步进和伺服电机的工作原理

合集下载

伺服电机与步进电机的工作原理和六大区别

伺服电机与步进电机的工作原理和六大区别

伺服电机与步进电机的工作原理和六大区别一、伺服电机的工作原理伺服电机是一种能够实现精确控制的电机,其工作原理主要通过反馈系统和控制算法来实现。

伺服电机内置编码器或传感器,可以实时监测电机的转速和位置,并将这些信息反馈给控制器。

控制器根据反馈信号调整电机的输出,使得电机能够按照设定的路径和速度运动。

这样,伺服电机可以在不同负载和速度条件下实现精确的位置控制。

二、步进电机的工作原理步进电机是一种数字控制电机,其工作原理是通过逐步地施加脉冲信号来驱动电机旋转。

每个脉冲信号会使步进电机按照固定的步距旋转一定角度。

步进电机不需要反馈系统,通过控制脉冲信号的频率和顺序,可以准确控制步进电机的转角和速度。

三、伺服电机与步进电机的区别1. 工作原理•伺服电机:通过反馈系统和控制算法实现精确位置控制。

•步进电机:通过逐步施加脉冲信号来驱动电机旋转。

2. 控制精度•伺服电机:具有更精确的位置控制能力,适合需要高精度控制的应用。

•步进电机:控制精度一般,适合一些简单的定位控制。

3. 反馈系统•伺服电机:需要配备反馈系统,可以实时监测电机位置和速度。

•步进电机:不需要反馈系统,控制简单。

4. 动态响应•伺服电机:具有较快的动态响应能力,适合高速运动和快速变速的应用。

•步进电机:动态响应速度较慢,不适合高速运动。

5. 成本•伺服电机:成本相对较高,适用于对精度和性能要求高的场合。

•步进电机:成本较低,适用于一些对控制要求不高的应用。

6. 使用场景•伺服电机:适用于需要高精度、高速度和高性能的自动化设备。

•步进电机:适用于一些简单的定位控制、打印机、CNC机床等领域。

综上所述,伺服电机和步进电机在工作原理、控制精度、反馈系统、动态响应、成本和使用场景等方面存在明显的区别,应根据具体需求来选择合适的电机类型。

步进电机伺服电机工作原理通用课件

步进电机伺服电机工作原理通用课件
机器人中的关节、手臂等部位通常由伺服电机驱 动,通过控制伺服电机的转动角度和速度,实现 机器人的精确运动控制。
03 伺服电机在自动化生产线中的应用
自动化生产线中的高精度定位、物料搬运等环节 常常使用伺服电机作为驱动元件,实现高精度的 定位和运动控制。
05
总结与展望
工作原理总结
步进电机工作原理
步进电机是一种将电脉冲信号转换成角位移或线位移的机 电元件,通过控制输入的脉冲数量和频率,实现电机的步 进转动。
步进电机在运行过程中不会出现丢步现象,具有较高的可靠性。
02
伺服电机工作原理
伺服电机简介
伺服电机是一种能够精确控制其转动角度和速度 01 的电机,广泛应用于各种自动化设备和控制系统

伺服电机通常由定子和转子组成,定子中包含控 02 制磁场方向的线圈,而转子则包含永磁体。
伺服电机具有高精度、快速响应、高动态性能等 03 特点,能够实现精确的位置控制和速度控制。
伺服电机工作原理
伺服电机是一种将输入的电信号转换成角位移或线位移的 机电元件,通过控制输入的电压或电流,实现电机的连续 转动。
两者比较
步进电机和伺服电机在工作原理上存在一定的差异,步进 电机通过控制脉冲数量和频率实现步进转动,而伺服电机 通过控制输入的电压或电流实现连续转动。
应用前景展望
01
步进电机应用前景
通过改变输入到伺服电机的电流或电压的大小和方向,可以精确控制电 机的转动速度和方向,从而实现精确的位置和速度控制。
伺服电机的控制系统通常由控制器、驱动器和电机组成,控制器负责发 送控制信号,驱动器负责将控制器发出的信号转换为能够驱动电机的能 量,而电机则负责执行控制器的指令,实现精确的转动控制。

