三极管开关电路分析及Rb计算

合集下载

三极管电路计算

三极管电路计算

三极管电路计算
三极管电路的计算涉及到电流、电压和功率的计算。

以下是三极管电路计算的一些常见例子:
1. 三极管放大电路计算:
- 基极电流计算:根据输入信号源提供的电压和基极电阻(RB)的数值,使用基本电路分析公式计算基极电流(IB)。

- 集电极电流计算:根据控制区(CE)的电容,使用公式IB = IE + IC,计算集电极电流(IC)的数值。

- 集电极电压计算:根据电源电压和电路元件数值,使用电
路分析公式计算集电极电压。

- 驻极点计算:根据放大倍数、输入信号源提供的电压和电
路元件数值,使用放大电路公式计算驻极点。

- 频率响应计算:根据频率响应公式和电路元件数值,计算
电路的频率响应。

2. 三极管开关电路计算:
- 基极电流计算:根据输入信号源提供的电压和基极电阻的
数值,使用基本电路分析公式计算基极电流。

- 集电极电流计算:根据交流电源提供的电压和电路元件数值,使用电路分析公式计算集电极电流。

- 集电极电压计算:根据电源电压和电路元件数值,使用电
路分析公式计算集电极电压。

这些计算仅是三极管电路设计和分析的基本步骤,实际的计算会涉及更复杂的电路和参数。

因此,在进行三极管电路计算之
前,应该先了解相关电路的基本原理和公式,并仔细阅读相关的电路图和电路参数。

开关电源工作原理详解析及三极管开关电路图原理及设计详解

开关电源工作原理详解析及三极管开关电路图原理及设计详解

PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。

本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。

●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。

线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。

最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。

对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。

由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。

此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。

由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。

三极管当开关使用

三极管当开关使用

三极管开关电路设计一、概述三极管除了可以当做交流信号放大器之外,也可以做为开关之用。

图1所示,即为三极管电子开关的基本电路图。

图1基本的三极管开关由图1可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上,输入电压V in则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。

详细的说,当V in为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管工作于截止(cutoff)区;当V in为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管工作于饱和区(saturation)。

二、三极管开关电路的分析设计由于对硅三极管而言,其基射极接面之正向偏压值约为0.6V,因此欲使三极管截止,V in必须低于0.6V,以使三极管的基极电流为零。

通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使V in值低于0.3V。

当然输入电压愈接近0V便愈能保证三极管开关必处于截止状态。

欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。

欲如此就必须使V in达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc 均跨在负载电阻上,如此则V CE 便接近于0,而使三极管的集电极和射极几乎呈短路。

在理想状况下,根据欧姆定律,三极管呈饱和时,其集电极电流应该为:LDR CC V )(C I =饱和因此,基极电流最少应为:LDR *CC V )(C I)(B I β=β=饱和饱和………………………………………………(式1)上式表出了I C 和I B 之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值有着很大的差异。

三极管开关电路图原理及设计详解

三极管开关电路图原理及设计详解

三极管开关电路图原理及设计详解晶体管开关电路(工作在饱和态)在现代电路设计应用中屡见不鲜,经典的74LS,74ALS等集成电路内部都使用了晶体管开关电路,只是驱动能力一般而已。

TTL晶体管开关电路按驱动能力分为小信号开关电路和功率开关电路;按晶体管连接方式分为发射极接地(PNP晶体管发射极接电源)和射级跟随开关电路。

1. 发射极接地开关电路1.1 NPN型和PNP型基本开关原理图:上面的基本电路离实际设计电路还有些距离:由于晶体管基极电荷存储积累效应使晶体管从导通到断开有一个过渡过程(当晶体管断开时,由于R1的存在,减慢了基极电荷的释放,所以Ic不会马上变为零)。

也就是说发射极接地型开关电路存在关断时间,不能直接应用于中高频开关。

1.2 实用的NPN型和PNP型开关原理图1(添加加速电容):解释:当晶体管突然导通(IN信号突然发生跳变),C1瞬间短路,为三极管快速提供基极电流,这样加速了晶体管的导通。

当晶体管突然关断(IN信号突然发生跳变),C1也瞬间导通,为卸放基极电荷提供一条低阻通道,这样加速了晶体管的关断。

C通常取值几十到几百皮法。

电路中R2是为了保证没有IN输入高电平时三极管保持关断状态;R4是为了保证没有IN输入低电平时三极管保持关断状态。

R1和R3是基极电流限流用。

1.3 实用的NPN型开关原理图2(消特基二极管钳位):解释:由于消特基二极管Vf为0.2至0.4V比Vbe小,所以当晶体管导通后大部分的基极电流是从二极管然后通过三极管到地的,这样流到三极管基极的电流就很小,积累起来的电荷也少,当晶体管关断(IN信号突然发生跳变)时需要卸放的电荷少,关断自然就快。

