 准确度 无机化学定性分析向定量分析化学 (滴定分析)发展。
砒霜? 中草药鉴别? 试金石(含二氧化硅),灰黑色鹅卵石型, 黄铜矿CuFeS2-墨绿,黄铁矿FeS2-黑,金-黄
磨口玻璃仪器标志容量分析的确立。 盖.吕萨克测银(法定货币)。 2/1000准确度,用量少。
102 mol / L (25 103 L)107 g / moL 0.026 g
第2章 分离过程的平衡理论 第3章 迁移与扩散理论 第4章 浸取与溶解 第5章 萃取分离 第6章 膜分离技术 第7章 离子交换分离 第8章 吸附分离 第9章 色谱分离技术 第10章 分离方法的选择
前言 第1章 绪论 第2章 沉淀分离法 第3章 液一液萃取分离法 第4章 离子交换分离法 第5章 色层分离法 第6章 泡沫浮选分离法 第7章 电泳分离法 第8章 膜分离法 第9章 超分子分离法
二十世纪80年代: 《近代化学分离技术》是《分析化学》的一章。 二十世纪90年代: 必修课,样品前处理,分析化学和仪器分析的补充。 目前:2012应化专业课,2011应化任选课
本课程 ( 32学时 ) : (1)分析化学的后续课程 (2)实验室规模 (3)样品前处理 (4)分离分析联用技术
分离:字面解释清楚,科学定义难
脱色树脂技术使我国成为世界最大的甜菊糖生产国和出 口国……
据估计,何炳林的研究成果贡献在30亿元以上。
物理化学家,无机化学家徐光宪院士,从事量子化学、配位化学、核燃料化 学、萃取化学和稀土化学的教学和科研长达60年,现在北大稀土国重室工作 的学生中就有中科院院士3人、长江学者特聘教授3人。
2009年1月9日上午,北京人民大会堂, 2008年度国家最高科学技术奖,获奖者为王忠诚、徐光宪两位院士。
膜技术手册(上、下册)(第二版)
膜技术手册(上、下册)(第二版)加入书架登录•膜技术手册(上册)(第二版)•书名页•内容简介•《膜技术手册》(第二版)编委会•本版编写人员名单•第一版编写人员名单•前言•第1章导言•1.1 膜和膜分离过程的特征•1.2 膜和膜过程的发展历史•1.3 膜•1.4 膜分离过程•1.5 应用总览•1.6 现状与展望•参考文献•第2章有机高分子膜•2.1 高分子分离膜材料•2.2 有机高分子分离膜的制备•2.3 有机高分子分离膜的表征•符号表•参考文献•第3章无机膜•3.1 引言•3.2 无机膜的结构与性能表征•3.3 无机膜的制备•3.4 无机膜组件及成套化装置•3.5 无机膜在分离和净化中的应用•3.6 无机膜反应器•符号表•参考文献•第4章有机-无机复合膜•4.1 有机-无机复合膜简介•4.2 有机-无机复合膜材料•4.3 有机-无机复合膜的制备•4.4 有机-无机复合膜界面结构调控与传质机理•4.5 有机-无机复合膜的应用•4.6 展望•符号表•参考文献•第5章膜分离中的传递过程•5.1 引言•5.2 膜内传递过程•5.3 膜外传递过程•5.4 计算机模拟在膜分离传递过程中的应用•符号表•参考文献•第6章膜过程的极化现象和膜污染•6.1 概述[1]•6.2 浓差极化•6.3 温差极化•6.4 膜污染•符号表•参考文献•第7章膜器件•7.1 膜器件分类•7.2 板框式•7.3 圆管式•7.4 螺旋卷式•7.5 中空纤维式•7.6 电渗析器•7.7 实验室用膜设备•7.8 膜器件设计中应考虑的主要因素•7.9 膜器件的特性比较与发展趋势•7.10 膜器件的规格性能和应用•符号表•参考文献•第8章反渗透、正渗透和纳滤•8.1 概述•8.2 分离机理•8.3 膜及其制备•8.4 膜结构与性能表征•8.5 膜组器件技术[8,43]•8.6 工艺过程设计•8.7 系统与运行•8.8 典型应用案例•8.9 过程经济性•8.10 展望•符号表•参考文献•第9章超滤和微滤•9.1 超滤概述•9.2 超滤膜•9.3 超滤膜组件与超滤工艺•9.4 超滤工程设计•9.5 超滤装置的操作参数•9.6 超滤系统的运行管理•9.7 超滤技术的应用•9.8 微滤•9.9 