什么叫伺服电机什么叫步进电机作用及原理

什么叫伺服电机什么叫步进电机作用及原理

什么叫伺服电机什么叫步进电机作用及原理伺服电机和步进电机是现代工业自动化系统中常见的电动执行元件,它们在机械领域中扮演着重要角色。

在本文中,我们将介绍什么是伺服电机和步进电机,它们的作用和工作原理。

伺服电机是什么?伺服电机是一种能够根据控制信号来精确控制位置、速度和加速度的电动机。

通常情况下,伺服电机由电机、传感器和控制系统三部分组成。

传感器用于实时监测电机的位置和速度,控制系统根据传感器反馈的信息对电机进行调节,使其达到所需的位置或速度。

伺服电机的作用和原理伺服电机的主要作用是提供精准的位置控制和速度调节。

其工作原理基于反馈闭环控制系统。

当控制系统接收到指令时,传感器会实时监测电机的位置和速度信息,并将反馈信息传送给控制系统。

控制系统根据反馈信息对电机进行调节,使其达到指定的位置或速度。

这种闭环控制系统能够确保电机的运行稳定性和精度。

步进电机是什么?步进电机是一种定角度的电机,它通过依次通入脉冲信号来驱动电机旋转固定的步距角。

步进电机不需要传感器反馈,只需要控制系统发送脉冲信号即可实现旋转。

步进电机的作用和原理步进电机的主要作用是将脉冲信号转化为旋转角度。

其工作原理基于分步运行,当控制系统发送脉冲信号时,步进电机会按照指定的步距角度旋转。

步进电机可以精确控制旋转角度,适用于需要精准定位的场合。

结论伺服电机和步进电机在工业自动化系统中扮演着不同的角色,伺服电机提供精准位置控制和速度调节,而步进电机适用于需要精准定位的场合。

了解伺服电机和步进电机的作用和原理有助于正确选择和应用相应的电机类型,提高工业生产效率和质量。

步进电机伺服电机工作原理

步进电机伺服电机工作原理

以上三种工作方式,三相双三拍和三相单双六拍较三相单三拍稳定,因此较常采用。
7.2.3 小步距角的步进电动机 实际采用的步进电机的步距角多为3度和1.5度,步距角越小,机加工的精度越高。
为产生小步距角,定、转子都做成多齿的,图中转子40个齿,定子仍是 6个磁极,但每个 磁极上也有五个齿。
转子的齿距等于360 / 40=9 ,齿宽、齿槽各4.5 。 为使转、定子的齿对齐,定子磁极上的小齿,齿宽和齿槽和转子相同。
二、三相单双六拍
三相绕组的通电顺序为: A AB B BC C CA A 共六拍。
工作过程:
A
B'
C'
1
4
2
C
3
B
A'
A相通电,转子1、3齿和A相对齐。
A、B相同时通电
A
B'
C'
C
B
A'
(1)BB' 磁场对 2、4 齿有磁拉力,该拉力使 转子顺时针方向转动。
(2)AA' 磁场继续对1、3齿有拉力。 所以转子转到两磁拉力平衡的位置上。相对AA' 通电,转子转了15°。
§7.1 概述
前面介绍的异步电动机、直流电动机等都是作为动力使用的,其主要任务是能量转换,例如将电能 转换为机械能。本章介绍控制电机。
控制电机的主要功能是转换和传递信号。 如:伺服机将电压信号转换为转矩和转速;
步进机将脉冲信号转换为角位移或线位移。
对控制电机的主要要求:动作灵敏、准确、 重量轻、体积小、运行可靠、耗电少等。U检放 I2 Nhomakorabea测




