初中数学几何题(超难)及答案分析

合集下载

初中数学经典几何题及答案解析

初中数学经典几何题及答案解析

4e d c 经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CEBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.FPDE CBAAPCBACBPDEDCA A CBPD经典难题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何题(超难)及答案分析-七年级几何题超难

初中数学几何题(超难)及答案分析-七年级几何题超难

1、已知:如图,O 是半圆的圆心, 求证:CD= GF .(初三)2、已知:如图,P 是正方形 ABCD 内点, ∠ PAD =∠ PDA = 15°.求证:△ PBC 是正三角形.(初二)4、已知:如图,在四边形 ABCD 中,AD = BC , M 、N 分别是 AB 、CD 的中点,AD 、BCMN 于 E 、F . 求证:∠ DEN = ∠ F .5、已知:△ ABC 中,H 为垂心(各边高线的交点)(1) 求证:AH = 2OM ;(2) 若∠ BAC = 60°,求证:AH = AO .(初三)几何经典难题HE3、如图,已知四边形 ABCD 、A I B I C I D I 都是正方形,A 2、B 2、C ?、D ?分别是AA 1>BB 1、 CC 1∖ DD I的中点.求证:四边形 A 2B 2C 2D 2是正方形.的延长线交BC(初二),O 为外心,且OM 丄BC 于M .6、设MN 是圆O 外一直线,过 O 作OA 丄MN 于A ,自A 引圆的两条直线,交圆于 B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP = AQ .(初三)7、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过 MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .8如图,分别以厶 ABC 的AC 和BC 为一边,在△ ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点P是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二)求证:AP = AQ .(初三 )GN9、如图,四边形 ABCD 为正方形, 求证:CE = CF .(初二)11、设P 是正方形 ABCD 一边BC 上的任求证:PA = PF .(初二)12、如图,PC 切圆O 于C , AC 为圆的直径,证:AB = DC , BC = AD .(初三)求证: AE = AF .(初二)An10、如图,四边形 ABCD 为正方形, AF 与直线PO 相交于B 、D .求DE //AC ,DE //ACEPEF 为圆的割线,AE、13、已知:△ ABC 是正三角形,P 是三角形内一点, 求:∠APB 的度数.(初二)15、设ABCD 为圆内接凸四边形,求证: AB ∙ CD + AD ∙ BC = AC ∙ BD .(初三)16、平行四边形 ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE = CF .求证:∠ DPA =∠ DPC .(初二)14、设P 是平行四边形 ABCD 内部的一点,且∠ 求证:∠ PAB = ∠ PCB .(初二) PBA = ∠PDA .17、设P 是边长为1的正△ ABC 内任一点, L = PA + PB + PC ,求证:'≤ L V 2.18、已知:P是边长为1的正方形ABCD内的一点,求PA + PB + PC的最小值.19、P为正方形ABCD内的一点,并且PA = a, PB= 2a, PC = 3a,求正方形的边长.AD20、如图,△ ABC 中,∠ ABC =∠ ACB = 80°,=20°,求∠ BED的度数.D、E 分别是AB、AC 上的点,∠ DCA = 300,∠ EBA解答1•如下图做GH丄AB,连接E0。