1.4 实际电路设计在实际电路设计中需要考虑三极管Vceo,Vcbo等满足耐压,三极管满足集电极功耗;通过负载电流和hfe(取三极管最小hfe来计算)计算基极电阻(要为基极电流留0.5至1倍的余量)。

注意消特基二极管反向耐压。

三极管开关电路设计三极管除了可以当做交流信号放大器之外,也可以做为开关之用。

三极管的工作原理及开关电路

三极管的工作原理及开关电路

三极管的工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。

分成NPN和PNP 两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

三极管开关电路分析及Rb计算

三极管开关电路分析及Rb计算

1.输入电压V‎i n,输入电阻R‎i n,三极管导通‎电压取0.6V,三极管电流‎放大倍数是‎B,输出电阻(在C极的电‎阻)是Rout‎。

这样很好计‎算了:5V / Rout = A,A /B = C,所以C是你‎最小的基极‎电流。

如果你的输‎入电压Vi‎n也用5V‎,那么(5 - 0.6)/C = Rin,你就可以选‎R in了,为使三极管‎可靠饱和,选(5 - 0.6)/Rin > C就可以了‎。

2.先求I先求‎I c=Vc/Rc Ib=Ic/B 基极电阻R‎b=(Vb-Vbe)/Ibc=Vc/Rc Ib=Ic/B 基极电阻R‎b=(Vb-Vbe)/Ib举例:已知条件:输入Vi=5V,电源电压V‎c c=5V,三极管直流‎放大系数b‎e ta=10.查规格书得‎,集-射饱和电压‎V cesa‎t=0.2V,此时集电极‎电流Ic=10mA(或其它值),则集电极电‎阻Rc=(Vcc-Vcesa‎t)/Ic = (5-0.2)/10 = 480 欧。

则Ib=Ic/beta=10/10=1 mA,基极限流电‎阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。

这时要注意‎,输入高电平‎为5V是理‎想情况,有可能在2‎.5V(输入的一半‎)以上就为高‎了,这时我们以‎5V输入而‎得到的基极‎电流很可能‎不够,因此要重新‎计算。

以2.5V 为逻辑‎电平的阈值‎来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。

如何使三极‎管工作于开‎关状态?晶体三极管‎的实际开关‎特性决定于‎管子的工作‎状态。

晶体三极管‎输出特性三‎个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。

如果要使晶‎体三极管工‎作于开关的‎接通状态,就应该使之‎工作于饱和‎区;要使晶体三‎极管工作于‎开关的断开‎状态,就应该使之‎工作于截止‎区,发射极电流‎iE=0,这时晶体三‎极管处于截‎止状态,相当于开关‎断开。

三极管电路的基本分析方法

三极管电路的基本分析方法

iC
C1 iB
+
ui+

RB
VBB
+
+ uBE
uCE
– –
RC
+ –VCC
[解] 令 ui = 0,求静态电流 IBQ
RLIBQ 61 0.7 7 6 0.0(3 m A 3()0 A
iC ICQ
O
ic
iC/mA
6 5 4
Q
直流55负00 载线1(R交L 流i负B 载i线b ) iB/A
40
3 2
O
t 直流量往往在下标中加注 Q
. U be 交流有效值
第 2 章 半导体三极管
一2、.3图.1RB解直iB分流析分法+析1ikC在电三路极中RC管各V的直B特流BI性电/BRQ曲流B2线、i0B上电/用压BA作量图的的方Q方法静法。求态得工作点
VBB+–
115 k
3V
+ uBE
uCE

5
V
+ –VCC
从输三出极端出管交端C流E口短之路看间时i可c进的=用电去输流出为ib放电,一大流系个为数受,i.b 的常—ib电用控H流Hff制源ee表表示的示。电。` 流是源三极管输
第 2 章 半导体三极管
微变等效电路的画法
(2) 晶体三极管电路交流分析 步骤: ① 分析直流电路,求出“Q”,计算 rbe。 ② 画电路的交流通路 。 ③ 在交流通路上把三极管画成 H 参数模型。 ④ 分析计算叠加在“Q”点上的各极交流量。
画交流通路原则:
1. 固定不变的电压源都视为短路;
2. 固定不变的电流源都视为开路;
3. 视电容对交流信号短路