U 2
控制电压 与电源电压 两
UU 者频率相同,相位相同或2反相。

伺服电机与步进电机工作原理一样吗

伺服电机与步进电机工作原理一样吗

伺服电机与步进电机工作原理一样吗伺服电机和步进电机在现代工业领域中被广泛应用,它们分别具有独特的特点和适用场景。

虽然它们都是用来控制运动的电机,但它们的工作原理却有着显著的区别。

伺服电机的工作原理伺服电机是一种能够控制位置、速度和加速度等参数的电机。

它通过与传感器和控制器配合工作,可以实现精确的控制和闭环反馈。

伺服电机通过不断地读取传感器反馈的位置信息,并与目标位置进行比较,通过控制器来调节电机的输出功率,以实现精确的位置控制。

步进电机的工作原理步进电机是一种将输入脉冲信号转化为离散的步进运动的电机。

它通过控制输入的脉冲信号的频率和方向来控制电机的旋转角度。

步进电机不需要外部的传感器和反馈系统,它的位置信息仅依赖于输入的脉冲信号的数量和方向。

两者工作原理的区别伺服电机和步进电机的工作原理有着明显的区别。

伺服电机通过不断地读取传感器反馈的位置信息,并与目标位置进行比较来实现精确的位置控制;而步进电机则是通过控制输入的脉冲信号的数量和方向来控制电机的旋转角度。

可以说,伺服电机是基于闭环控制的,而步进电机是基于开环控制的。

另外,伺服电机通常具有更好的动态响应能力和稳定性,适用于需要高精度、高速度控制的场景;而步进电机主要用于对位置要求不是很高,但需要简单、稳定控制的场景。

在实际应用中,根据需要选择合适的电机类型是非常重要的。

伺服电机适用于对精度和响应速度要求高的场合,而步进电机适用于对成本和控制简易性要求较高的场合。

综上所述,尽管伺服电机和步进电机都是用来控制运动的电机,但它们的工作原理存在着明显的差异,针对不同的应用场景可以选择不同类型的电机来实现最优的控制效果。

步进电机伺服电机工作原理通用课件

步进电机伺服电机工作原理通用课件
步进电机是一种将电脉冲信号转换 成角位移的执行机构,通常由定子 、转子、驱动器等组成。
伺服电机定义
伺服电机是一种将输入的电信号转 换为输出的角位移或线位移的执行 机构,通常由定子、转子、控制器 等组成。
电机的应用与发展
电机的应用
电机广泛应用于工业自动化、机 器人、汽车、航空航天等领域。
步进电机的发展
伺服电机的特点与优势
高精度控制
伺服电机可以实现对机器或设 备的精确控制,适用于需要高 精度定位和高速度控制的场合

快速响应
伺服电机具有快速响应的特点 ,可以在短时间内实现高速旋 转和精确定位。
宽调速范围
伺服电机可以在很大的调速范 围内进行调节,适用于需要大 范围调速的场合。
可靠性高
伺服电机具有可靠性高的优点 ,可以在恶劣的环境条件下稳
清洁电机
电机在运行过程中,应定期进行清洁,清除 电机内部的灰尘和杂物,确保电机正常运行 。
电机的故障诊断与排除
故障诊断
01
当电机出现故障时,需要进行故障诊断,分析故障原因,确定
故障部位。
排除故障
02
根据故障诊断结果,采取相应的措施排除故障,确保电机正常
运行。
预防措施
03
为避免电机出现故障,应采取相应的预防措施,如定期维护、
更换轴承等。
电机的使用寿命与可靠性
使用寿命
电机的使用寿命受多种因素影响,如电 机类型、使用环境、维护保养等。为确 保电机的使用寿命,应定期进行维护保 养。
VS
可靠性
电机的可靠性是指在规定条件下,电机无 故障运行的能力。为确保电机的可靠性, 应选择质量可靠的电机,并定期进行维护 保养。
THANKS