初中数学经典几何题及答案,附知识点及结论总结

初中数学经典几何题及答案,附知识点及结论总结

经典难题(一)1、已知:如图,0是半圆的圆心,C、E是圆上的两点,CE U AB EF丄AB, EGLCO2、已知:如图, P是正方形ABCD内点,求证:C[> GF (初二)求证:△ PBC是正三角形.(初二)3、如图,已知四边形ABCD ABQD都是正方形,/ PAB的中点.求证:四边形AB2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中, A»BC M线交MN于E、F.求证:/ DEN=Z F .1、已知:△ ABC中,H为垂心(各边高线的交点),0为外心,且OM L BC于M(1) 求证:AH= 20M经典难题(三)求证:CE= CF.(初二)求证:AE= AF.(初二) 3、设P 是正方形ABCD-边BC 上的任一点,PF 丄AP,求证:P 心PF.(初二)2、设MN 是圆0外一直线,过0作0A ±MN 于A ,自A 引圆的两条直线,交圆于 B 、C 及D E ,直线EB 及CD 分别交MN 于P 、Q.求证:A 吐AQ (初二)3、如果上题把直线 MN 由圆外平移至圆内,设MN 是圆0的弦,过 MN 的中点A 任作两弦BC DE 设CD EB 分别交MN 于P 、Q.求证:A 吐AQ (初二)4、如图,分别以厶ABC 的 AC 和BC 为一边,在△ ABC 的外侧作正方ACDE 和正方形CBFG 点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二1、如图,四边形ABC 助正方形,DE// AC ,AE= AC ,AE 与 CD 相交于 F .2、如图,四DE// AC ,且 CE= CA线EC 交DA 延长线,CEE4、如图,PC切圆0于C, AC为圆的直径,PEF为圆的割线,AE AF与直线PO相交于B、D.求求:/ APB的度数.(初二)2、设P是平行四边形ABCM部的一点,且/ PBA^Z求证:/ PAB=Z PCB (初二)3、设ABC助圆内接凸四边形,求证:AB- CM AD- BO AC- BD (初三)4、平行四边形ABC冲,设E、F分别是BC AB上的一点,AE与QF相交且AE= CF.求证:/ DPA F Z DPC (初二)经典难题(五)1、设P 是边长为1的正△ ABC 内任一点,L = PA + PB + PC ,求证:< L V 2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA + PB+ PC 的最小值.~C DB ADA / DCA CB GFHkZCAC B°,Z EBAC3、P 为正方形ABCD 内的一点,并且 PA = a , P 吐2a , PO 3a ,求正方形的边长.4、如图,△ ABC 中,/ ABC=ZACB= 80°, D E 分别是 AB =20°,求/ BED 勺度数. 经典难题(一)1.如下图做GH L AB,连接EQ 由于GOF 四点共圆,所以/ 即厶GHI ^A OGE 可得匹GQ =CO,又 CO=EQ 所以 CD=G 得证。