三极管电路电流计算方法

三极管电路电流计算方法

三极管电路电流计算方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!在电子学领域中,三极管电路电流计算方法是至关重要的。

三极管的开关等效电路

三极管的开关等效电路

02
三极管开关等效电路的参 数分析
输入电阻
输入电阻:指三极管输入端的等效电阻,它反映了三极 管对输入信号的阻碍作用。
在放大状态下,输入电阻通常较大,而在饱和或截止状 态下,输入电阻较小。
输入电阻的大小取决于三极管的材料、结构以及工作状 态。
输入电阻的大小对电路的性能和稳定性有重要影响。
输出电阻
01
输出电阻:指三极管输 出端的等效电阻,它反 映了三极管输出信号的 负载能力。
02
输出电阻的大小也取决 于三极管的材料、结构 以及工作状态。
03
在放大状态下,输出电 阻通常较小,而在饱和 或截止状态下,输出电 阻较大。
04
输出电阻的大小对电路 的输出信号幅度和稳定 性有重要影响。
开关时间
开关时间:指三极管从饱和状 态到截止状态,或从截止状态 到饱和状态转换所需的时间。
工艺改进
随着微电子制造工艺的不断发展,新型工艺技术如纳米加工、薄膜工艺等被应用于三极管制造中。这些新工艺能 够实现更精细的器件结构,提高三极管的开关速度和集成度,进一步优化三极管开关等效电路的性能。
三极管开关等效电路的应用拓展
通信领域
三极管开关等效电路在通信领域具有广泛应用,如无线通信、卫星通信等。随着5G、6G通信技术的发展,对高速、 高频、低功耗的电子器件需求增加,三极管开关等效电路将发挥重要作用。
三极管的开关控制精度受限于其制造工艺和 材料特性,难以实现高精度的控制。
可靠性问题
三极管在高温、高湿等恶劣环境下工作的可 靠性较低,容易出现性能退化和失效。
05
三极管开关等效电路的发 展趋势
新型三极管材料的研发
硅基材料
作为传统的半导体材料,硅基材料在三极管制造中占据主导地位。随着技术的进步,硅基材料的性能 不断提升,使得三极管开关等效电路的性能得到优化。

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法说一下掌握三极管放大电路计算的一些技巧放大电路的核心元件是三极管,所以要对三极管要有一定的了解。

用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。

图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容?(1)分析电路中各元件的作用;(2)解放大电路的放大原理;(3)能分析计算电路的静态工作点;(4)理解静态工作点的设置目的和方法。

以上四项中,最后一项较为重要。

图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。

但有一点要说明的是,电容两端的电压不能突变,但不是不能变。

R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。

要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。

在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。

为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。

所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。

首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说,Ic电流达到了最大值,就算I b增大,它也不能再增大了。

以上两种状态我们一般称为开关状态,除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。

三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)

三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)

二、放大电路动态指标的估算
1.性能指标估算
共射放大电路微变等效电路
(1)电压放大倍数的估算


AU
UO
.•
Ui


Ui Ib rbe


Uo Ib R'(L R'L RC // RL )


故共射放大电路的电压放大倍数为:

AU
UO
.•
Ui
I b R'L

Ibr be
R'L
rbe


如果不考虑 U i 和 U o各自的相位关系,则上式也可以写成:
AU
UO
.
Ui
I b R'L
Ibr be
R'L
rbe
式中“-”表示输入信号与输出信号相位相反。
空载时电压倍数:
Au
RC rbe
Au Au 说明:放大电路带上负载后放大倍数将降低。
(2)输入电阻ri
(3)输出电阻ro
ro Rc
2.输入电阻ri
放大电路的输入端可以用一个等效交流电阻ri来表示,它定义为:
ri
ui ii

rs
us -
+ ii
ui -
放大电路
ro
ri

uo′ -
+ io
RL
uo

ri
ro
放大器接到信号源上以后,就相当于信号源的负载电阻,ri 越大表示放
大器从信号源索取的电流越小,信号利用率越高。
3.输出电阻ro
一是放大倍尽可能大; 二是输出信号尽可能不失真。 主要技术指标有:放大倍数、输入电阻、输出电阻。