步进伺服电机毕业论文

步进伺服电机毕业论文

步进伺服电机毕业论文步进伺服电机是近年来在控制领域得到广泛应用的一种电动机,它具有定位精度高、响应速度快、使用方便等特点。

本文将从步进伺服电机的基本原理、控制方法以及应用领域等方面进行论述,旨在全面了解步进伺服电机的特性以及其在实际应用中的优势和局限性。

一、步进伺服电机的基本原理1. 步进电机的工作原理步进电机是以脉冲信号为驱动信号的一种电动机,它依靠电磁场的磁极相互作用实现转动。

步进电机的转动角度大小是由电机的结构参数决定的,而每一次转动都需要给电机输入一个脉冲信号,由此使电机顺时针或逆时针旋转一个固定的角度。

2. 伺服电机的工作原理伺服电机是一种能够通过反馈控制系统来精确控制位置、速度和加速度的电动机,它通过加装传感器和反馈控制电路来完成控制功能。

在伺服系统中,电机的运动状态与环境反馈信号不断地进行比较和校准,以便实现高精度的位置和速度控制。

3. 步进伺服电机的工作原理步进伺服电机是将步进电机和伺服电机的优点集成而成的一种电机。

步进伺服电机包括了步进电机的定点控制和精准位置控制的功能,同时又拥有伺服电机精确位置控制和转速控制的功能。

步进伺服电机的精度和响应速度都比较高,可以适用于许多需要精确控制的场景。

二、步进伺服电机的控制方法1. 随机驱动控制随机驱动控制是一种简单的步进伺服电机控制方法,它只需要单纯地控制脉冲信号的频率即可控制电机的运动。

使用该控制方法时,用户只需要指定步进电机需要旋转的角度,然后控制脉冲信号输出的频率即可。

2. 微处理器控制微处理器控制是一种使用微处理器来控制步进伺服电机的控制方法,它通过编写控制程序和连接外设来实现对电机的控制。

使用微处理器控制可以实现更复杂的运动控制,并且可以集成各种传感器和调节设备,提高控制精度。

3. 模糊控制模糊控制是一种基于模糊逻辑的控制方法,它可以处理不确定和模糊的控制问题。

该控制方法适用于电机控制中存在噪声和混淆的情况,可以实现更加稳定和优化的控制。

伺服电机和步进电机工作原理区别

伺服电机和步进电机工作原理区别

伺服电机和步进电机工作原理区别
伺服电机和步进电机是常见的电动机种类,它们在工业自动化、机器人领域等
有着广泛的应用。

虽然它们都可以实现精确的控制,但是其工作原理有着明显的区别。

下面将具体介绍伺服电机和步进电机的工作原理区别。

1. 伺服电机的工作原理
伺服电机是一种具有反馈控制系统的电机,通常由电机、编码器、控制器等部
分组成。

伺服电机通过不断地接收控制器发出的指令,检测电机转速、位置等信息,并将检测到的信息反馈给控制器,进而调节电机的运行状态,以实现精准的位置和速度控制。

当外部负载发生变化时,伺服电机能够根据反馈信号自动调整输出扭矩,确保系统稳定运行。

2. 步进电机的工作原理
步进电机是一种控制简单、结构紧凑的电机,通常由定子、转子、驱动电路等
组成。

步进电机通过向不同的相依次通电,使得电机按一定步进角度转动,从而实现精确的位置控制。

步进电机的运行速度取决于驱动电路向电机提供的脉冲频率和电源电压,不具有反馈控制系统来实现自动调节。

3. 工作原理区别对比
从工作原理上来看,伺服电机是一种闭环控制系统,具有反馈机制,能够根据
实际情况动态调整运行状态;而步进电机是一种开环控制系统,缺乏反馈机制,只能通过控制输入的脉冲频率和电压来控制位置。

因此,伺服电机在需要高精度、高速度、大扭矩等要求较高的场合具有优势;而步进电机更适用于一些低速、简单位置控制的场合。

综上所述,伺服电机和步进电机在工作原理上有着明显的区别。

选择合适的电
机种类应根据具体的应用场景和要求来进行选择,以保证系统的稳定性和性能。

几种不同电动机运行原理及特点

几种不同电动机运行原理及特点

电动机原理和特点的比较本文主要介绍了三种直流电机:普通直流电机、无刷电机、步进电机,两种交流电机:三相异步电动机、伺服电机的原理、特点及调速方法。

1、普通直流电机普通直流电机便是我们最熟悉的一种电动机,它的转子在内部,由线圈组成,定子则在外部,由永磁体组成。

在工作时,而把它的电刷A、B接在电压为U的直流电源上,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体Cd中的电流是从C流向d。

载流导体在磁场中要受到电磁力的作用,因此,ab和Cd两导体都要受到电磁力的作用。

根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab 边受力的方向是向左,而Cd边则是向右。

由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和Cd边所受电磁力的大小相等。

这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。

当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。

线圈转过半周之后,虽然ab与Cd的位置调换了,ab边转到S极范围内,Cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的Cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a.因此,电磁力FdC的方向仍然不变,线圈仍然受力按逆时针方向转动。

可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了。

从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。

换向器和电刷就是完成这个任务的装置。

当然,在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导体中通过电流、在磁场中因受力而转动,就带动整个转子旋转。