初中数学经典几何题及答案

初中数学经典几何题及答案

经典难题(一)之杨若古兰创作1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、B2、C2、D2分别是AA1、BB1、CC1求证:四边形A2B2C2D2是正方形.4、已知:如图,在四边形ABCD 中,AD 是AB 、CD 的中点,AD 、BCF .求证:∠DEN=∠F.经典难题(二)1、已知:△ABC 中,H 心,且OM⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC=600,求证:AH =AO .2、设MN 是圆O 外不断线,过O 作引圆的两条直线,交圆于B 、C 及D 、E AG CEB分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN DE ,设CD 、EB 分别交MN 于P 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC和BC 侧作正方形ACDE 和正方形求证:点P 到边AB 的距离等于1、如图,四边形ABCD 与CD 订交于F .求证:CE =CF .2、如图,四边形直线EC 交DA 求证:AE =AF .3、设P 是正方形平分∠DCE.求证:PA =PF .4、如图,PC 切圆O 线,AE 、AFBC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC =AC·BD.(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 订交于P ,且AE =CF .求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L<2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.APC B PADCBCBDA FPDE CBAAP C BACBPD3、P为正方形ABCD内的一点,而且PA=a=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800 AB、AC上的点,∠DCA=300,∠EBA=200度数.经典难题(一)答案1.如下图做GH⊥AB,连接EO.因为GOFE ∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证.2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150所以∠DCP=300 ,从而得出△PBC是正三角形3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E 并耽误订交于Q点,连接EB2并耽误交C2Q于H点,连接FB2并耽误交A2Q 于G点,由A2E=12A1B1=12B1C1= FB2 ,EB2=12AB=12BC=FC1 ,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 ,可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形.4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F.经典难题(二)1.(1)耽误AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证.3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ.因为22ADAC CD FD FD AB AE BE BG BG,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE. 又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ.4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH.可得PQ=2EGFH .由△EGA≌△AIC,可得EG=AI ,由△BFH≌△CBI,可得FH=BI.从而可得PQ=2AIBI =2AB ,从而得证.经典难题(三)1.顺时针扭转△ADE,到△ABG,连接CG. 因为∠ABG=∠ADE=900+450=1350从而可得B ,G ,D 在一条直线上,可得△AGB≌△CGB. 推出AE=AG=AC=GC ,可得△AGC 为等边三角形. ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750. 又∠EFC=∠D FA=450+300=750. 可证:CE=CF.2.连接BD 作CH⊥DE,可得四边形CGDH 是正方形.由AC=CE=2GC=2CH ,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可晓得∠F=150,从而得出AE=AF.3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X .tan∠BAP=tan∠EPF=XY =ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证.经典难题(四)1.顺时针扭转△ABP 600 ,连接PQ ,则△PBQ是正三角形.可得△PQC是直角三角形.所以∠APB=1500 .2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等).可得∠BAP=∠BEP=∠BCP,得证.3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE BC =ADAC,即AD•BC=BE•AC,①又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB AC =DEDC,即AB•CD=DE•AC,②由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证.4.过D 作AQ⊥AE ,AG⊥CF ,由ADES=2ABCDS =DFC S ,可得:2AE PQ =2AEPQ,由AE=FC.可得DQ=DG ,可得∠DPA=∠DPC(角平分线逆定理).经典难题(五)1.(1)顺时针扭转△BPC 600 ,可得△P BE 为等边三角形.既得PA+PB+PC=AP++PE+EF 要使最小只需AP ,PE ,EF 在一条直线上,即如下图:可得最小L=;(2)过P 点作BC 的平行线交AB,AC 与点D ,F. 因为∠APD>∠ATP=∠ADP,推出AD>AP①又BP+DP >BP ② 和PF+FC>PC ③ 又DF=AF ④由①②③④可得:最大L< 2 ; 由(1)和(2)既得:≤L<2 .2.顺时针扭转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP+PE+EF 要使最小只需AP ,PE ,EF 在一条直线上,即如下图:可得最小PA+PB+PC=AF. 既得213(1)42= 23=4232= 231)2=1)2=622 .3.顺时针扭转△ABP 900 ,可得如下图: 既得正方形边长L =2222(2)()22a = 522a .4.在AB 上找一点F ,使∠BCF=600 ,连接EF ,DG ,既得△BGC 为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE .推出 : △FGE 为等边三角形 ,可得∠AFE=800 , 既得:∠DFG=400① 又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400② 推得:DF=DG ,得到:△DFE≌△DGE , 从而推得:∠FED=∠BED=300 .。

初中的数学经典几何的题目(难)及问题详解分析报告

初中的数学经典几何的题目(难)及问题详解分析报告

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 A N FE CDMBPCG FBQADE 经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)· A D HE M C B O · GAO D B EC Q P NM · O Q PB DE C N M · A1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)D AF D E C B E DA CB F F EP C B A O D BFAECP1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)AP CB P A DCB CBDAFPDE CBA1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA=200,求∠BED 的度数.经典难题(一)APCB ACBPDEDCB A A CBPD1.如下图做GH⊥AB,连接EO。

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)A P C DBA F GCE BO D D 2 C 2 B 2 A 2D 1 C 1 B 1 C B DA A 1 A N F E C DMB· A D H E M C B O· GO DB ECP C GF BQ AD E3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)· O Q PBDE CN M · A D AF D E C B ED A C B FFEP C B AOD B FA E CPA P2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五) 1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.PA D CBC BD AF PDE CB A APCBA C BPD ED AAC BPD经典难题(一)1.如下图做GH ⊥AB,连接EO 。

(完整版)初中数学几何题(超难)及答案分析

(完整版)初中数学几何题(超难)及答案分析

几何经典难题1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .5、已知:△ABC 中,H 为垂心(各边高线的交点)(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三)A P C D BA FG CE B O D D 2C 2 B 2 A 2D 1C 1B 1C B DA A 1 BF6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三)7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 )8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.N9、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)10、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .11、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)12、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E E P13、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)14、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)15、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)16、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .17、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.AP C B PA D CB CB D AFPDECBA18、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.19、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.20、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.CCD解答1.如下图做GH ⊥AB,连接EO 。

(完整版)初中数学经典几何题及答案

(完整版)初中数学经典几何题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC 是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.经典难题(一)1.如下图做GH ⊥AB,连接EO 。

