2020年最新电大《工程数学》(本)期末复习考试必备资料必考重点
工程数学辅导(重点基础知识)
工程数学(本科)考试形式本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《中央广播电视大学人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
期末考试的考核内容为线性代数、概率论与数理统计两个部分,包括行列式、矩阵、线性方程组、矩阵的特征值及二次型、随机事件与概率、随机变量的分布和数字特征、数理统计基础等方面的知识。
期末考试采用半开卷笔试形式,题型不变。
卷面满分为100分,考试时间为90分钟。
半开卷考试是介于闭卷考试和开卷考试两者之间考试方式。
半开卷考试与开卷考试的差别就在于允许考生携带的资料的不同,开卷考试允许考生携带任何资料,而半开卷考试只允许考生携带指定的资料,比如允许考生携带一张统一印制A4纸,考生可以将自己对课程学习内容的总结包括重点、难点、不好记忆的公式、定理等写在这张A4纸上带入考场,作为答卷的参考。
工程数学(本科)知识点(线性代数部分)第一章行列式本章重点要求1. n 阶行列式,当2=n 时,21122211222112112a a a a a a a aD -==∆当2>n 时,∑==+++=nij ij ij n n n A a A a A a A a D 1112121111其中数ij a 为第i 行第j 列的元素,()ij ji ij M A +-=1 为ij a 的代数余子式,ij M 为ij a 的余子式,它是由n D 划去第i 行和第j 列后余下元素构成的1-n 阶行列式,即nnnj nj n n i j i j i i n i j i j i i n ij ij ij a a a a a a a a a a a a a a a a M1111111111111111111111+-+++-++-+----+-=要注意,元素ij a 的余子式ij M 与代数余子式ij A 之间仅仅相差一个代数符号ji +-)(1。
电大工程数学(本)期末复习辅导
1一、单项选择题1.若100100200001000=aa ,则=a (12). ⒊乘积矩阵⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡1253014211中元素=23c (10). ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是()AB BA--=11).⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ).D. -=-kA k A n()⒍下列结论正确的是(A. 若A 是正交矩阵则A -1也是正交矩阵).⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C. 5321--⎡⎣⎢⎤⎦⎥ ).⒏方阵A 可逆的充分必要条件是(A ≠0)⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).A. ()A B A AB B +=++2222 ⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C.[,,]--'1122 ).⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( 有唯一解). ⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( 3).⒋设向量组为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111,0101,1100,00114321αααα,则(ααα123,, )是极大无关组.⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解 ⒏若向量组ααα12,,,Λs 线性相关,则向量组内(A)可被该向量组内其余向量线性表出. A. 至少有一个向量 9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( A )成立. A.λ是AB 的特征值10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1⒈A B ,为两个事件,则( B )成立. B.()A B B A +-⊂⒉如果( C )成立,则事件A 与B 互为对立事件.C.AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为( D. 307032⨯⨯..). 4. 对于事件A B ,,命题(C )是正确的. C. 如果A B ,对立,则A B,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D. )1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(6, 0.8).7.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A). A.xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P D.f x x ab()d ⎰). 10.设X为随机变量,E X D X (),()==μσ2,当(C)时,有E Y D Y (),()==01.C. σμ-=X Y1.A 是34⨯矩阵,B 是52⨯矩阵,当C 为( B 24⨯)矩阵时,乘积AC B ''有意义。
2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析
2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析(红色标注为正确答案)工程数学作业(第一次)(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B).A. B. C. D.⒐设均为阶可逆矩阵,则(D).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(D).A. B.C. D.(二)填空题(每小题2分,共20分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5×4 矩阵.⒋二阶矩阵.⒌设,则.⒍设均为3阶矩阵,且,则-72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题8分,共48分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.⒉设,求.⒊已知,求满足方程中的.⒋写出4阶行列式中元素的代数余子式,并求其值.⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.⒍求矩阵的秩.(四)证明题(每小题4分,共12分)⒎对任意方阵,试证是对称矩阵.⒏若是阶方阵,且,试证或.⒐若是正交矩阵,试证也是正交矩阵.工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分) ⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 .⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,,3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。
2019-2020年电大考试工程数学复习题精选及答案
《工程数学》期末综合练习题工程数学(本)课程考核说明(修改稿)I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生。
本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学——线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。
考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。
本考核说明是工程数学(本)课程期末考试命题的依据。
工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平。
因此,考试应具有较高的信度、效度和一定的区分度。
试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。
考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。
期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。