直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。

步进电机和伺服电机的原理和区别以与如何选型

步进电机和伺服电机的原理和区别以与如何选型
不使用永久磁在结构,且由于转矩及惯性量之密切配合下,又有着低的二次转子阻抗,使在所有 的范围内有着高的加减速动态特性。
特点详细讲解
运转变化佳∶ 因转矩是由感应式电流产生,具有完美磁性分ห้องสมุดไป่ตู้之高密度磁通所产生,故籍由保持整个速 域非常佤之转矩涟波而可得到全然稳定之旋转运动及伺服动作。 最大与额定轻矩之良好关系∶
步进和伺服马达的区别
总结:伺服马达和步进的区别,一是速度,步进电机的速度比伺服电机的速度慢了很多, 第二个区别就是马达的解析度,伺服电机的更高。 线性电机是一种可以直接产生直动的 电机,不需要要转换设备(如丝杆或是皮带)。这样一说的话大家都可以很容易的知道线 性电机和伺服电机相比有哪些优势了。由于去掉了传动的皮带(或是丝杆),工作头动作 的启停更快。没有了传动部分,当然也没有了传动过程中的动作失真。在定位系统中,最 常用的马达不外乎是步进马达和伺服马达,其中,步进马达主要可分为2相,5相,微步进 系统。伺服马达则主要是驱动器所表现出来之分辨率不同,2相步进系统马达每转最细可 分为400格,5相则为1000格,微步进则可从200-50000(或以上)格,表现出来的特性以 微步进最好,加减速时间较短,动态惯性较低。 AC和DC伺服马达主要分为DC伺服比AC伺服马达多一个碳刷,会有维护上的问题,而AC伺 服马达因没有碳刷,所以后续不会有太多的维护问题。所以基本上来说AC伺服系统是较 DC伺服系统更优,但DC伺服系统主要的优势则是价位上比AC伺服系统较便宜,而此两种 的控制精度皆为相同。
步进和伺服马达的区别
2、伺服马达分为交流和直流两大类,功率相对较大,精度高;两者主要的区别是看 马达的端部是否有光电编码器!伺服马达就是靠光电编码器来反馈位置信号的. 顺便提一下闭环控制又可分半闭环和全闭环两种,但是普遍使用的是半闭环装置, 只有非常精密的设备才用全闭环装置:

伺服电机工作原理和步进电机的区别是什么

伺服电机工作原理和步进电机的区别是什么

伺服电机工作原理和步进电机的区别
伺服电机和步进电机是常见的用于控制机器人、数控机床等设备运动的两种电机类型。

虽然它们都具有精准控制的能力,但在工作原理和应用场景上有着明显的区别。

伺服电机工作原理
伺服电机是一种能够反馈位置信息并进行精确控制的电机。

其工作原理基于一个反馈回路,通过比较设定值与实际位置之间的差异,控制电机输出的位置、速度和力矩。

通常情况下,伺服电机配备编码器或传感器来实现位置反馈,从而确保运动的精确性和稳定性。

步进电机的特点
步进电机是一种通过控制输入脉冲数量实现运动控制的电机。

它是将电机转动分为一步步的离散运动,每输入一个脉冲,电机就转动一个固定的步进角度。

步进电机不需要反馈系统,仅需控制脉冲信号即可完成运动,因此结构相对简单。

伺服电机和步进电机的区别
1.工作原理:伺服电机通过反馈系统实现精准控制,而步进电机通过脉
冲信号控制完成运动。

2.精度和稳定性:伺服电机由于有反馈系统的支持,能够实现更高的精
度和稳定性;而步进电机在低速运动和负载变化较小时表现良好。

3.控制方式:伺服电机实时调整输出以匹配实际位置,适用于动态响应
要求高的场景;步进电机适用于对精确位置要求不高的场景,且在停止时可能存在失步现象。

4.成本和复杂度:伺服电机由于需要反馈系统和较复杂的控制算法,成
本较高且安装调试较为复杂;步进电机简单、成本低。

综上所述,伺服电机适用于对精度、稳定性和动态响应要求较高的应用场景,而步进电机在低成本、简单控制、对位置精度要求不高的场合更为常见。

选择适合的电机类型取决于具体应用需求和预算考量。

步进电机和伺服电机的区别和原理是什么?

步进电机和伺服电机的区别和原理是什么?

步进电机和伺服电机的区别和原理是什么?一、步进电机的工作原理是什么?一般来说,各种电机都有铁芯和绕组线圈。

如果绕组电阻有电阻,通电会产生消耗。

消耗量与电阻和电流的平方正相关。

这就是我们常说的铜损伤。

当电流不是标准直流或正弦波时,同样会产生谐波消耗;同时,由于铁芯带来的磁滞涡流效应,也会在交替磁场中带来消耗。

其尺寸与材料、电流、频率和电压有关,称为铁损伤。

以上两种损耗都会导致发热,进而导致电机的工作效率受到影响。

步进电机的电流会比一般的电机更大,谐波成分也会更高,以追求高精度和输出扭矩,因此步进电机的发热情况会比一般的电机更加严重。

电机将电能转换为机械能,步进电机是将电脉冲信号转换为角速或线位移的开环控制元件。

在非超重的情况下,电机的速度和停止位置仅取决于脉冲信号的数量和脉冲数量,不受负载转换的影响,即向电机添加脉冲信号,电机转动步距角。

这种线性相关的出现,加上步进电机只有周期性偏差,没有累积误差等特点。

在速率、位置等控制领域使用步进电机非常简单。

二、伺服电机的工作原理1、伺服系统(servomechanism)它是一种自动控制系统,允许测量对象的位置、方向和情况随输入目标(或给定值)随意变化。

伺服系统的定位功能主要靠脉冲来实现。

伺服电机接收到一个脉冲之后,就会转动到对应的角度实现偏移。

依靠伺服电机的脉冲传输功能,发出相应数量的脉冲,发出的脉冲与接收的脉冲相同,因此,系统将了解伺服电机发送了多少脉冲,也接收了多少脉冲回家,从而准确控制电机的旋转,从而实现准确定位,可达0.001mm。