三极管电路分析

三极管电路分析

本文主要介绍三极管的计算,包括电压增益A 、输入电阻i R 、输出电阻o R ;包括三极管的三种组态:共集、共基、共射的计算。

本文力图让读者在细读完本文后能对三极管的相关计算熟练掌握。

本人刚读研一,考研是考的模电,有一年三极管使用经验。

望以一种怀疑的态度看本文。

本文与其他课本讲述的不同之处,介绍一种直观的方法,而不是画出小信号等效模型的方法来进行各种计算,而且这种方法不需要记忆各种公式,完全直观的看就可以得出结果。

方法的关键在于对BJT 的模型的简化和理解。

三极管的等效模型如图,高频模式的很多参数被忽略,实践上当频率不是特别高时这种模型的精度是足够了的。

图1三极管及其小信号等效模型从模型中可以看出,be 之间是电阻be r ;bc 之间是断开的;ce 之间是电流控制电流源,控制关系如图所示,b c i i ,其中 是常数,由管子决定,b i 为be 之间的电流,也就是流过be r 的电流,它们的电流方向是应特别值得注意的。

图中同样可以得到这个重要关系式:b c b e i i i i 1。

总结一下,简化模型中要用到的几点:(1)be 间电阻是be r ;(2)bc 间开路;(3)ce 间为受控电流源b c i i ;(4)b i 即be i ,c i 即ce i ,注意它们的方向关系;(5) b c b e i i i i 1,一定要主要方向。

另外还需要知道的就是电路的交流通路。

求交流通路也是直观的看,并不画出来。

求交流通路的要点:(1)DD V 是直流电源,没有交流成分,所以是交流地,所以分析交流通路时,接电源和接地是一个效果。

(2)电容短路,除非特别说明,所有电容对交流短路。

(3)信号中的直流成分被忽略,只考虑交流部分。

例如:cebcbi图2三极管基本电路图3图2中电路的交流通路分析如下:C2短路,c R 接地,则c R 和L R 并联接地。

1b R 接电源相当于接地,则1b R 和2b R 并联接地。

三极管电路的小信号模型分析方法

三极管电路的小信号模型分析方法

饱和区时, 为一族重叠曲线
uGS 2 i I ( 1 ) 当EMOS管工作于放大区时,电流方程为 D DO U GS (th)
uGS = 2UGS(th) 时的 iD 值
二、N 沟道耗尽型 MOSFET
二、N 沟道耗尽型 MOSFET 制造时在Sio2 绝缘层中掺入正离子,故在 uGS = 0 时已形成 沟道。改变uGS可控制导电沟道的宽窄,当uGS UGS(off) 时, 沟道全夹断。
2323单极型半导体三极管单极型半导体三极管及其电路分析及其电路分析231mos场效应管的结构231mos场效应管的结构工作原理及伏安特性工作原理及伏安特性场效应管概述232结型场效应管的结构工作原理及伏安特性233场效应管的主要参数234场效应管基本应用电路及其分析方法场效应管概述场效应管概述场效应管fetfieldeffecttransistor优点
简 化
uBE rbe i B
uCE U CEQ
ube ib
uCE U CEQ
称为三极管的共发射极输入电阻, 为动态电阻
uCE rce i C
iB I BQ
uce ic
iB I BQ
称为三极管的共发射极输出电阻, 为动态电阻。很大。
如何获取三极管小信号模型参数?
rbe r bb
4V 2V O
N 沟道耗尽型MOSFET iD /mA uGS = 2 V
0V -2 V -4 V
O
iD /mA
UGS(off) IDSS
– 4 O u /V GS
uDS /V
2 uGS /V
uDS /V
P 沟道增强型MOSFET
P 沟道耗尽型MOSFET iD /mA uGS = – 2 V iD /mA UGS(off)

三极管开关损耗计算

三极管开关损耗计算

三极管开关损耗计算摘要:1.三极管开关损耗的概念2.三极管开关损耗的计算方法3.影响三极管开关损耗的因素4.如何降低三极管开关损耗5.总结正文:三极管作为电子元件中的重要组成部分,广泛应用于各种电子设备中。

在电路中,三极管扮演着开关的角色,控制着电流的流动。

然而,三极管在开关过程中会产生损耗,影响其性能。

本篇文章将详细介绍三极管开关损耗的计算方法及影响因素。

一、三极管开关损耗的概念三极管开关损耗是指在开关过程中,由于电流的瞬间变化而产生的能量损耗。

这种损耗主要表现为热能,会导致三极管的温度升高,进而影响其工作稳定性。

二、三极管开关损耗的计算方法三极管开关损耗的计算公式为:开关损耗= (电源电压)^2 / (三极管电阻)其中,电源电压是指三极管开关过程中的电压,三极管电阻是指三极管的导通电阻。