初中数学经典几何题及答案,附知识点及结论总结

初中数学经典几何题及答案,附知识点及结论总结

P C G FBQ A D E 经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .APCDBAF G CE B O D D 2 C 2B 2 A 2 D 1C 1B 1C BD A A 1 A N FE C D MB · AD HE M C B O ·GAO D B E CQ P NM ·O Q PB DEC NM ·ADAFD EC BED ACBF F E P CB A ODB FAEP A求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典难题(一)1.如下图做GH⊥AB,连接EO。

(完整版)初中数学几何题(超难)及答案分析

(完整版)初中数学几何题(超难)及答案分析

PCE GA 2 D 2 A 1 D 1B 1C 1B 2C 2几何经典难题1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三)2、已知:如图,P 是正方形 ABCD 内点, ∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)ADO F BADBC3、如图,已知四边形 ABCD 、A 1B 1C 1D 1 都是正方形,A 2、B 2、C 2、D 2 分别是 AA 1、BB 1、CC 1、DD 1 的中点. A D求证:四边形 A 2B 2C 2D 2 是正方形.(初二)BC4、已知:如图,在四边形 ABCD 中,AD =BC ,M 、N 分别是 AB 、CD 的中点,AD 、BC 的延长线交 MN 于 E 、F .求证:∠DEN =∠F .B5、已知:△ABC 中,H 为垂心(各边高线的交点), M . (1) 求证:AH =2OM ; A (2) 若∠BAC =600,求证:AH =AO .(初三)GCP6、设 MN 是圆 O 外一直线,过 O 作 OA ⊥MN 于 A ,自 A 引圆的两条直线,交圆于 B 、C 及 D 、E ,直线 EB 及 CD 分别交 MN 于 P 、Q . G求证:AP =AQ .(初三)MN7、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、DE ,设 CD 、EB 分别交 MN 于 P 、Q . 求证:AP =AQ .(初三 ) EB8、如图,分别以△ABC 的 AC 和 BC 为一边,在△ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点 P 是 EF 的中点. D求证:点 P 到边 AB 的距离等于 AB 的一半.(初二)EFQBFBCFB O DEF9、如图,四边形 ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与 CD 相交于 F . 求证:CE =CF .(初二)ADEBC10、如图,四边形 ABCD 为正方形,DE ∥AC ,且 CE =CA ,直线 EC 交 DA 延长线于 F . 求证:AE =AF .(初二)A DFE11、设 P 是正方形 ABCD 一边 BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二) ADB12、如图,PC 切圆 O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线 PO 相交于 B 、D .求证:AB =DC ,BC =AD .(初三) APCPPDBC13、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)ABC14、设 P 是平行四边形 ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) ADBC15、设 ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)A16、平行四边形 ABCD 中,设 E 、F 分别是 BC 、AB 上的一点,AE 与 CF 相交于 P ,且AE =CF .求证:∠DPA =∠DPC .(初二)A DB17、设 P 是边长为 1 的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.FP ECPP P18、已知:P 是边长为1 的正方形ABCD 内的一点,求PA+PB+PC 的最小值.A DAB CB C19、P 为正方形ABCD 内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.A DB C20、如图,△ABC 中,∠ABC=∠ACB=800,D、E 分别是AB、AC 上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.AC解答1.如下图做GH⊥AB,连接EO。