直流伺服电机一般分为有刷和无刷两种。

有刷电机的结构更紧凑,启动扭矩更大,操作也更方便,价格成本比较低。

但维护起来比较麻烦,容易产生信号干扰,因此对使用环境有一定要求。

有刷电机一般会用在对成本更敏感的民用或工业环境。

无刷电机的体积更小重量也更轻,在大输出的情况下可以做到速度快、响应快、惯性小,而且扭矩稳定、旋转光滑。

操作复杂,易于实现智能,其电子相换方法灵活,可波形或正弦波相换。

步进电机和伺服电机工作原理

步进电机和伺服电机工作原理

步进电机和伺服电机工作原理步进电机和伺服电机是常见的电动机类型,它们在自动控制系统中起到了重要的作用。

本文将分别介绍步进电机和伺服电机的工作原理。

一、步进电机的工作原理步进电机是一种将电脉冲信号转化为角位移或直线位移的电机。

它由定子和转子组成,定子上有若干个电磁线圈,转子上有若干个极对。

当电流通过定子线圈时,会产生磁场,使得转子受到力矩的作用而转动。

步进电机的工作原理可以分为两种模式:单相步进和双相步进。

在单相步进模式下,只需要给定子线圈提供单相脉冲信号,转子就可以按照一定的角度进行移动。

而在双相步进模式下,需要给定子线圈提供两相脉冲信号,转子可以按照更精确的角度进行移动。

步进电机的控制方式主要有两种:开环控制和闭环控制。

开环控制是指通过控制脉冲信号的频率和脉冲数来控制步进电机的转动速度和位置,但无法实时检测电机的转动情况。

闭环控制是在开环控制的基础上增加了位置反馈装置,可以实时检测电机的转动位置,从而更准确地控制电机的转动。

二、伺服电机的工作原理伺服电机是一种能够根据输入信号控制转子位置的电机。

它由电机、位置传感器、控制器和执行器组成。

位置传感器用于检测电机转子的位置,控制器根据输入信号和位置反馈信号计算出控制电机的输出信号,执行器将输出信号转化为力矩作用于电机转子上。

伺服电机的工作原理可以简单概括为三个步骤:检测、比较和控制。

首先,位置传感器检测电机转子的位置,并将位置信息反馈给控制器。

然后,控制器将位置信息与输入信号进行比较,计算出控制电机输出信号的大小和方向。

最后,执行器将输出信号转化为力矩,作用于电机转子上,使其按照预定的位置和速度运动。

伺服电机的控制方式主要有位置控制、速度控制和力矩控制。

位置控制是指通过控制输出信号的大小和方向来控制电机的位置,速度控制是通过控制输出信号的频率和脉冲数来控制电机的转速,力矩控制是通过控制输出信号的幅值来控制电机的输出力矩。

总结:步进电机和伺服电机是常见的电动机类型,它们在自动控制系统中起到了重要的作用。

步进电机伺服电机

步进电机伺服电机

7.3.1 认知步进电机及驱动器1、步进电动机简介步进电动机是将电脉冲信号转换为相应的角位移或直线位移的一种特殊执行电动机。

每输入一个电脉冲信号,电机就转动一个角度,它的运动形式是步进式的,所以称为步进电动机。

(1)步进电动机的工作原理下面以一台最简单的三相反应式步进电动机为例,简介步进电机的工作原理。

图7-10是一台三相反应式步进电动机的原理图。

定子铁心为凸极式,共有三对(六个)磁极,每两个空间相对的磁极上绕有一相控制绕组。

转子用软磁性材料中制成,也是凸极结构,只有四个齿,齿宽等于定子的极宽。

图7-10 三相反应式步进电动机的原理图当A相控制绕组通电,其余两相均不通电,电机内建立以定子A相极为轴线的磁场。

由于磁通具有力图走磁阻最小路径的特点,使转子齿1、3的轴线与定子A相极轴线对齐,如图7-10(a)所示。

若A相控制绕组断电、B相控制绕组通电时,转子在反应转矩的作用下,逆时针转过30°,使转子齿2、4的轴线与定子B相极轴线对齐,即转子走了一步,如图7-10(b)所示。