三个不同层次由低到高在期末试卷中的比例为:2:3:5。
《工程数学》(概率统计)期末复习提要共12页word资料
《工程数学》(概率统计)期末复习提要工科普专的《工程数学》(概率统计)课程的内容包括《概率论与数理统计》(王明慈、沈恒范主编,高等教育出版社)教材的全部内容 . 在这里介绍一下教学要求,供同学们复习时参考 .第一部分:随机事件与概率⒈了解随机事件的概念学习随机事件的概念时,要注意它的两个特点:⑴在一次试验中可能发生,也可能不发生,即随机事件的发生具有偶然性;⑵在大量重复试验中,随机事件的发生具有统计规律性 .⒉掌握随机事件的关系和运算,掌握概率的基本性质要了解必然事件、不可能事件的概念,事件间的关系是指事件之间的包含、相等、和、积、互斥(互不相容)、对立、差等关系和运算 .在事件的运算中,要特别注意下述性质:概率的主要性质是指:①对任一事件,有③对于任意有限个或可数个事件,若它们两两互不相容,则⒊了解古典概型的条件,会求解简单的古典概型问题在古典概型中,任一事件的概率为其中是所包含的基本事件个数,是基本事件的总数 .⒋熟练掌握概率的加法公式和乘法公式,理解条件概率,掌握全概公式⑴加法公式:对于任意事件,有特别地,当时有⑵条件概率:对于任意事件,若,有称为发生的条件下发生条件概率 .⑶乘法公式:对于任意事件,有(此时),或(此时) .⑷全概公式:事件两两互不相容,且,则⒌理解事件独立性概念,会进行有关计算若事件满足(当时),或(当时),则称事件与相互独立 . 与相互独立的充分必要条件是.第二部分:随机变量极其数字特征⒈理解随机变量的概率分布、概率密度的概念,了解分布函数的概念,掌握有关随机变量的概率计算常见的随机变量有离散型和连续型两种类型 . 离散型随机变量用概率分布来刻画,满足:连续型随机变量用概率密度函数来刻画,满足:随机变量的分布函数定义为对于离散型随机变量有对于连续型随机变量有⒉了解期望、方差与标准差的概念,掌握求随机变量期望、方差的方法⑴期望:随机变量的期望记为,定义为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度) .⑵方差:随机变量的方差记为,定义为(离散型随机变量),(连续型随机变量) .⑶随机变量函数的期望:随机变量是随机变量的函数,即,若存在,则在两种形式下分别表示为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度),由此可得方差的简单计算公式⑷期望与方差的性质①若为常数,则;②若为常数,则;③若为常数,则.⒊掌握几种常用离散型和连续型随机变量的分布以及它们的期望与方差,熟练掌握正态分布的概率计算,会查正态分布表(见附表)常用分布:⑴二项分布的概率分布为特别地,当时,,叫做两点分布;⑵均匀分布的密度函数为⑶正态分布的密度函数为其图形曲线有以下特点:① ,即曲线在x 轴上方;② ,即曲线以直线为对称轴,并在处达到极大值;③在处,曲线有两个拐点;④当时,,即以轴为水平渐近线;特别地,当时,,表示是服从标准正态分布的随机变量 .将一般正态分布转化为标准正态分布的线性变换:若,令,则,且Y 的密度函数为服从标准正态分布的随机变量的概率为那么一般正态分布的随机变量的概率可以通过下列公式再查表求出常见分布的期望与方差:二项分布:;均匀分布:;正态分布:;⒋了解随机变量独立性的概念,了解两个随机变量的期望与方差及其性质对于随机变量,若对任意有则称与相互独立 .对随机变量,有若相互独立,则有第三部分:统计推断⒈理解总体、样本,统计量等概念,知道分布,分布,会查表所研究对象的一个或多个指标的全体称为总体,组成整体的基本单位称为个体,从总体中抽取出来的个体称为样品,若干个样品组成的集合称为样本 . 样本中所含的样品个数称为样本容量 .统计量就是不含未知参数的样本函数 .⒉掌握参数的最大似然估计法最大似然估计法:设是来自总体(其中未知)的样本,而为样本值,使似然函数达到最大值的称为参数的最大似然估计值 . 一般地,的最大似然估计值满足以下方程⒊了解估计量的无偏性,有效性概念参数的估计量若满足则称为参数的无偏估计量 .若都是的无偏估计,而且,则称比更有效 .⒋了解区间估计的概念,熟练掌握方差已知条件下单正态总体期望的置信区间的求法,掌握方差未知条件下单正态总体期望的置信区间的求法当置信度确定后,方差已知条件下单正态总体期望的置信区间是其中是总体标准差,是样本均值,是样本容量,由确定 .方差未知条件下单正态总体期望的置信区间是其中称为样本标准差,满足.⒌知道假设检验的基本思想,掌握单正态总体均值的检验方法,会作单正态总体方差的检验方法单正态总体均值的检验方法包括检验法和检验法:⑴ 检验法:设是正态总体的一个样本,其中未知,已知 . 用检验假设(是已知数),。
2019-2020年电大考试《工程数学》历年期末考试题汇总
期末考试工程数学(本) 试题一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立. A . A B A B +=+B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。
A .0,2 B .0,6 C .0,0 D .2,64.若随机变量(0,1)X N ,则随机变量32Y X =- ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA BO ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B . 9.若随机变量[0,2]XU ,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4, 10.6, 10.1, 10.4 问:该机工作是否正常(0.9750.05, 1.96u α==)? 四、证明题(本题6分)15. 设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。
工程数学期末复习指导
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。三个不同层次由低到高在期末试卷中的比例为:2:3:5。
概率论与数理统计部分
五、随机事件与概率
考核知识点:
随机事件的概念,随机事件的关系与运算
随机事件的概率,概率的基本性质,古典概型
概率的加法公式,条件概率与乘法公式,事件的独立性,全概公式
贝努里概型
考核要求:
⑴了解随机事件、概率等概念;
⑵掌握随机事件的运算,了解概率的基本性质;
⑶了解古典概型的条件,会求解较简单的古典概型问题;
正定矩阵的概念,正定矩阵的判定
考核要求:
⑴理解矩阵特征值、特征多项式及特征向量的定义,掌握特征值与特征向量的求法;
⑵了解矩阵相似的定义,相似矩阵的性质;
⑶知道正交矩阵的定义和性质;
⑷理解二次型定义、二次型的矩阵表示、二次型的标准形,掌握用配方法化二次型为标准形的方法;
⑸了解正定矩阵的概念,会判定矩阵的正定性。
⑷熟练掌握概率的加法公式和乘法公式,掌握条件概率和全概公式;
⑸理解事件独立性概念;
⑹掌握贝努里概型。
六、随机变量的分布和数字特征
考核知识点:
随机变量的概念及分类,离散型随机变量的概率分布,连续型随机变量的概率密度,随机变量的分布函数,随机变量函数的分布
⑸熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,掌握求解简单的矩阵方程的方法;
⑹理解矩阵秩的概念,掌握矩阵秩的求法;
⑺会分块矩阵的运算。
三、线性方程组
考核知识点:
电大《工程数学》期末复习题
《工程数学》期末复习题库工程数学(本)模拟试题一、单项选择题(每小题3分,共15分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ). A .BA AB = B .B A B A +=+ C .111)(---+=+B A B A D .111)(---=B A AB2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a3.下列命题中不正确的是( ). A .A 与A '有相同的特征多项式B .若λ是A 的特征值,则O X A I =-)(λ的非零解向量必是A 对应于λ的特征向量 C .若λ=0是A 的一个特征值,则O AX =必有非零解 D .A 的特征向量的线性组合仍为A 的特征向量4.若事件与互斥,则下列等式中正确的是( ). A . B . C . D .5.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =( ).A .55-xB .5/15-xC .nx /15- D .15-x二、填空题(每小题3分,共15分)1.设22112112214A x x =-+,则0A =的根是 . 2.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 3.设互不相容,且,则 . 4.