需要注意的是,这个公式仅适用于理想状态下的三极管,实际情况中还需要考虑其他因素。

三、影响三极管开关损耗的因素1.电源电压:电源电压的波动会影响三极管的开关损耗。

电源电压越高,开关损耗越大。

2.三极管参数:三极管的导通电阻、输入电容等参数会影响开关损耗。

导通电阻越小,开关损耗越小;输入电容越大,开关损耗越大。

3.开关速度:三极管的开关速度越快,开关损耗越小。

因为在快速开关过程中,电流变化率较小,能量损耗较小。

4.环境温度:环境温度对三极管的散热能力有影响,进而影响开关损耗。

环境温度越高,开关损耗越大。

四、如何降低三极管开关损耗1.选择合适的三极管参数:根据实际应用需求,选择合适的导通电阻和输入电容等参数,以降低开关损耗。

2.优化电路设计:通过合理布局电路,减小电源电压的波动,降低开关损耗。

3.提高开关速度:采用更快速的开关器件,提高三极管的开关速度,减小损耗。

4.改善散热条件:提高设备散热性能,降低环境温度对开关损耗的影响。

2.6晶体三极管电路分析方法

2.6晶体三极管电路分析方法

rbe = rbb ′ + (1 + β ) re
rb ′e = (1 + β ) re
rce
VA ≈ − I CQ
画交流通路: 画交流通路:
ib v RB T
ic
RC
在用小信号等效电路模型替代,晶体三极管T ,画出相 在用小信号等效电路模型替代,晶体三极管 应的混合π型等效电路。 忽略 应的混合 型等效电路。 (忽略 rbb' ) 型等效电路
v + RB + rb′e
rb′e v ce = − g m v b′e ( rce ∥ R C ) = − g m v( rce ∥ R C ) R B + rb′e
所以
i B = I BQ + ib = I BQ
v BE = V BEQ + v b ′e = V BEQ
rb ′e + v R B + rb ′e
VBEQ + vbe = (VBB + v)
I BQ + i b V BB + v = RB
作负载线
iB Q1 Q Q2 vBE 0
VBB − Vm
VBB
V +V BB m
IB Q1 Q Q2 0 0 0 IBQ vBE t ib
VBB − Vm VBB VBB + Vm
0 vBE
v
VBEQ t t
例二:如图所示的实用电路, 例二 如图所示的实用电路,试求该电路中晶体三极管的各 如图所示的实用电路 极电压和电流值。 极电压和电流值。 已知 β=100。 。 V
CC
RB1 100K
RC 1K T
VCC +12V

三极管计算

三极管计算

实验三 晶体管单管共射放大电路一、实验目的:1.学习电子线路安装、焊接技术。

2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。

3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。

4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。

二、实验原理:(一)实验电路图3.1中为单管共射基本放大电路。

1.① R B 基极偏流电阻,提供静态工作点所需基极电流。

R B 是由R 1和RW 串联组成,RW 是可变电阻,用来调节三极管的静态工作点,R 1(3K )起保护作用,避免RW 调至0端使基极电流过大,损坏晶体管。

② R S 是输入电流取样电阻,输入电流I i 流过R S ,在R S 上形成压降,测量R S 两端的电压便可计算出I i 。

③ R C —集电极直流负载电阻。

④ R L —交流负载电阻。

⑤ C1、C2 —耦合电容。

(二)理论计算公式: ① 直流参数计算:CCQ CEQ BQ EQ CQ BEQ BBEQBQ RI VCC V I I I V7.0V ;RV VCC I -=β⋅=≈≈-≈式中:..② 交流参数计算:()CObeB i ViS i VS LCL be 'LV 'bb EQ 'bb be RRr //R R A R R R A RRR ;r R A 300r (mA)I (mV)26β1r r ≈=*+=='*β-=++≈∥Ω的默认值可取式中:(三)放大电路参数测试方法由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。

设计和制作电路前,必须对使用的元器件参数有全面深入的了解。

有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。

另一方面,即便是经过精心设计和安装的放大电路,在制作完成后,也必须对静态工作点和一些交流参数进行测试和调节,才能使电路工作在最佳状态。

三极管开关损耗计算

三极管开关损耗计算

三极管开关损耗计算
(最新版)
目录
1.三极管开关的基本概念
2.三极管开关的损耗类型
3.计算三极管开关损耗的方法
4.总结
正文
一、三极管开关的基本概念
三极管(Transistor)是一种常见的半导体元器件,具有放大和开关等功能。