微孔膜过滤的分离机理•9.10 微孔滤膜的制备•9.11 微孔滤膜的结构和理化性能测定•9.12 微孔膜过滤器•9.13 微孔膜过滤技术的应用•符号表•参考文献•膜技术手册(下册)(第二版)•书名页•内容简介•第10章渗析•10.1 概述•10.2 渗析膜•10.3 渗析原理和过程•10.4 渗析膜组件设计•10.5 渗析的应用•符号表•参考文献•第11章离子交换膜过程•11.1 概述•11.2 基础理论•11.3 离子交换膜制备•11.4 离子交换膜装置及工艺设计•11.5 离子交换膜应用•11.6 离子交换膜过程发展动向•符号表•参考文献•第12章气体膜分离过程•12.1 引言•12.2 气体分离膜材料及分离原理•12.3 气体分离膜制造方法•12.4 相转化成膜机理•12.5 气体分离膜结构及性能表征•12.6 膜分离器•12.7 分离器的模型化及过程设计•12.8 应用•符号表•参考文献•第13章气固分离膜•13.1 概述•13.2 气固分离膜材料与制备方法•13.3 气固分离原理•13.4 气固分离膜的性能评价•13.5 气固分离膜装备•13.6 典型应用案例•符号表•参考文献•第14章渗透汽化•14.1 概述•14.2 基本理论•14.3 渗透汽化膜•14.4 渗透汽化膜器•14.5 过程设计•14.6 应用•14.7 回顾与展望•符号表•参考文献•第15章液膜•15.1 引言•15.2 概述•15.3 乳化液膜•15.4 支撑液膜•15.5 Pickering液膜•15.6 液膜应用•15.7 液膜新进展•符号表•参考文献•第16章膜反应器•16.1 概述•16.2 面向生物反应过程的膜生物反应器•16.3 面向催化反应过程的多孔膜反应器•16.4 面向气相催化反应过程的致密膜反应器•符号表•参考文献•第17章膜接触器•17.1 膜接触器概述•17.2 膜萃取•17.3 膜吸收•17.4 膜蒸馏•17.5 膜脱气•17.6 膜乳化•17.7 膜结晶•符号表•参考文献•第18章控制释放与微胶囊膜和智能膜•18.1 控制释放概述•18.2 微胶囊膜•18.3 智能膜•参考文献•第19章典型集成膜过程•19.1 基于多膜集成的制浆造纸尾水回用技术•19.2 基于膜集成技术的抗生素生产新工艺•19.3 双膜法氯碱生产新工艺•19.4 基于膜技术的中药现代化•19.5 基于反应-膜分离耦合技术的化工工艺•19.6 结束语•参考文献•缩略语表•索引是否关闭自动购买?关闭后需要看完本书未购买的章节手动确认购买。
膜分离工程-第十章-膜污染PPT课件
• (Rm+Rc) t=t/(Rm+Rc)t=0=(1+Bt)2,
• B=KsJv0
• 式中,Ks指每单位流体横截面面积的下降.此表达式表示系
统阻力的依时性.
.
9
膜污染的数学模型
• 而若假设所有粒子到达膜面时不会直接阻塞膜面积,而是附 着在其它已阻塞膜孔粒子上,另一种凝胶化模型则表示为:
4.计算 SDI[1 t0 ]100 t15 15 .
淤积指数测量仪16
⑴原料液预处理
RO及NF预处理设备设计参数
.
17
⑴原料液预处理
预处理评估准则
.
18
防止膜污染的方法
膜应用过程中产生膜的污染是很难避免的,但 是通过对不同的膜污染情况采取相应的措施来 减小膜的污染程度是可行的。
制定膜污染控制措施要 根据其膜材料和膜分离 过程特点,从设计、工 艺流程到设备选择、运 行、膜的储运和停机保 养等各个环节加以具体 分析考虑。
膜污染 membrane fouling
.
1
一、膜污染的基本概念 二、膜污染的数学模型 三、减轻膜污染的方法 四、一些膜系统的膜污染特点及控制
.
2
膜污染
• 膜分离技术应用中突出 的问题就是膜污染;
• 影响:
• 膜污染会导致膜产水量 随运行时间的延长而下 降;
• 导致操作过程中必须付 出大量的能耗来维持产 水量水平并循环原料液
适用于低污染趋势,如对饮用水的处理,也适用于加速污染 趋势,如在实验室中对膜污染的观察.
.