设随机变量X ~ B (n ,p ),则E (X )= .5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .三、计算题(每小题16分,共64分)1.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'. 2.求下列线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 3.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (已知8413.0)0.1(=Φ,9.0)28.1(=Φ,9773.0)0.2(=Φ).4.从正态总体N (μ,4)中抽取容量为625的样本,计算样本均值得x = 2.5,求μ的置信度为99%的置信区间.(已知 576.2995.0=u )四、证明题(本题6分)4.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.工程数学(本)11春模拟试卷参考解答一、单项选择题(每小题3分,共15分) 1.A 2.B 3.D 4.A 5.C 二、填空题(每小题3分,共15分)1.1,-1,2,-2 2.3 3.0 4.np 5.)1,0(nN三、(每小题16分,共64分) 1.解:由矩阵乘法和转置运算得10011111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ ………6分 利用初等行变换得10020001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦1002001110101112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦………16分 7-2.解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即 245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭→120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭ 方程组的一般解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量. ……8分令042==x x ,得方程组的一个特解0(0010)X '=,,,.方程组的导出组的一般解为: 124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,;令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,. ……13分所以方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数. ……16分3.解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ= 0.9773 + 0.8413 – 1 = 0.8186 ……8分(2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以 28.123=-a ,a = 3 + 28.12⨯ = 5.56 ……16分 4.解:已知2=σ,n = 625,且nx u σμ-= ~ )1,0(N ……5分因为 x = 2.5,01.0=α,995.021=-α,576.221=-αu206.06252576.221=⨯=-nuσα……10分所以置信度为99%的μ的置信区间为:]706.2,294.2[],[2121=+---nux nux σσαα. ……16分四、(本题6分)证明: 因为 0))((2=-=+-I A I A I A ,即I A =2.所以,A 为可逆矩阵. ……6分《工程数学》综合练习一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是( ). A .AB A B = B .222()2A B A AB B -=-+ C .AB BA = D .若AB O =,则A O =或B O = 正确答案:A2.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( ). A . 1 B . 3 C . 2 D . 4正确答案: B3.n 元线性方程组有解的充分必要条件是( ).A . )()(b A r A r =B . 不是行满秩矩阵C .D . 正确答案:A4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( ).A . 256B . 103 C . 203 D . 259正确答案:D 5.设是来自正态总体的样本,则( )是μ无偏估计.A . 321515151x x x ++ B . 321x x x ++C . 321535151x x x ++D . 321525252x x x ++正确答案: C6.若是对称矩阵,则等式( )成立. A . I AA =-1 B . A A =' C . 1-='A A D . A A =-1正确答案:B7.=⎥⎦⎤⎢⎣⎡-15473( ). A . ⎥⎦⎤⎢⎣⎡--3547 B . 7453-⎡⎤⎢⎥-⎣⎦ C . 7543-⎡⎤⎢⎥-⎣⎦ D . 7543-⎡⎤⎢⎥-⎣⎦ 正确答案:D8.若( )成立,则元线性方程组AX O =有唯一解.A .B . A O ≠C .D . A 的行向量线性相关 正确答案:A9. 若条件( )成立,则随机事件,互为对立事件.A . ∅=AB 或A B U += B . 0)(=AB P 或()1P A B +=C . ∅=AB 且A B U +=D . 0)(=AB P 且1)(=+B A P正确答案:C10.对来自正态总体(未知)的一个样本,记∑==3131i i X X ,则下列各式中( )不是统计量.A . XB .∑=31i iXC . ∑=-312)(31i i X μ D . ∑=-312)(31i i X X正确答案: C二、填空题1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= .应该填写:-182.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称λ为A 的特征值.应该填写:AX X λ=3.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = .应该填写:0.34.设为随机变量,已知3)(=X D ,此时.应该填写:275.设θˆ是未知参数θ的一个无偏估计量,则有 .应该填写:ˆ()E θθ=6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= . 应该填写:87.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称X 为A 相应于特征值λ的特征向量. 应该填写:AX X λ=8.若5.0)(,8.0)(==B A P A P ,则=)(AB P . 应该填写:0.39.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D .应该填写:2010.不含未知参数的样本函数称为 . 应该填写:统计量三、计算题1.设矩阵,且有,求X .解:利用初等行变换得即由矩阵乘法和转置运算得2.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一般解为: (其中为自由未知量)令=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中为自由未知量)令=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为:10kX X X +=(其中k 为任意常数)3.设)4,3(~N X ,试求: (1))95(<<X P ;(2))7(>X P . (已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:(1))3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=(2))23723()7(->-=>X P X P )223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=4.据资料分析,某厂生产的一批砖,其抗断强度)21.1,5.32(~N X ,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.12,问这批砖的抗断强度是否合格().解: 零假设.由于已知,故选取样本函数已知,经计算得,由已知条件,故拒绝零假设,即这批砖的抗断强度不合格。
工程数学(本)期末复习