初中数学经典几何题(难)及答案

初中数学经典几何题(难)及答案

经典难题(一)1.已知:如图,O 是半圆的圆心,C.E 是圆上的两点,CD ⊥AB,EF ⊥AB,EG ⊥CO . 求证:CD =GF .(初二)2.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3.如图,已知四边形ABCD.A 1B 1C 1D 1都是正方形,A 2.B 2.C 2.D 2分别是AA 1.BB 1.DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二)4.已知:如图,在四边形ABCD 中,AD =BC,M.N 分别是AB.CD 的中点,AD.BC 的延长线交MN 于E.F .求证:∠DEN =∠F .经典难题(二)A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 BF 1.已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A,自A 引圆的两条直线,交圆于B.C 及D.E,直线EB 及CD 分别交MN 于P.Q . 求证:AP =AQ .(初二)3.如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC.DE,设CD.EB 求证:AP =AQ .(初二)4.如图,分别以△ABC 的AC 和BC 为一边,在△ABC 点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二经典难1.如图,四边形ABCD 为正方形,DE ∥AC,AE =AC,AE 与CD 相交于F . 求证:CE =CF .(初二)2.如图,四边形ABCD 为正方形,DE ∥AC,且CE =CA,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3.设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP,CF 平分∠DCE . 求证:PA =PF .(初二)4.如图,PC 切圆O 于C,AC 为圆的直径,PEF 为圆的割线,AE.AF 与直线PO 相交于B.D .求证:AB =DC,BC =AD .(初三)经典难题(四)1.已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2.设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3.设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4.平行四边形ABCD 中,设E.F 分别是BC.AB 上的一点,AE 与CF 相交于P,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1.设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC,求证:≤L <2.P A D CB CB DA F PDE CBAAPCB2.已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3.P 为正方形ABCD 内的一点,并且PA =a,PB =2a,PC =3a,求正方形的边长.4.如图,△ABC 中,∠ABC =∠ACB =800,D.E 分别是AB.AC 上的点,0=200,求∠BED 的度数.答案经典难题(一)1.如下图做GH ⊥AB,连接EO 。

初中数学经典几何题(难)及答案分析

初中数学经典几何题(难)及答案分析

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.AP CB ACBPDEDCB A A CBPD1.如下图做GH⊥AB,连接EO。

初中数学经典几何题及答案,附知识点及结论总结

初中数学经典几何题及答案,附知识点及结论总结

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A FG CE B O D D 2 C 2B 2 A 2 D 1C 1 B 1C B DA A 1BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC 是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)1、设P是边长为1的正△ABC任一点,L=PA≤L<2.2、已知:P是边长为1的正方形ABCD的一点,求PA+PB+PC3、P为正方形ABCD的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC∠EBA=200,求∠BED的度数.经典难题(一)1.如下图做GH⊥AB,连接EO。

初中数学经典几何题及答案-附知识点及结论总结

初中数学经典几何题及答案-附知识点及结论总结

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC 是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC0,∠EBA =200,求∠BED 的度数.经典难题(一)1.如下图做GH ⊥AB,连接EO 。

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .APCDBAFG CEBODD 2C 2B 2A 2D 1C 1B 1C B DAA 1NFE CDPC GFBQADE1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)· A DHE M CBO·GA O DBECQPNM· O QPBDEC NM · A1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)DA FDEC BEDACBFFEPCBAO D B FAECP1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)APCBPADCBCBDAFPDE CBA1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDA A CBPD1.如下图做GH⊥AB,连接EO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何经典难题1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .5、已知:△ABC 中,H 为垂心(各边高线的交点)(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三)A P C D BA FG CE B O D D 2C 2 B 2 A 2D 1C 1B 1C B DA A 1 BF6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三)7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 )8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.N9、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)10、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .11、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)12、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E E P13、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)14、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)15、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)16、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .17、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.AP C B PA D CB CB D AFPDECBA18、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.19、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.20、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.CCD解答1.如下图做GH ⊥AB,连接EO 。

由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。

2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形3.如下图连接BC 1和AB 1分别找其中点F,E.连接C 2F 与A 2E 并延长相交于Q 点, 连接EB 2并延长交C 2Q 于H 点,连接FB 2并延长交A 2Q 于G 点,由A 2E=12A 1B 1=12B 1C 1= FB 2 ,EB 2=12AB=12BC=F C 1 ,又∠GFQ+∠Q=900和∠GE B 2+∠Q=900,所以∠GE B 2=∠GFQ 又∠B 2FC 2=∠A 2EB 2 , 可得△B 2FC 2≌△A 2EB 2 ,所以A 2B 2=B 2C 2 , 又∠GFQ+∠HB 2F=900和∠GFQ=∠EB 2A 2 , 从而可得∠A 2B 2 C 2=900 , 同理可得其他边垂直且相等,从而得出四边形A 2B 2C 2D 2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