10
三 减轻膜污染的方法
• 料液的预处理
• 改变操作条件
分离工程习题
化学工程与工艺教学改革系列参考书分离过程例题与习题集前言化学工程与工艺专业所在的化学工程与技术一级学科属于山东省“重中之重”学科,一直处于山东省领先地位,而分离工程是该专业二门重要的必修专业课程之一。
该课程利用物理化学、化工原理、化工热力学、传递过程原理等基础基础知识中有关相平衡热力学、动力学、分子及共聚集状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系分离和提纯技术。
传统的教学方法的突出的弊端就是手工计算工程量大,而且结果不准确。
同时由于现代化化学工业日趋集成化、自动化、连续化,学生能学到的东西越来越少。
所以,传统的教学模式不能满足现代化工业生产对高水平工业工程师的需求,开展分离工程课程教学方法与教学手段课题的研究与实践,对我们的学生能否承担起现代化学工业的重任,与该课程的教学质量关系重大,因此对该门课程进行教学改革具有深远意义。
分离工程课程的改革主要包括多媒体辅助教学课件的开发、分离工程例题与习题集、分离工程试题库的编写等工作。
目前全国各高校化学工程与工艺专业使用的教材一般均为由化学工程与工艺专业委员会组织编写的化工分离过程(陈洪钫主编,化学工业出版社),其他类似的教材已出版了十余部。
这些教材有些还未配习题,即便有习题,也无参考答案,而至今没有一本与该课程相关的例题与习题集的出版。
因此编写这样一本学习参考书,既能发挥我校优势,又符合形势需要,填补参考书空白,具有良好的应用前景。
分离工程学习指导和习题集与课程内容紧密结合,习题贯穿目前已出版的相关教材,有解题过程和答案,部分题目提供多种解题思路及解题过程,为学生的课堂以及课后学习提供了有力指导。
编者2006年3月目录第一章绪论 (1)第二章单级平衡过程 (5)第三章多组分精馏和特殊精馏 (18)第四章气体吸收 (23)第五章液液萃取 ................................................... 错误!未定义书签。
膜分离技术基础概论
《膜分离技术》教案第一章:膜分离技术概述1、膜科学与基础科学的关系膜科学与基础科学的关系如下图所示。
2、膜的定义及特性所谓的膜,是指在一种流体相内或是在两种流体相之间有一层薄的凝聚相,它把流体相分隔为互不相通的两部分,并能使这两部分之间产生传质作用。
膜的特性:不管膜多薄, 它必须有两个界面。
这两个界面分别与两侧的流体相接触。
膜传质有选择性,它可以使流体相中的一种或几种物质透过,而不允许其它物质透过。
3、膜的分离过程原理膜分离过程原理:以选择性透膜为分离介质,通过在膜两边施加一个推动力(如浓度差、压力差或电位差等)时,使原料侧组分选择性地透过膜,以达到分离提纯的目的。
通常膜原料侧称为膜上游,透过侧称为膜下游。
4、分离膜的种类5、膜分离技术发展简史高分子膜的分离功能很早就已发现。
1748年,耐克特(A. Nelkt )发现水能自动地扩散到装有酒精的猪膀胱内,开创了膜渗透的研究。
1861年,施密特(A. Schmidt )首先提出了超过滤的概念。
他提出,用比滤纸孔径更小的棉胶膜或赛璐酚膜过滤时,若在溶液侧施加压力,使膜的两侧产生压力差,即可分离溶液中的细菌、蛋白质、胶体等微小粒子,其精度比滤纸高得多。
这种过滤可称为超过滤。
按现代观点看,这种过滤应称为微孔过滤。
然而,真正意义上的分离膜出现在20世纪60年代。
1961年,米切利斯(A. S. Michealis )等人用各种比例的酸性和碱性的高分子电介质混合物以水—丙酮—溴化钠为溶剂,制成了可截留不同分子量的膜,这种膜是真正的超过滤膜。
美国Amicon 公司首先将这种膜商品化。
50年代初,为从海水或苦咸水中获取淡水,开始了反渗透膜的研究。
1967年,DuPont 公司研制成功了以尼龙—66为主要组分的中空纤维反渗透膜组件。
同一时期,丹麦DDS 公司研制成功平板式反渗透膜组件。
反渗透膜开分离膜高分子膜液体膜生物膜带电膜非带电膜阳离子膜阴离子膜过滤膜精密过滤膜 超滤膜 反渗透膜纳米滤膜始工业化。
膜分离技术在工业过程中的应用