在电子电路中,三极管常被用作开关元件,用于控制电流的流动和截止。

当三极管处于开关状态时,会有一定的损耗产生,这种损耗被称为三极管开关损耗。

二、三极管开关的损耗类型
1.导通损耗:当三极管处于导通状态时,由于电流流过三极管,会产生一定的热量,导致温度升高,从而产生损耗。

2.截止损耗:当三极管处于截止状态时,虽然电流为零,但仍有一定的漏电流流过三极管,也会产生一定的损耗。

3.动态损耗:在三极管开关过程中,由于电流的变化,会产生一定的动态损耗。

三、计算三极管开关损耗的方法
计算三极管开关损耗的方法有多种,其中较为常见的是基于电路模拟和实际测试的方法。

1.基于电路模拟的方法:通过建立三极管开关电路模型,利用电路仿
真软件(如 Multisim、Protel 等)进行模拟,得到开关状态下的电流、电压等参数,进而计算出三极管开关损耗。

2.基于实际测试的方法:通过搭建实际电路,对三极管开关进行实际测试,测量开关过程中的电流、电压等参数,然后根据损耗公式计算出三极管开关损耗。

四、总结
三极管开关损耗是影响电子设备性能和可靠性的重要因素。

三极管放大倍数计算方法

三极管放大倍数计算方法

三极管放大倍数计算方法三极管是一种常用的电子元件,广泛应用于放大、开关等电路中。

在放大电路中,三极管的放大倍数是一个重要的参数。

在本文中,我们将介绍三极管放大倍数的计算方法。

三极管的放大倍数可以用直流放大倍数和交流放大倍数来表示。

直流放大倍数是指输入直流信号与输出直流信号之间的比值,交流放大倍数是指输入交流信号与输出交流信号之间的比值。

我们来介绍直流放大倍数的计算方法。

直流放大倍数可以通过测量三极管的直流电流增益来计算。

直流电流增益(β)是指三极管输入电流与输出电流之间的比值。

可以通过以下公式来计算直流放大倍数:直流放大倍数= β * Rl / Re其中,β是三极管的直流电流增益,Rl是负载电阻,Re是发射极电阻。

接下来,我们来介绍交流放大倍数的计算方法。

交流放大倍数可以通过测量三极管的电压增益来计算。

电压增益(Av)是指输出电压与输入电压之间的比值。

可以通过以下公式来计算交流放大倍数:交流放大倍数= Av = β *Rl / (Re + (1 + β) * (Rb / hie))其中,β是三极管的直流电流增益,Rl是负载电阻,Re是发射极电阻,Rb是基极电阻,hie是三极管的输入电阻。

在实际应用中,三极管的放大倍数可以通过实验测量来获得。

可以先将三极管作为放大器电路进行实验,测量输入电压和输出电压的比值,然后根据上述公式计算出放大倍数。

需要注意的是,三极管的放大倍数受到各种因素的影响,如温度、工作点偏移等。

在实际应用中,为了减小放大倍数的波动,可以采取一些措施,如加入负反馈电路、选择合适的工作点等。

总结起来,三极管的放大倍数是衡量三极管放大能力的重要参数。

通过测量直流电流增益和电压增益,可以计算出三极管的直流和交流放大倍数。

在实际应用中,需要考虑各种因素的影响,并采取相应的措施来稳定放大倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.输入电压Vin,输入电阻Rin,三极管导通电压取0.6V,三极管电流放大倍数是B,输出电阻(在C极的电阻)是Rout。

这样很好计算了:5V / Rout = A,A /B = C,所以C是你最小的基极电流。

如果你的输入电压Vin也用5V,那么(5 - 0.6)/C = Rin,你就可以选Rin了,为使三极管可靠饱和,选(5 - 0.6)/Rin > C就可以了。

2.先求I先求Ic=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ibc=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ib举例:已知条件:输入Vi=5V,电源电压Vcc=5V,三极管直流放大系数beta=10.查规格书得,集-射饱和电压Vcesat=0.2V,此时集电极电流Ic=10mA(或其它值),则集电极电阻Rc=(Vcc-Vcesat)/Ic = (5-0.2)/10 = 480 欧。

则Ib=Ic/beta=10/10=1 mA,基极限流电阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。

这时要注意,输入高电平为5V是理想情况,有可能在2.5V(输入的一半)以上就为高了,这时我们以5V输入而得到的基极电流很可能不够,因此要重新计算。

以2.5V为逻辑电平的阈值来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。

如何使三极管工作于开关状态?晶体三极管的实际开关特性决定于管子的工作状态。

晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。

如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区;要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流iE=0,这时晶体三极管处于截止状态,相当于开关断开。