工程数学(本)期末复习提要 中央电大师范部数学教研室开放教育土木工程本科专业与水利水电工程本科专业的“工程数学(本)”课程的内容包括《大学数学——线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央电大出版社出版)两本教材的全部内容。
在这里介绍一下教学要求,供同学们复习时参考。
第1章:n 阶行列式⒈理解n 阶行列式的递归定义。
⒉掌握利用性质计算行列式的方法。
性质1 nnn nn n nnn n n n a a a a a a a a a a a a a a a a a a 212221212111212222111211=性质2 nnn n in i i jn j j n nn n n jn j j in i i na a a a a a a a a a a a a a a a a a a a a a a a 2121211121121212111211-= 性质3 nnn n in i i n nn n n in i i n a a a a a a a a a k a a a ka ka ka a a a212111211212111211= 性质4 nnn n in i i n nn n n in i i n nn n n in in i i i i n a a a b b b a a a a a a a a a a a a a a a b a b a b a a a a21211121121211121121221111211+=+++性质5nnn n jn j j in i i n nn n n jn j j jn in j i j i n a a a a a a a a a a a a a a a a a a ka a ka a ka a a a a212121112112121221111211=+++ 性质6 ),,2,1(,2211212111211n i A a A a A a a a a a a a a a a in in i i i i nnn n in i i n=+++= 性质7);,,2,1,(,02211k i n k i A a A a A a kn in k i k i ≠==+++ ⒊知道克莱姆法则。
电大本科 工程数学-期末复习试卷含答案
工程数学综合练习(一)一、单项选择题A. 1B. -1C. 0D. 24. A.B 都是〃阶矩阵(〃:>1),则下列命题正确的是(). A.AB=BAB,若AB = O ,则 A = 0或8 = 0C. (A-B)2 =A 2-2AB + B 2D.仇耳=凤同 5. 若A 是对称矩阵,则等式()成立. A. A -1 = A f B. A = —A C. A = A'D. A ,= -A1 2 6. 若 A = 3 5,则A. 0 9. 向量组a, =[1 2 3]',%=[2 2 4]',%=[1 极大无关组可取为().B. a,,a 2C.D. %,。
2,%,。
410. 向量组 %=[1,0,-2],%=[2,3,5],%=[1,2,1],则 2a,+a 2-3a 3 =b a 2 b 2a 3 a 2 3角-如C 2a 33%-打 C3B 是矩阵,则下列运算中有意义的是(). A'B D AB' 3. 己知A7.若人=2 2 2 23 3 3 3 44 4 4C. 2A. 4 2]',%= [2 3 5]'的一个 C 2 C 3C|设A 是〃xs 矩阵, AB B. BA C.2. A. 0 0 -a,若 AB = ,则。
=(8.向量组A. 1,-3,2B. 1,-3,-2]C. 1,3,-2]D. 1,3,2]11. 线性方程组」X,+X2=+X2=解的情况是(). x 2 + x 3 = 0A.无解 D.只有零解 C.有唯一非零解 D.有无穷多解12, 若线性方程组AX=O 只有零解,则线性方程组AX=b (). A.有唯一解 B.有无穷多解C.可能无解 D.无解 13. 若〃元线性方程组AX=O 有非零解,则()成立. A. r(A) < n B. r(A) = n C. |A| = 0D. A 不是行满秩矩阵14. 下列事件运算关系正确的是(). C. D. B = BA+BA15. 对于随机事件A,B.下列运算公式()成立. A. P(A + B) = P(A) + P(B) - P(AB) B. P(AB) = P(A)P(B) C. P(AB) = P(8)P(B|A) D. P(A + B) = P(A) + P(B)16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球的概率是(). A. AB. Ac. AD .210 20 252517.若随机事件满足AB = 0,则结论()成立 A. A 与8是对立事件 B. A 与B 互不相容C. A 与B 相互独立D. 1与京互不相容 18.若A, B 满足() ,则A 与8是相互独立. A. P(A + B) = P(A) + P(B) B. P(A-B) = P(A)-P(B)Dpg端 中的数组可以作为离散型随机变量的概率分布.A. B = BA + BAB. A = BA + BAC. P(AB) = P(A)P(B) 19.下列数组中,(1 1 1 3 1 1 3 12 4 16 162 4 8 820. 设X123则 P(X <2)=0.1 0.3 0.4 0.2A. 0.1B. 0.4C. 0.3D. 0.221. 随机变量X 〜8(3,:), 则 P(X <2)=()A. 0B.C.1D782822.已知X 〜N(2,22),若aX+b~ N(O,1),那么(). A. a = 2,b = -2 B.。
《工程数学》本科春季期末复习辅导(整理)
工程数学(本)11春期末复习辅导(来自中央电大)顾静相大家好!现在是工程数学(本)本学期期末网上辅导地时间,欢迎大家参与这次活动.我们首先对本课程地考核进行一些说明.本课程地考核形式为形成性考核和期末考试相结合地方式.考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格.其中形成性考核成绩占考核成绩地30%,期末考试成绩占考核成绩地70%.形成性考核地内容及成绩地评定按《中央广播电视大学人才培养模式改革与开放教育试点工程数学形成性考核册》地规定执行.期末考试地考核内容为线性代数、概率论与数理统计两个部分,包括行列式、矩阵、线性方程组、矩阵地特征值及二次型、随机事件与概率、随机变量地分布和数字特征、数理统计基础等方面地知识.期末考试采用半开卷笔试形式,题型不变.卷面满分为100分,考试时间为90分钟.半开卷考试是介于闭卷考试和开卷考试两者之间考试方式.半开卷考试与开卷考试地差别就在于允许考生携带地资料地不同,开卷考试允许考生携带任何资料,而半开卷考试只允许考生携带指定地资料,比如允许考生携带一张统一印制A4纸,考生可以将自己对课程学习内容地总结包括重点、难点、不好记忆地公式、定理等写在这张A4纸上带入考场,作为答卷地参考.下面先给出各章地复习要求,然后针对重点内容给出一些综合练习,与大家一起做好期末复习工作.行列式复习要求1.知道n阶行列式地递归定义;2.掌握利用性质计算行列式地方法;3.知道克莱姆法则.矩阵复习要求1.理解矩阵地概念,了解零矩阵、单位矩阵、数量矩阵、对角矩阵、上(下)三角矩阵、对称矩阵地定义,了解初等矩阵地定义;2.熟练掌握矩阵地加法、数乘矩阵、乘法、转置等运算;3.掌握方阵乘积行列式定理;4.理解可逆矩阵和逆矩阵地概念及性质,掌握矩阵可逆地充分必要条件;5.熟练掌握求逆矩阵地初等行变换法,会用伴随矩阵法求逆矩阵,掌握求解简单地矩阵方程地方法;6.理解矩阵秩地概念,掌握矩阵秩地求法;7.会分块矩阵地运算.线性方程组复习要求1.掌握向量地线性组合与线性表出地方法,了解向量组线性相关与线性无关地概念,会判别向量组地线性相关性;2.会求向量组地极大线性无关组,了解向量组和矩阵地秩地概念,掌握求向量组地秩和矩阵地秩地方法;3.理解线性方程组地相容性定理,理解齐次线性方程组有非零解地充分必要条件.熟练掌握用矩阵初等行变换方法判断齐次与非齐次线性方程组解地存在性和惟一性;4.熟练掌握齐次线性方程组基础解系和通解地求法;5.了解非齐次线性方程组解地结构,掌握求非齐次线性方程组通解地方法.矩阵地特征值及二次型复习要求1.理解矩阵特征值、特征多项式及特征向量地定义,掌握特征值与特征向量地求法;2.了解矩阵相似地定义,相似矩阵地性质;3.知道正交矩阵地定义和性质;4.理解二次型定义、二次型地矩阵表示、二次型地标准形,掌握用配方法化二次型为标准形地方法;5.了解正定矩阵地概念,会判定矩阵地正定性.随机事件与概率复习要求1.了解随机事件、概率等概念;2.掌握随机事件地运算,了解概率地基本性质;3.了解古典概型地条件,会求解较简单地古典概型问题;4.熟练掌握概率地加法公式和乘法公式,掌握条件概率和全概公式;5.理解事件独立性概念;6.掌握贝努里概型.随机变量地分布和数字特征复习要求1.理解随机变量地概率分布、概率密度地概念,了解分布函数地概念;2.理解期望、方差与标准差等概念,掌握求期望、方差地方法;3.