膜分离技术在工业过程中的应用第一章引言膜分离技术是一种基于膜的物理过滤和分离技术。
它可以将混合物中的不同成分通过渗透、扩散、截留等方式,分别在两侧对称地排布的膜上实现分离。
膜分离技术主要应用于化学工业、生物技术、环境保护、食品加工等领域。
本文探讨了膜分离技术在工业过程中的应用。
第二章膜分离技术的分类膜分离技术按其分离机理分为五类:微过滤、超过滤、气体分离、纳滤和反渗透。
微过滤的孔径大小在0.1至10微米之间,用于去除无机颗粒、悬浮物、细菌和大分子物质。
超过滤的孔径大小在0.001至0.1微米之间,用于去除蛋白质、病毒和大分子有机物。
气体分离是利用物理和化学吸附、扩散或化学反应等原理,将气体分离。
纳滤的孔径大小在0.001至0.01微米之间,用于分离色素、糖类、蛋白质和药物。
反渗透技术则是将水转化为纯净水或去除水中的溶解氧、矿物质和化学物质。
第三章膜分离技术的应用膜分离技术在工业过程中的应用主要体现在以下几个方面:1. 水处理膜分离技术是解决水处理领域难题的重要技术之一。
反渗透技术通过膜分离将含有病菌、重金属、硝酸盐、有机物等污染物的水处理成清洁的水。
纳滤技术则可用于处理工业废水和废液中的有机物和无机盐。
此外,膜生物反应器技术可实现废水的生物降解。
2. 食品加工超过滤、纳滤和反渗透技术在食品工业中应用广泛。
超过滤可用于分离乳清、蛋白质和酶。
纳滤则可分离糖类、色素和香精。
反渗透技术可将质量较差的果汁、水加工成高质量的果汁和矿泉水。
3. 化学工业反渗透技术用于离子交换树脂和电解制氯。
超过滤技术可用于制备洗涤剂、肥料、日用化学品、土壤调剂剂等。
气体分离技术则可用于空气分离、液化气体分离和汽油裂解气分离等领域。
4. 生物技术膜分离技术是分离、提纯生物大分子和细胞的重要手段。
微过滤技术可用于消除细胞碎片、减少溶菌酶、去除杂质等。
超过滤技术可用于分离和提纯重要蛋白质、配体、酶等。
纳滤技术则可用于分离小分子化合物、生物活性物质等。
膜分离技术
2024/7/5
膜分离技术
3
1、膜分离技术发展概述
1784年 阿贝.诺伦特首次揭示膜分离现象 1960年洛布和索里拉金 醋酸纤纸素膜 1964年 美国通用原子公司 螺旋式反渗透组件 1965年 美国加利福尼亚大学 管式反渗透装置 1967年 美国杜邦公司首次研制了以尼龙为材料 的中空纤维组件, 1970年又研制了以芳香聚酰 胺为膜材料的中空纤维组件 1968年 美籍华人黎念之研究出乳化液膜 70年代 Cussler研制了含流动载体的液膜
第1章 膜分离技术
(Membrane Separation Processes)
本章主要内容:
膜分离技术概述
扩散渗析(diffusion dialysis)
反渗透( reverse osmosis)
电渗析(electro-dialysis)
2024/7/5
膜分离技术
2
1.1 膜分离概述
1、膜分离发展概述 2、膜分离的概念 3、膜分离法的分类 4、膜分离技术的特点 5.膜分离法的应用
99%
多孔层, 孔径 (1000-4000) ×10-10m
这种膜有不对称结构: 表面结构致密, 孔隙很小, 通称为表皮 层或致密层、活化层; 下层结构较疏松, 孔隙较大, 通称为多 孔层或支撑层。
2024/7/5
膜分离技术
29
膜的照片
在相对湿度为100%时, 膜的含水量高达60%, 其中表皮层只含10%-20%, 且主要是以氢 键形式结合结合水。
2024/7/5
膜分离技术
17
2. 扩散渗析法原理
渗析液A+ B-
H2O
H2O A+
B- B- B-
(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-7-11
15
10.2.1 扩散渗析的原理
工作原理
利用渗析膜(膀胱膜、羊 皮纸等)将浓度不同(浓 度差)的溶液隔开,溶质 即从浓度高的一侧透过膜 而扩散至浓度低的一侧, 当膜两侧的浓度达到平衡 时,渗析过程即停止进行。 主要用于酸、碱的回收, 回收率可达70~90%,但不 能进行浓缩。其特点是不 消耗能量。
2014-7-11
23
10.2.5 电渗析的工艺装置