集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。

说明三极管截止时,iB并不是为0,而等于-ICBO。

基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大的。

晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB =-ICBO,iE=0,为临界截止状态。

进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB = -(ICBO+ IEBO),iC= ICBO。

发射结外加正向电压不断升高,集电极电流不断增加。

同时基极电流也增加,随着基极电流iB 的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下降。

当基极电流iB增大到一定值时,将出现vBE =vCE的情况。

这时集电结为零偏,晶体管出现临界饱和。

如果进一步增大iB ,iB增大,使得集电结由零偏变为正向偏置,集电结位垒降低,集电区电子也将注入基区,从而使集电极电流iC随基极电流iB的增大而增大的速度减小。

这时在基区存储大量多余电子-空穴对,当iB继续增大时,iC基本维持不变,即iB失去对iC的控制作用,或者说这时晶体管的放大能力大大减弱了。

这时称晶体管工作于饱和状态。

一般地说,在饱和状态时饱和压降VBE(sat)近似等于0.7V,VCE(sat)近似等于0.3V。

由图4.2.1(a)可看出,集电极电流iC的增加受外电路的限制。

由电路可得出iC的最大值为ICM= VCC/ RC。

晶体管进入饱和状态,基极电流增大,集电极电流变化很小,即iC=ICS=(VCC-VBE(sat))/RC晶体管处于临界饱和时的基极电流为IBS=ICS/β=(VCC-VBE(sat))/βRC基极电阻增大,驱动电流不足,特别是晶体管从放大区进入饱和区时时间太长,开关晶体管发热烧坏,因此此电阻的计算为:Rb《=Hfe*(Vb-0.7)/Icm在简易自动控制电路中,将介绍一些模拟实验电路,利用一些物理现象产生的力、热、声、光、电信号,实现自动控制,以达到某种控制效果。

磁控和热控电路在磁力自动控制电路中,传感元件是干簧管,当磁铁靠近时,常开触点闭合而接通传感电路,完成位置传感作用。

能不能用干簧管开关直接控制电动机的转与停呢?玩具电动机是常用的动力装置,它能够把电能转换为机械能,可用于小电风扇转动、小离心水泵抽水等执行功能。

通常玩具直流电动机工作电压低,虽然在1.5~3V就可以启动,但起动电流较大(1~2安培),如果用触点负荷仅为几十毫安的干簧管进行开关控制,将大大缩短其使用寿命。

因此,在自动控制电路中,常使用电子开关来控制电动机的工作状态。

三极管电子开关电路见图1 。

由开关三极管VT,玩具电动机M,控制开关S,基极限流电阻器R和电源GB组成。

VT采用NPN型小功率硅管8050,其集电极最大允许电流ICM可达1.5A,以满足电动机起动电流的要求。

M选用工作电压为3V 的小型直流电动机,对应电源GB亦为3V 。

VT基极限流电阻器R如何确定呢?根据三极管的电流分配作用,在基极输入一个较弱的电流IB,就可以控制集电极电流IC有较强的变化。

假设VT电流放大系数hfe≈250,电动机起动时的集电极电流IC=1.5A,经过计算,为使三极管饱和导通所需的基极电流IB≥(1500mA/250)×2=12mA。

在图1电路中,电动机空载时运转电流约为500mA,此时电源(用两节5号电池供电)电压降至2.4V,VT基极-发射极之间电压VBE≈0.9V。

根据欧姆定律,VT基极限流电阻器的电阻值R=(2.4-0.9)V/12mA≈0.13kΩ。

考虑到VT在IC较大时,hfe要减小,电阻值R还要小一些,实取100Ω。

为使电动机更可靠地启动,R甚至可减少到51Ω。

在调试电路时,接通控制开关S,电动机应能自行启动,测量VT集电极—发射极之间电压VCE≤0.35V,说明三极管已饱和导通,三极管开关电路工作正常,否则会使VT过热而损坏。

自动灭火的热量自动控制电路见图2。

该电路是将图1中的控制开关S换成双金属复片开关ST,就成为热控电路了。

当蜡烛火焰烧烤到双金属复片时,复片趋于伸直状态,使得开关ST接通,电动机启动,带动小风扇叶片旋转,对准蜡烛吹风,自动将火焰熄灭;当双金属片冷却后,开关断开,小电风扇自动停转,完成了自动灭火的程序。