若在断开B相,使C相控制绕组通电,转子逆时针方向又转过30°,使转子齿1、3的轴线与定子C相极轴线对齐,如图7-10(c)所示。

如此按A—B—C—A的顺序轮流通电,转子就会一步一步地按逆时针方向转动。

其转速取决于各相控制绕组通电与断电的频率,旋转方向取决于控制绕组轮流通电的顺序。

若按A—C—B—A的顺序通电,则电动机按顺时针方向转动。

上述通电方式称为三相单三拍。

“三相”是指三相步进电动机;“单三拍”是指每次只有一相控制绕组通电;控制绕组每改变一次通电状态称为一拍,“三拍”是指改变三次通电状态为一个循环。

把每一拍转子转过的角度称为步距角。

三相单三拍运行时,步距角为30°。

显然,这个角度太大,不能付诸实用。

如果把控制绕组的通电方式改为A→AB→B→BC→C→CA→A,即一相通电接着二相通电间隔地轮流进行,完成一个循环需要经过六次改变通电状态,称为三相单、双六拍通电方式。

步进电机和伺服电机的工作原理对比

步进电机和伺服电机的工作原理对比

步进电机和伺服电机的工作原理对比步进电机和伺服电机作为电子工业常用的电机,是电工需要重点学习并使用的机器,但有很多小白不清楚步进电机和伺服电机的工作原理,也不知道如何根据场景来使用步进电机还是伺服电机,所以本文将一一回答这些问题,希望对小白有所帮助。

1、步进电机和伺服电机的工作原理伺服电机主要是靠脉冲来定位,伺服电机接收到1个脉冲,将会旋转1个脉冲对应的角度,从而实现位移,这是由于伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转1个角度都会发出对应数量的脉冲,这样和伺服电机接收的脉冲形成了呼应,或者叫闭环,如此一来,系统将知道发了多少脉冲个伺服电机,同时也收了多少脉冲回来,这样就能很精确地控制电极的转动。

步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。

在目前国内的数字控制系统中,步进电机的应用十分广泛。

随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。

为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。

虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。

2、步进电机和伺服电机的对比①控制精度的不同两相混合式步进电机步距角一般为3.6°、1.8°,无相混合式步进电机步距角一般为0.72°、0.36°,也有一些高性能的不仅电极步距角更小。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。

②低频特性不同步进电机在低速时易出现低频振动现象。

振动频率与负载情况和驱动器性能有关,--般认为振动频率为电机空载起跳频率的一半。

这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。

当步进电机工作在低速时,--般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不会出现振动现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进和伺服电机的工作原理伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度(线数)。

4. 什么是伺服电机?有几种类型?工作特点是什么?答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。

分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,请问交流伺服电机和无刷直流伺服电机在功能上有什么区别?答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。

直流伺服是梯形波。

但直流伺服比较简单,便宜。

永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。

交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。

90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。

交流伺服驱动装置在传动领域的发展日新月异。

永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可*,对维护和保养要求低。

⑵定子绕组散热比较方便。

⑶惯量小,易于提高系统的快速性。

⑷适应于高速大力矩工作状态。

⑸同功率下有较小的体积和重量。

自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。

到20世纪80年代中后期,各公司都已有完整的系列产品。

整个伺服装置市场都转向了交流系统。

早期的模拟系统在诸如零漂、抗干扰、可*性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧 只瘮或抟旌鲜綌、撊 只瘮的永磁交流伺服系统日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。

之后又推出M、F、S、H、C、G 六个系列。

20世纪90年代先后推出了新的D系列和R系列。

由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可*性。

这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。

以生产机床数控装置而著名的日本法奴克(Fanuc)公司,在20世纪80年代中期也推出了S系列(13个规格)和L系列(5个规格)的永磁交流伺服电动机。

L系列有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统。

日本其他厂商,例如:三菱电动机(HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS系列)、东芝精机(SM 系列)、大隈铁工所(BL系列)、三洋电气(BL系列)、立石电机(S系列)等众多厂商也进入了永磁交流伺服系统的竞争行列。

德国力士乐公司(Rexroth)的Indramat分部的MAC系列交流伺服电动机共有7个机座号92个规格。

德国西门子(Siemens)公司的IFT5系列三相永磁交流伺服电动机分为标准型和短型两大类,共8个机座号98种规格。

据称该系列交流伺服电动机与相同输出力矩的直流伺服电动机IHU系列相比,重量只有后者的1/2,配套的晶体管脉宽调制驱动器6SC61系列,最多的可供6个轴的电动机控制。