熟练掌握几种常用离散型和连续型随机变量地分布以及它们地期望与方差;4.知道二维随机变量地概念,了解随机变量独立性概念;5.知道大数定律和中心极限定理.数理统计基础复习要求1.理解总体、样本、统计量地概念,知道t分布,χ2分布,F分布,会查t,χ2,F分布表;2.会参数地矩估计法,掌握参数地最大似然估计法;3.了解估计量地无偏性、有效性地概念;4.了解区间估计地概念,熟练掌握求正态总体期望地置信区间地方法;5.知道假设检验地基本思想,熟练掌握单正态总体均值地检验方法,会作单正态总体方差地检验;6.了解最小二乘法地基本思想,会求一元线性回归方程地方法和检验.刚才我们给出了本课程各章复习要求,希望大家按照这些要求,结合下面地综合练习题进行认真复习.综合练习一、单项选择题1.设为阶矩阵,则下列等式成立地是().A.B.C.D.正确答案:A2.方程组相容地充分必要条件是(),其中,.A. B.C. D.正确答案:B3.下列命题中不正确地是().A.A与有相同地特征多项式B.若是A地特征值,则地非零解向量必是A对应于地特征向量C.若=0是A地一个特征值,则必有非零解D.A地特征向量地线性组合仍为A地特征向量正确答案:D4.若事件与互斥,则下列等式中正确地是().A.B.C.D.正确答案:A5.设是来自正态总体地样本,则检验假设采用统计量U =().A. B.C. D.正确答案: C6.若是对称矩阵,则等式()成立.A. B.C. D.正确答案:B7.().A. B.C. D.正确答案:D8.若()成立,则元线性方程组有唯一解.A. B.C. D.地行向量线性相关正确答案:A9. 若条件()成立,则随机事件,互为对立事件.A.或B.或C.且D.且正确答案:C10.对来自正态总体(未知)地一个样本,记,则下列各式中()不是统计量.A. B.C. D.正确答案: C二、填空题1.设,则地根是.应该填写:1,-1,2,-22.设4元线性方程组AX=B有解且r(A)=1,那么AX=B地相应齐次方程组地基础解系含有个解向量.应该填写:33.设互不相容,且,则.应该填写:04.设随机变量X ~ B(n,p),则E(X)= .应该填写:np5.若样本来自总体,且,则.应该填写:6.设均为3阶方阵,,则.应该填写:87.设为n阶方阵,若存在数λ和非零n维向量,使得,则称为相应于特征值λ地特征向量.应该填写:8.若,则.应该填写:0.39.如果随机变量地期望,,那么.应该填写:2010.不含未知参数地样本函数称为.应该填写:统计量三、计算题1.设矩阵,求.解:由矩阵乘法和转置运算得利用初等行变换得即2.求下列线性方程组地通解.解利用初等行变换,将方程组地增广矩阵化成行简化阶梯形矩阵,即→→→方程组地一般解为:,其中,是自由未知量.令,得方程组地一个特解.方程组地导出组地一般解为:,其中,是自由未知量.令,,得导出组地解向量;令,,得导出组地解向量.所以方程组地通解为:,其中,是任意实数.3.设随机变量X ~ N(3,4).求:(1)P(1< X< 7);(2)使P(X< a)=0.9成立地常数a. (已知,,).解:(1)P(1< X< 7)==== 0.9773 + 0.8413 –1 = 0.8186(2)因为P(X< a)=== 0.9所以 ,a = 3 + =5.564.从正态总体N(,4)中抽取容量为625地样本,计算样本均值得= 2.5,求地置信度为99%地置信区间.(已知 )解:已知,n = 625,且 ~因为 = 2.5,,,所以置信度为99%地地置信区间为:.5.设矩阵,求.利用初等行变换得即由矩阵乘法得6.当取何值时,线性方程组有解,在有解地情况下求方程组地全部解.解:将方程组地增广矩阵化为阶梯形由此可知当时,方程组无解.当时,方程组有解.此时齐次方程组化为分别令及,得齐次方程组地一个基础解系令,得非齐次方程组地一个特解由此得原方程组地全部解为(其中为任意常数)7.设,试求:(1);(2).(已知)解:(1)(2)8.某车间生产滚珠,已知滚珠直径服从正态分布.今从一批产品里随机取出9个,测得直径平均值为15.1mm,若已知这批滚珠直径地方差为,试找出滚珠直径均值地置信度为0.95地置信区间.解:由于已知,故选取样本函数已知,经计算得滚珠直径均值地置信度为0.95地置信区间为,又由已知条件,故此置信区间为四、证明题1.设是阶对称矩阵,试证:也是对称矩阵.证明:是同阶矩阵,由矩阵地运算性质可知已知是对称矩阵,故有,即由此可知也是对称矩阵,证毕.2.设n阶矩阵A满足,则A为可逆矩阵.证明:因为,即所以,A为可逆矩阵.3.设向量组线性无关,令,,,证明向量组线性无关.证明:设,即因为线性无关,所以解得k1=0, k2=0, k3=0,从而线性无关.4.设随机事件,相互独立,试证:也相互独立.证明:所以也相互独立.证毕.5.设,为随机事件,试证:证明:由事件地关系可知而,故由概率地性质可知。
工程数学(本)-国家开放大学电大学习网形考作业题目答案
工程数学(本)一、单选题1.下列各函数对中,()中的两个函数相等.正确答案: B2.函数y=2sinx的值域是().A.(-2, 2)B.[-2, 2]C.(0, 2)D.[0, 2]正确答案: B3.函数y=x2+2x-7在区间(-4,4)内满足().A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升正确答案: A4.下列函数中为幂函数的是().正确答案: B5.下列函数在区间上单调递增的是().A.x3B.1/xC.-e xD.-sinx正确答案: A6.A.坐标原点B.x轴C.y轴D.y=x7.下列函数中为奇函数是().正确答案: B8.下列极限计算不正确的是().正确答案: D9.在下列指定的变化过程中,()是无穷小量.正确答案: A10.正确答案: A11.12.正确答案: B 13.正确答案: A 14.正确答案: B 15.正确答案: B 16.正确答案: D17.下列结论中()不正确.正确答案: D18.正确答案: D19.A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的正确答案: B20.正确答案: B21.正确答案: B22.下列等式成立的是().正确答案: A23.正确答案: D24.正确答案: A25.正确答案: B26.正确答案: D27.正确答案: B28.在斜率为的2x积分曲线族中,通过点(1,4)的曲线方程为().正确答案: A29.正确答案: D30.正确答案: D二、判断题1.A.对B.错正确答案: B2.A.对B.错正确答案: A3.A.对B.错正确答案: A4.A.对B.错正确答案: B5.A.对B.错正确答案: B6.A.对B.错正确答案: B7.A.对B.错正确答案: B8.A.对B.错正确答案: A9.A.对B.错正确答案: B10.A.对B.错正确答案: A11.A.对B.错正确答案: B12.A.对B.错正确答案: A13.A.对B.错正确答案: A 14.A.对B.错正确答案: B15.A.对B.错正确答案: A16.A.对B.错正确答案: B17.A.对B.错正确答案: B18.A.对B.错正确答案: A19.A.对B.错正确答案: B20.A.对B.错正确答案: B21A.对B.错正确答案: B22.A.对B.错正确答案: A23.A.对B.错正确答案: B24.A.对B.错正确答案: A25.A.对B.错正确答案: B26.A.对B.错正确答案: A27.A.对B.错正确答案: A28.A.对B.错正确答案: B29.A.对B.错正确答案: B30.A.对B.错正确答案: B 三、填空题1.设行列式,则= ______ .正确答案:-62.是关于x的一个一次多项式,则该多项式一次项的系数是.正确答案:23.乘积矩阵中元素 C21= ______.正确答案:-164.设A,B均为3阶矩阵,且,则=.正确答案:-725.矩阵的秩为.正确答案:16.若线性方程组有非零解,则.正确答案:-17.一个向量组中如有零向量,则此向量组一定线性.正确答案:相关8.向量组的秩与矩阵的秩.正确答案:相等9.设线性方程组AX=0中有5个未知量,且秩(A)=3,则其基础解系中线性无关的解向量有个.正确答案:210.设A为n阶方阵,若存在数和非零n维向量X,使得,则称数为A的______ .正确答案:特征值11.如果两事件A,B中任一事件的发生不影响另一事件的概率,则称事件A与事件B是.正确答案:独立的12.已知,则当A,B事件互不相容时,=.正确答案:0.313.若,则=.正确答案: 0.997314.称为二维随机变量(X,Y)的.正确答案:协方差15.若都是的无偏估计,而且,则称更 .正确答案:有效四、解答题1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 答案:2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '=答案:3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦.答案:4.