10.2 扩散渗析与电渗析
电渗析器(ED)的组成
2014-7-11 24
10.2.5 电渗析的工艺装置
膜堆
10.2 扩散渗析与电渗析
阴、阳膜和一对浓、淡水隔板组成最基本的单元,称膜对;电极间的若 干组膜对堆叠在一起组成膜堆。隔板常与隔网(鱼鳞网、编织网等)粘合。 以聚氯乙烯、聚丙烯等为材料。隔网其搅拌作用,以增加水水流的紊动度 (降低液膜厚度)。回路式隔板:流程长、流速高,电流效率高,一次性除 盐效果好。适用于流量小而除盐要求较高的场合。无回路式隔板:流程短、 流速低,要求隔网搅动作用强,水流分布均匀,适用于流量较大场合的处理。
10.2 扩散渗析与电渗析
极化的危害
□
导致结苟,缩短膜寿命;降低电流效 率,影响运行效能。 倒换电极、定期酸洗、极限电流。
31
■
解决的途径
□
2014-7-11
10.2.6 电渗析的工艺设计
离子的迁移与扩散
离子的迁移 根据法拉第定律:
i 离子在膜内的迁移量为: n F i 在溶液中的迁移量为: F n
10.1 概述
共同的缺点:
▲处理能力小; ▲大部分需要消耗相当的能量;
2014-7-11
14
10.2 渗析与电渗析(Dialysis and Electro-Dialysis)
10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 扩散渗析(Dialysis)的原理 扩散渗析的应用 电渗析(Electro-Dialysis)的原理 电渗析的应用 电渗析的工艺装置 电渗析的工艺设计
10.2 扩散渗析与电渗析
278—单位换算系数。
电流(I)、电压(U)及电耗(W)
电流
I 1000 iA (A)
U U j U m (V )
W
Uj—极区电压降(15~20V); Um—膜堆电压降(膜对电压降约 为2~4V)。 实际电耗应考虑整流 器的效率。
36
电压
电耗
2014-7-11
2014-7-11
33
10.2.6 电渗析的工艺设计
电流效率(η)
10.2 扩散渗析与电渗析
膜对(单位面积)的理论离子渗出量(G)(法拉第定律)
G
ItM B (g) F
膜对(单位面积)的实际离子渗出量(G1)
q(C1 C 2 )tM B G1 (g) 1000
电流效率(η )
2014-7-11 18
10.2.3 电渗析的原理
工作原理
10.2 扩散渗析与电渗析
2014-7-11
19
10.2.3 电渗析的原理
工作原理
10.2 扩散渗析与电渗析
双 膜
单 膜
Principles of electrolysis
2014-7-11
三 膜
20
10.2.4 电渗析的应用
应用举例
k m v
ilim KCv m
K——水力特性参数,与膜的性 能、隔板形式、离子组成及温 度等有关。可通过实验测定。
ilim
FD Cv m 1000 ( n n) k
C1 C 2 C 2.3 lg 1 C2
离子浓度沿隔板流道呈指 数下降。C为进、出水离 子浓度的对数平均值。
C
稳态运行时,应有:
i C C ( n n) D F 1000
32
10.2.6 电渗析的工艺设计
极限电流密度(ilim)
ilim FD C n n 1000
m—0.3~0.9。水流紊动度 越高,其值越接近于1。
10.2 扩散渗析与电渗析
离子的迁移与极限电流密度(ilim)
2014-7-11
10.2 扩散渗析与电渗析
16
10.2.2 扩散渗析的应用
应用举例
10.2 扩散渗析与电渗析
2014-7-11
17
10.2.3 电渗析的原理
工作原理
10.2 扩散渗析与电渗析
在直流电场(电位差)的作用下,利用阴、阳离子交 换膜对溶液中阳、阴离子的选择性透过特性,使溶液 中的溶质与水分离的一种物理化学过程。 电渗析系统由一系列阴、阳膜放臵在两电极之间组成。 离子减少的隔室称淡室(出淡水),离子增多的隔室 称浓室(出浓水),与电极接触的隔室为极室(出极 水)。 主要用于分离离子、用于回收酸、碱、苦咸水(小于 10g/L)淡化。给水处理:制淡水(浓水排出);污水 处理:浓水回收有用物质(淡水排放或回用)。
2014-7-11
渗透液相
膜
原料液相
5