德国宝石(BOSCH)公司生产铁氧体永磁的SD系列(17个规格)和稀土永磁的SE系列(8个规格)交流伺服电动机和Servodyn SM系列的驱动控制器。

美国著名的伺服装置生产公司Gettys曾一度作为Gould 电子公司一个分部(Motion Control Division),生产M600系列的交流伺服电动机和A600 系列的伺服驱动器。

后合并到AEG,恢复了Gettys名称,推出A700全数字化的交流伺服系统。

美国A-B(ALLEN-BRADLEY)公司驱动分部生产1326型铁氧体永磁交流伺服电动机和1391型交流PWM伺服控制器。

电动机包括3个机座号共30个规格。

I.D.(Industrial Drives)是美国著名的科尔摩根(Kollmorgen)的工业驱动分部,曾生产BR-210、BR-310、BR-510 三个系列共41个规格的无刷伺服电动机和BDS3型伺服驱动器。

自1989年起推出了全新系列设计的掺鹣盗袛(Goldline)永磁交流伺服电动机,包括B(小惯量)、M(中惯量)和EB(防爆型)三大类,有10、20、40、60、80五种机座号,每大类有42个规格,全部采用钕铁硼永磁材料,力矩范围为0. 84~111.2N.m,功率范围为0.54~15.7kW。

配套的驱动器有BDS4(模拟型)、BDS5(数字型、含位置控制)和Smart Drive(数字型)三个系列,最大连续电流55A。

Goldline系列代表了当代永磁交流伺服技术最新水平。

爱尔兰的Inland原为Kollmorgen在国外的一个分部,现合并到AEG,以生产直流伺服电动机、直流力矩电动机和伺服放大器而闻名。

生产BHT1100、2200、3300三种机座号共17种规格的SmCo永磁交流伺服电动机和八种控制器。

法国Alsthom集团在巴黎的Parvex工厂生产LC系列(长型)和GC系列(短型)交流伺服电动机共14个规格,并生产AXODYN系列驱动器。

原苏联为数控机床和机器人伺服控制开发了两个系列的交流伺服电动机。

其中ДBy系列采用铁氧体永磁,有两个机座号,每个机座号有3种铁心长度,各有两种绕组数据,共12个规格,连续力矩范围为7~35N. m。

2ДBy系列采用稀土永磁,6个机座号17个规格,力矩范围为0.1~170N.m,配套的是3ДБ型控制器。

近年日本松下公司推出的全数字型MINAS系列交流伺服系统,其中永磁交流伺服电动机有MSMA系列小惯量型,功率从0.03~5kW,共18种规格;中惯量型有MDMA、MGMA、MFMA三个系列,功率从0.75~4.5kW,共23种规格,MHMA系列大惯量电动机的功率范围从0.5~5kW,有7种规格。

韩国三星公司近年开发的全数字永磁交流伺服电动机及驱动系统,其中FAGA交流伺服电动机系列有CSM、CSMG、CSMZ、CSMD、CSMF、CSMS、CSMH、CSMN、CSMX多种型号,功率从15W~5kW。

现在常采用摴β时浠 蕯(Powerrate)这一综合指标作为伺服电动机的品质因数,衡量对比各种交直流伺服电动机和步进电动机的动态响应性能。

功率变化率表示电动机连续(额定)力矩和转子转动惯量之比。

按功率变化率进行计算分析可知,永磁交流伺服电动机技术指标以美国I.D 的Goldline系列为最佳,德国Siemens的IFT5系列次之。

步进电机和交流伺服电机性能比较步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。

在目前国内的数字控制系统中,步进电机的应用十分广泛。

随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。

为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。

虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。

现就二者的使用性能作一比较。

一、控制精度不同两相混合式步进电机步距角一般为3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。

也有一些高性能的步进电机步距角更小。

如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。

以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。

对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/13 1072=9.89秒。

是步距角为1.8°的步进电机的脉冲当量的1/655。

二、低频特性不同步进电机在低速时易出现低频振动现象。

振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。

这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。

当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。

交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~6 00RPM。

交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

四、过载能力不同步进电机一般不具有过载能力。

交流伺服电机具有较强的过载能力。

以松下交流伺服系统为例,它具有速度过载和转矩过载能力。

其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。

步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

五、运行性能不同步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。

相关文档
最新文档