求齐次线性方程组1234123413430240450x x x xx x x xx x x-+-=⎧⎪--+=⎨⎪-+=⎩的通解.答案:5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的通解.答案:6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 答案:7. 当λ取何值时,非齐次线性方程组123123123 124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩答案:有解?在有解的情况下求方程组的通解.8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.答案:9. 设()3,4XN ,试求:(1)()59P X <<;(2)()7P X >.(已知()10.8413Φ=, ()20.9772Φ=,()30.9987Φ=)10. 设2~(1,2)X N ,试求:(1)(3)P X <;(2)求常数a ,使得(1)0.9974P X a -<=(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).11. 设2~(20,2)X N ,试求:(1)(2226)P X <<;(2)(24)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=)12. 设2~(3,2)X N ,试求:(1)(5)P X <;(2)(9)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).13. 设某一批零件重量X 服从正态分布2(,0.6)N μ,随机抽取9个测得平均重量为5(单位:千克),试求此零件重量总体均值的置信度为0.95的置信区间(已知0.9751.96u=).14.为了对完成某项工作所需时间建立一个标准,工厂随机抽查了16名工人分别去完成这项工作,结果发现他们所需的平均时间为15分钟,样本标准差为3分钟. 假设完成这项工作所需的时间服从正态分布,在标准差不变的情况下,试确定完成此项工作所需平均时间的置信度为0.95的置信区间(已知0.9751.96u=). 答案:15. 某校全年级的英语成绩服从正态分布2(85,10)N ,现随机抽取某班16名学生的英语考试成绩,得平均分为80x =. 假设标准差没有改变,在显著水平0.05α=下,问能否认为该班的英语平均成绩为85分(已知0.975 1.96u =). 答案:16. 据资料分析,某厂生产的砖的抗断强度X 服从正态分布(32.5,1.21)N . 今从该厂最近生产的一批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.18. 假设标准差没有改变,在0.05的显著性水平下,问这批砖的抗断强度是否合格.(0.975 1.96u =) 答案:五、证明题+'是对称矩阵.1.对任意方阵A,试证A A答案:+-=,试证矩阵A可逆.2.设n阶方阵A满足2A A I O答案:3.设随机事件A与B相互独立,试证A与B也相互独立.答案:4.设A B,为两个事件,且B A⊂,试证()()P A B P A+=.答案:。
《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案
试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试题2012年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A . AB A B +=+ B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。
A .0,2 B .0,6C .0,0D .2,64.若随机变量(0,1)X N :,则随机变量32Y X =-: ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111O A B O ---⎡⎤=⎢⎥⎣⎦ .8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B .9.若随机变量[0,2]X U :,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --. 12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)X N :,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
1080电大工程数学期末复习
《工程数学》期末综合练习题工程数学(本)课程考核说明(修改稿)I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生.本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学-—线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。
考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。
本考核说明是工程数学(本)课程期末考试命题的依据。
工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平.因此,考试应具有较高的信度、效度和一定的区分度。
试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。
考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。
期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。
三个不同层次由低到高在期末试卷中的比例为:2:3:5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电大工程数学期末复习考试必备资料小抄一、单项选择题1. 设2321321321=c c c b b b a a a ,则=---321332211321333c c c b a b a b a a a a (A ). A. 2- 2. 设A 是n s ⨯矩阵,B 是m s ⨯矩阵,则下列运算中有意义的是( D ).D. AB '3. 已知⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=21101210,20101B a A ,若⎥⎦⎤⎢⎣⎡=1311AB ,则=a ( B ). B. 1- 4.B A ,都是n 阶矩阵()1>n ,则下列命题正确的是 ( D ) .D .B A AB = 5. 若A 是对称矩阵,则等式(C )成立. C. A A =' 6. 若⎥⎦⎤⎢⎣⎡=5321A ,则=*A (D ). D. ⎥⎦⎤⎢⎣⎡--1325 7. 若⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则秩=)(A (B ). B. 1 8. 向量组10001200123012341111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,的秩是(A ). A. 49. 向量组]532[,]211[,]422[,]321[4321'='='='=αααα的一个极大无关组可取为(B ).B. 21,αα10. 向量组[][][]1,2,1,5,3,2,2,0,1321==-=ααα,则=-+32132ααα(B ).[]2,3,1--11. 线性方程组⎩⎨⎧=+=+013221x x x x 解的情况是(D )D. 有无穷多解12. 若线性方程组AX =0只有零解,则线性方程组AX b =(C ).C. 可能无解 13. 若n 元线性方程组AX =0有非零解,则( A )成立.A. r A n ()< 14. 下列事件运算关系正确的是( A ).A. BA A B B +=15. 对于随机事件A B ,,下列运算公式( A )成立.A. )()()()(AB P B P A P B A P -+=+16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D ).25917. 若随机事件A ,B 满足AB =∅,则结论(B )成立.A 与B 互不相容18. 若A B ,满足(C ),则A 与B 是相互独立.C. )()()(B P A P AB P = 19. 下列数组中,(C )中的数组可以作为离散型随机变量的概率分布.163161412120. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P (B ). B .0.4 21. 随机变量)21,3(~B X ,则=≤)2(X P (D ). D. 8722. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么(C ).1,21-==b a23. 若)4,2(~N X ,Y =(C ),则Y N ~(,)01. C. 22-X24. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( A )是统计量.A. 1x 25. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(D )是μ无偏估计.D.321535151x x x ++ ⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).D. -6 ⒉若000100002001001a a=,则a =(A )⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ).C. 10 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B )⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D )⒍下列结论正确的是( A ).若A 是正交矩阵,则A -1也是正交矩阵⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ).5321--⎡⎣⎢⎤⎦⎥ ⒏方阵A 可逆的充分必要条件是(B) ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).()A B A AB B +=++2222⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).[,,]--'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).有唯一解 ⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ).A. 3 ⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).可能无解 ⒎以下结论正确的是(D ).齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.至少有一个向量 10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.B PAP =-1 ⒈A B ,为两个事件,则(B )成立.()A B B A +-⊂⒉如果(C )成立,则事件A 与B 互为对立事件.AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ).307032⨯⨯..4. 对于事件A B ,,命题(C )⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ).)1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.87.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ).xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B )9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. ⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.x 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.x x x 123--1. 若0351021011=---x ,则=x (A ).A. 32. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是(B ). A 1 B 2 C 3 D 43. 设B A ,为n 阶矩阵,则下列等式成立的是(C ).B A B A '+'='+)(4. 若A B ,满足(B ),则A 与B 是相互独立.)()()(B P A P AB P = 5. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式(D )成立.22)]([)()(X E X E X D -=1. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(B )矩阵时,乘积B C A ''有意义.42⨯2. 向量组[][][][]αααα1234000*********====,,,,,,,,,,,的极大线性无关组是(A ).ααα234,,3. 若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA,则当λ=(D )时线性方程组有无穷多解.124. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(C ). 1215. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是(B ).未知方差,检验均值二、填空题1. 1111111---x x 是关于x 的一个多项式,该式中一次项x 系数是 2 . 2. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12 .3. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵方程D BXC A =+的解=X 11)(---C A D B .4. 若方阵A 满足A A '=,则A 是对称矩阵. 5.设矩阵⎥⎦⎤⎢⎣⎡=1111A ,则r A ()= 1 . 6. =⎥⎦⎤⎢⎣⎡-12514⎥⎦⎤⎢⎣⎡--451231.7. 向量组)01(),110(),011(321k ===ααα线性相关,则_____=k .1-8.含有零向量的向量组一定是线性 相关 的.9. 若n 元线性方程组0=AX 满足r A n ()<,则该线性方程组有非零解.10. 线性方程组b AX =中的一般解的自由元的个数是2,其中A 是54⨯矩阵,则方程组增广矩阵)(b A r = 3 .11. 齐次线性方程组0=AX 的系数矩阵经初等行变换化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→→000020103211 A则方程组的一般解为 4342431,(22x x x x x x x ⎩⎨⎧=--= .是自由未知量)12. 当λ= 1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解.13. 若5.0)(,1.0)(,9.0)(===+B A P B A P B A P ,则)(AB P 3.0 . 14. 设A ,B 为两个事件,若)()()(B P A P AB P =,则称A 与B 相互独立 .15. 设随机变量⎥⎦⎤⎢⎣⎡-25.03.0101~a X ,则a =45.0.16. 设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k =π4.17. 设随机变量⎥⎦⎤⎢⎣⎡5.02.03.0210~X ,则=≠)1(X P 8.0.18. 设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它103)(2x x x f , 则=<)21(X P 81.19. 已知随机变量⎥⎦⎤⎢⎣⎡-5.05.05.05.05201~X ,那么=)(X E 3 . 20. 设随机变量)15.0,100(~B X ,则=)(X E 15 . 21. 设随机变量X 的期望存在,则E X E X (())-= 0 .22. 设随机变量X ,若5)(,2)(2==X E X D ,则=)(X E 3.23. 不含未知参数的样本函数称为统计量.24. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i i x )104,(μN .25. 若参数θ的两个无偏估计量1ˆθ和2ˆθ满足)ˆ()ˆ(21θθD D >,则称2ˆθ比1ˆθ更 有效 .⒈2114001---= 7 .⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设⒈当λ= 1 时,齐次线性方程组x x x x 12120+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根.10.若矩阵A满足A A '=-1 ,则称A为正交矩阵.是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . ⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 . 