自动停车的磁力自动控制电路见图3。

开启电源开关S,玩具车启动,行驶到接进磁铁时,安装在VT基极与发射极之间的干簧管SQ闭合,将基极偏置电流短路,VT截止,电动机停止转动,保护了电动机及避免大电流放电。

光电控制电路在光电自动控制电路中,可以选用光敏电阻器做为光电传感元件。

能否将光敏电阻器直接接入图1控制开关S的位置呢?通常光敏电阻器,例如MG45有光照射时的亮阻2~10kΩ,远大于偏置电阻器R的电阻值,显然不能产生维持VT饱和导通所需强度的基极电流。

因此,需要先用一支三极管进行电流放大,再驱动开关三极管工作。

光电自动控制电路见图4。

VT1和VT2接成类似复合管电路形式,VT1的发射极电流也是VT2的基极电流,R2既是VT1的负载电阻器又是VT2的基极限流电阻器。

因此,当VT1基极输入微弱的电流(0.1mA),可以控制末级VT2较强电流——驱动电动机运转电流(500mA)的变化。

VT1选用小功率NPN型硅管9013,h fe≈200。

同前计算方法,维持两管同时饱和导通时VT1基极偏置电阻器R1约为3.3kΩ,减去光敏电阻器RG亮阻2kΩ,限流电阻器R1实取1kΩ。

光敏传感器也可以采用光敏二极管,使用时要注意极性,光敏二极管的负极接供电电源正极。

光敏二极管对控制光线有方向性选择,且灵敏度较高,也不会产生强光照射后的疲劳现象。

水位控制电路最简单的水位传感元件是采用两个电极,当水面淹没电极时,利用不纯净水的导电性使电极之间导通,但导通电阻值较大,约50kΩ,不能代替光敏电阻器直接驱动如图4所示的光控电路,需要灵敏更高的控制电路。

水位自动控制电路如图5所示。

它是在图4电路的基础上,增加了一级前置放大管VT1,在其基极输入很微弱的电流(10μA)就可以使VT1~3皆饱和导通。

控制开关S可以用大头针做成两个电极,当其被水淹没而导电时,小电动机会自行运转。

C1为旁路电容器,防止感应交流电对控制电路的干扰。

VT1选用低噪音、高增益的小功率NPN硅管9014。

根据上述电路水位控制的功能,能否设计成一个感知下雨自动关窗、自动收晾晒衣服绳索的自动控制器。

下偏置水自动控制电路见图6 。

图中,将两个电极改接在VT1下偏置,R1仍为上偏置电阻器。

当杯内水面低于两个电极时,相当于下偏置开路,R1产生的偏置电流使电动机起动。

当水位上升到淹没电极时,两个电极之间被水导通,将R1产生的偏置电流旁路一部分,使VT1~3截止,电动机停转,与图5控制效果恰好相反。

//////************************************************** ****/////////三极管的开关电路分析(12V—SW)在这里做个小电路的分析,大家都可能用到,这里把模型分解一下,并介绍一下计算方法和各个元件的作用。

Q1:主开关,主要作用是提供12VSW电流,特点饱和时Vec必须很小,热阻不能太大。

Q2:副开关,主要作用是旁路Q1,在MCU置高电平时导通,ce拉低使Q1工作。

R1:保证MCU无输出的时候电路不工作。

R2:限制电流,给Q2一个工作电流。

C1:去除干扰,防止Q1意外导通。

下面是这个电路图的等效模型:然后我们定义一下输出负载,假设有N个按键开关电路检测电路(Active Low)经过以上分析我们可以列出所有公式:这个时候我们可以看出,要想让这个电路处于良好的状态,两个开关管必须都处于饱和状态,一般要使得开关管饱和,Ic/Ib必须小于30.因此我们必须求取方法倍数,其中Q1中的Vbatt和Ib和Ic同时是正向关系,必须求取各个参数的偏导求最大的放大系数。

这样就可以求得此时三极管的状态。

另外一个需要验证的就是温度情况,公式如下:这个主要是验证散发功率的情况。

计算过程到此差不多了,在实际设计中,每个参数都是比较重要的,特别是在省电模式下,可能会打开电源后扫描接口电路,因此整个电路的响应时间非常重要。

以后会讨论一下瞬态响应的做法(Laplas变换的应用。

)在这里大致可以描述一下,因为每个电路都有滤波电容,在打开电源的瞬间,所有的电容都需要充电,因此此时的Ic是非常大的,所以电路一时达不到饱和状态。

这个参数主要是调整R2,R2增大,响应时间长,电路偏置功率小。

R2减小,响应时间段,电路偏置功率大。

相关文档
最新文档