初中数学几何题(超难)及答案分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何经典难题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三)

2、已知:如图,P 是正方形ABCD 内点,

∠PAD =∠PDA =150.

求证:△PBC 是正三角形.(初二)

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1

的中点.

求证:四边形A 2B 2C 2D 2是正方形.(初二)

4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交

MN 于E 、F .

求证:∠DEN =∠F .

5、已知:△ABC 中,H 为垂心(各边高线的交点)

(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三)

A P C D B

A F

G C

E B O D D 2

C 2 B 2 A 2

D 1

C 1

B 1

C B D

A A 1 B

F

6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A

,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三)

7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:

设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 )

8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P

是EF 的中点.

求证:点P 到边AB 的距离等于AB 的一半.

N

9、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .

求证:CE =CF .(初二)

10、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .

求证:AE =AF .

11、设P 是正方形ABCD 一边BC

求证:PA =PF .(初二)

12、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求

证:AB =DC ,BC =AD .(初三)

E E P

13、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.

求:∠APB 的度数.(初二)

14、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .

求证:∠PAB =∠PCB .(初二)

15、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)

16、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .

17、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:

≤L <2.

A

P C B P

A D C

B C

B D A

F

P

D

E

C

B

A

18、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.

19、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.

20、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.

C

C

D

解答

1.如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得

EO GF =GO GH =CO

CD

,又CO=EO ,所以CD=GF 得证。

2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形

3.如下图连接BC 1和AB 1分别找其中点F,E.连接C 2F 与A 2E 并延长相交于Q 点, 连接EB 2并延长交C 2Q 于H 点,连接FB 2并延长交A 2Q 于G 点,

由A 2E=12A 1B 1=12B 1C 1= FB 2 ,EB 2=12AB=12BC=F C 1 ,又∠GFQ+∠Q=900

∠GE B 2+∠Q=900,所以∠GE B 2=∠GFQ 又∠B 2FC 2=∠A 2EB 2 , 可得△B 2FC 2≌△A 2EB 2 ,所以A 2B 2=B 2C 2 , 又∠GFQ+∠HB 2F=900和∠GFQ=∠EB 2A 2 , 从而可得∠A 2B 2 C 2=900 , 同理可得其他边垂直且相等,

从而得出四边形A 2B 2C 2D 2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=

∠QNM,从而得出∠DEN=∠F。

5.(1)延长AD到F连BF,做OG⊥AF,

又∠F=∠ACB=∠BHD,

可得BH=BF,从而可得HD=DF,

又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM

(2)连接OB,OC,既得∠BOC=1200,

从而可得∠BOM=600,

所以可得OB=2OM=AH=AO,

得证。

相关文档
最新文档