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P . 4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 . 9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . 1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.1. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A BB A )(1'-2. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则_____=k .1-3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 6.0.4. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E 4.2.5. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i i x )104,(μN . 1. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB 8-.2.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,则_________________)(=A r .2 3. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为)(C B A +.4. 设随机变量)15.0,100(~B X,则=)(X E 15.5. 设n x x x ,,,21 是来自正态总体N (,)μσ2的一个样本,∑==ni ix n x 11,则=)(x D n2σ.三、计算题1. 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=244213001,543322011B A ,证明B A -可逆,并求1)(--B A .解: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-301111010B A , 因为023111301111010≠=---=--=-B A ,所以B A - 可逆 且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--=--212121001212323)(1B A 2. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=423532211A ,求(1)A ,(2)1-A .解: (1)1111021121110211423532211=---=---=---=A (2)利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103210012110001211100423010532001211 →-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511→------⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥110922010721001511100201010721001511 即 A -=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1201721511 3. 设矩阵A B =--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥101011111122212221,,求A -1及A BA -1.解: 利用初等行变换得101100011010111001101100011010012101--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥101100011010003111101100011010001131313 →--⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥→----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥101100010132313001131313100231313010132313001131313 即A -=----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1132******** 由矩阵乘法得A BA -=----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113211121111122212221101011111 4. 已知B AX X +=,其中02323347,5858901A B --⎡⎤⎡⎤⎢⎥⎢⎥=---=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦,求X . 解:由方程B AX X +=,得()I A X B -=,且1233575810I A ⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→121100255010364021121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 1()I A --=641552121--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦由矩阵乘法得164123813()55258152312101812X I A B ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦5. 设矩阵11512112353181913978A --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦,求矩阵A 的秩. 解:用初等行变换将矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----68144034720347202151187931918135321121511 11512027430000000000--⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦由此可知矩阵的秩为2. 6. 求向量组[]11,3,2,1,1α=---,[]23,8,4,1,0α=---,[]32,1,4,2,1α=--,[]41,2,6,1,2α=---的秩,并求该向量组的一个极大无关组.解:将向量组组成的矩阵化为阶梯形1321138410214211261213211012230580305803-----------⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥→--------⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥1321101223002101200000---⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥⎣⎦ 由此可知该向量组的秩为3,且321,,ααα是一个极大无关组. 7. 分别说明当a b ,取何值时,线性方程组x x x x x x x x x x x x x x x ax b12341234123412343127224321248-+-=-+-+=--++=-++=⎧⎨⎪⎪⎩⎪⎪无解、有唯一解、有无穷多解.在有无穷多解的情况下求出一般解. 解: 将方程组的增广矩阵化为阶梯形13111272121432124813111010100123002622-------⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥→----+-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥a b a b →---+-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥→-----⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥131110110002200064213111010100022000022a b a b …当a b =≠22,时,方程组无解。