10.1.2 去除对象及功能
膜分离的去除对象
10.1 概述
水或废水中的盐分离子等溶解性物质 工业废水中的酸、碱 大分子、微生物、粘土、植物质、胶体及SS等
主要功能
2014-7-11
海水淡化 酸、碱回收 纯水制备 深度处理(精处理)
2014-7-11
26
10.2.5 电渗析的工艺装置
电渗析器的组装
10.2 扩散渗析与电渗析
级:一对电极之间的膜对为一级。 段:具有同向水流的的并联膜堆为一段。
增加段数,即延长流程,提高处理效率。增加膜 对数,可增加处理能力。
组装方式:串联、并联、串联-并联组合。
多台并联——增加处理能力和产水量;
崔玉川等,城市污水回用深度处理设施设计计算,北京:化学 工业出版社,2003 许振良编著,膜法水处理技术,北京:化学工业出版社,2001 许保玖,给水处理理论,北京:中国建筑工业出版社,2000 刘茉娥等,膜分离技术,北京:化学工业出版社,1998
许保玖等,当代给水与废水处理原理,北京:高等教学出版社, 2000
10
10.1.3 膜的类型
10.1 概述
卷式中空纤维膜组件 (外置)
2014-7-11
板式中空纤维膜组件 (内置)
11
10.1.4 膜分离方法及其特点
膜分离的方法
依据去除的对 象,采用不同 种类的膜,组 成各种组件。 方法有:电渗 析、扩散渗析 (渗析)、反 渗透、微滤、 超滤、纳滤等。
10.2 扩散渗析与电渗析
(1)高的离子选择性; 离子 (2)低渗水性; 交换 树脂 (3)高导电性(膜电阻低); (4)良好的化学稳定:耐酸碱、抗氧化; (5)足够的机械强度、低的收缩和溶涨性。
2014-7-11 29
10.2.6 电渗析的工艺设计
膜的作用原理
10.2 扩散渗析与电渗析
阴膜通过阴离子、阳膜通过阳离子(反离子定义) 膜孔作用、静电作用、扩散作用、电位作用 无需再生!
UI 103 (kW h / m 3 ) Q
极区
位于电渗析器两端,通以直流电源。设有原水进口、浓淡水出口及极室水 通路。由电极、极框、电极托板及橡胶垫等组成。常用的电极有石墨和不锈 钢等。
紧固装置
用钢板将整个极区与膜堆均匀夹紧,使电渗析器在压力条件下工作不致漏水。
2014-7-11
25
10.2.5 电渗析的工艺装置
10.2 扩散渗析与电渗析
10.2 扩散渗析与电渗析
2014-7-11
21
பைடு நூலகம்
10.2.4 电渗析的应用
应用举例
10.2 扩散渗析与电渗析
2014-7-11
22
10.2.5 电渗析的工艺装置
电渗析器装置
10.2 扩散渗析与电渗析
由电渗析器本体和辅助设备两部分组成。 本体 由压板、电极托板、电极、板框、阴膜、阳膜、 浓水隔板、淡水隔板按一定顺序组装并压紧。包 括三个部分:膜堆、极区、紧固装臵。 辅助设备 整流器、水泵、流量计。
张自杰主编,排水工程(下册),第四版,北京:中国建筑工 业出版社,2000
沈耀良编著,废水生物处理新技术—理论与应用(第二版), 北京:中国环境科学出版社,2006
2014-7-11 3
10.1 概述(Brief
10.1.1 10.1.2 10.1.3 10.1.4
Introduction)
数台串联——提高处理效率和出水质量; 增设中间电极——降低操作电压和电耗。
2014-7-11 27
10.2.5 电渗析的工艺装置
10.2 扩散渗析与电渗析
2014-7-11
28
10.2.6 电渗析的工艺设计
膜及其特性
离子交换膜:ED的关键部件 种类:异相膜、均相膜
■ 基本要求: 粘合剂
膜
6
10.1.2 去除对象及功能
10.1 概述
2014-7-11
7
10.1.3 膜的类型
按膜的来源分
按膜的组件分
10.1 概述
天然生物膜 人工合成膜——有机膜(聚合物)、无机膜(陶瓷等)
按分离机理分
管式膜——膜管直径>10mm,处理量较小 毛细管膜——膜管直径0.5~10mm 中空纤维膜——膜管直径<0.5mm ,处理量较大 板框膜——处理量较小 卷式膜——处理量较大
多孔膜——根据颗粒大小进行分离(超滤、微滤) 无孔膜——利用分离体系组分的溶解度和扩散性差异分离 载体膜——利用载体分子对溶液中某成分的高度亲和性分离