5.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。

6.证明:作E点关于GA的对称点F,连FQ、FA,FC,∵OA⊥MN,EF⊥OA,则有∠FAP=∠EAQ,∠EAP=∠FAQ,FA=EA,∵∠PAF=∠AFE=∠AEF=180-∠FCD,∵∠PAF=180-∠FAQ,∴∠FCD=∠FAQ,∴FCAQ四点共圆,∠AFQ=∠ACQ=∠BED,在△EPA和△FQA中∠PEA=∠QFAAF=AE∠PAE=∠QAF,∴△EPA≌△FQA,∴AP=AQ.7.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。

由于22AD AC CD FD FD AB AE BE BG BG,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。

又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ。

8.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。

可得PQ=2EGFH。

由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。

从而可得PQ=2AI BI=2AB,从而得证。

9.顺时针旋转△ADE ,到△ABG ,连接CG . 由于∠ABG=∠ADE=900+450=1350从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。

推出AE=AG=AC=GC ,可得△AGC 为等边三角形。

∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。

又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。

10.连接BD作CH⊥DE,可得四边形CGDH是正方形。

由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。

11.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。

令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。

tan∠BAP=tan∠EPF=XY=ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证。

12.证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ•PO(射影定理),又PC2=PE•PF,所以EFOQ四点共圆,∠EQF=∠EOF=2∠BAD,又∠PQE=∠OFE=∠OEF=∠OQF,而CQ⊥PD,所以∠EQC=∠FQC,因为∠AEC=∠PQC=90°,故B、E、C、Q四点共圆,所以∠EBC=∠EQC=1/2∠EQF=1/2∠EOF=∠BAD,∴CB∥AD,所以BO=DO,即四边形ABCD是平行四边形,∴AB=DC,BC=AD.13.顺时针旋转△ABP 600,连接PQ ,则△PBQ是正三角形。

可得△PQC是直角三角形。

所以∠APB=1500。

14.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE ∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等)。

可得∠BAP=∠BEP=∠BCP,得证。

15.在BD 取一点E ,使∠BCE=∠ACD ,既得△BEC ∽△ADC ,可得:BE BC =AD AC,即AD •BC=BE •AC , ①又∠ACB=∠DCE ,可得△ABC ∽△DEC ,既得AB AC =DEDC,即AB •CD=DE •AC , ② 由①+②可得: AB •CD+AD •BC=AC(BE+DE)= AC ·BD ,得证。

16.过D 作AQ ⊥AE ,AG ⊥CF ,由ADE S=2ABCDS=DFCS,可得:2AE PQ =2AE PQ,由AE=FC 。

可得DQ=DG ,可得∠DPA =∠DPC (角平分线逆定理)。

17.(1)顺时针旋转△BPC 600 ,可得△PBE 为等边三角形。

既得PA+PB+PC=AP++PE+EF 要使最小只要AP ,PE ,EF 在一条直线上, 即如下图:可得最小L=;(2)过P 点作BC 的平行线交AB,AC 与点D ,F 。

由于∠APD>∠ATP=∠ADP ,推出AD>AP ①又BP+DP>BP ② 和PF+FC >PC ③ 又DF=AF ④由①②③④可得:最大L< 2 ; 由(1)和(2)既得:≤L <2 。

18.顺时针旋转△BPC 600 ,可得△PBE 为等边三角形。

既得PA+PB+PC=AP+PE+EF 要使最小只要AP ,PE ,EF 在一条直线上, 即如下图:可得最小PA+PB+PC=AF 。

既得213(1)42= 23=4232=2(31)2= 231)2=622。

19.顺时针旋转△ABP 900 ,可得如下图:既得正方形边长L = 2222(2)()22a = 522a 。

20.在AB上找一点F,使∠BCF=600,连接EF,DG,既得△BGC为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF ,得到BE=CF ,FG=GE 。

推出:△FGE为等边三角形,可得∠AFE=800,既得:∠DFG=400①又BD=BC=BG ,既得∠BGD=800,既得∠DGF=400②推得:DF=DG ,得到:△DFE≌△DGE ,从而推得:∠FED=∠BED=300。

相关文档
最新文档