八年级下册数学知识点总结

合集下载

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线。

3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

八年级下学期数学知识点总结

八年级下学期数学知识点总结

八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。

平移不会改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

八年级下册数学书的知识点

八年级下册数学书的知识点

八年级下册数学书的知识点包括以下内容:
一、代数运算
1. 有理数的加减乘除运算及其性质
2. 一元一次方程和不等式的解法
3. 平方根、绝对值、分式、分式方程等的运算及应用
二、几何基础
1. 直角三角形及斜角三角形的性质
2. 平面图形的面积和周长的计算
3. 空间几何图形的面积和体积的计算
三、概率统计
1. 随机事件的概念和基本性质
2. 频率和概率的关系
3. 抽样调查和数据处理的方法
四、函数基础
1. 函数的概念和基本性质
2. 一次函数、二次函数的图像和性质
3. 反比例函数和指数函数的概念和应用
五、图形的变换
1. 平移、旋转、对称和放缩的概念和性质
2. 直线对称、中心对称和轴对称的应用
3. 图形变换对坐标的影响和应用
以上是八年级下册数学书的主要知识点,每个知识点都包含着多个子知识点,需要同学们认真理解和掌握。

同时,巩固前一年的数学基础也是十分重要的,只有掌握好基础才能更好地学习新
知识。

数学是一门需要不断练习和思考的学科,同学们需要勤奋用心,不断提高自己的数学能力。

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。

2. 一元一次方程的概念、解法和实际应用。

3. 一元一次不等式的概念、解法和实际应用。

4. 一元二次方程的概念、解法和实际应用。

5. 代数式的加减乘除、化简和因式分解。

6. 二元一次方程组的概念、解法和实际应用。

7. 一元二次不等式的概念、解法和实际应用。

8. 质因数分解和最大公因数、最小公倍数的求法。

9. 分式的基本概念和运算方法。

二、几何1. 平面图形的基本性质和分类。

2. 勾股定理及其应用。

3. 三角形的相似性质和判定方法。

4. 三角形的内角和及其计算。

5. 空间图形的基本性质和分类。

6. 直线与平面的位置关系及其应用。

7. 圆的基本性质和相关定理。

8. 空间中直线与平面的交角问题和判定方法。

9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。

三、概率统计1. 事件和概率的基本概念。

2. 古典概型和几何概型的概率计算。

3. 条件概率和独立性的概念和计算方法。

4. 排列和组合的概念和应用。

5. 随机变量和概率分布的定义和联系。

6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。

7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。

8. 正态分布的概念和应用。

9. 假设检验的基本概念和方法。

以上就是八年级数学下册的全部知识点总结。

在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。

同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结数学是一门既具有逻辑性又具有实用性的学科,它是培养学生思维能力和解决问题的重要工具。

在八年级下册的学习中,我们接触到了许多重要的数学知识点。

本文将对这些知识点进行归纳总结,以帮助同学们更好地学习和掌握数学。

一、有理数的运算有理数是指可以表示为两个整数的比的数,包括整数、正分数、负分数和零。

我们学习了有理数的四则运算,包括加法、减法、乘法和除法。

在进行运算时,需要注意符号的运用和分数的化简,以确保计算的准确性。

二、平方根与立方根平方根是指一个数的平方等于它本身时,这个数称为该数的平方根。

我们学习了如何求解一个数的平方根,并应用到解决实际问题中。

立方根是指一个数的立方等于它本身时,这个数称为该数的立方根。

我们通过求解立方根来解决涉及到体积和立方体积的问题。

三、一次函数与斜率一次函数也称为线性函数,它的表达式为y = kx + b,其中k是斜率,b是y轴截距。

我们学习了如何通过给定的点或者两个点来确定一次函数的表达式,并了解了斜率对函数图像的影响。

四、平面图形与几何关系我们学习了各种平面图形的性质和计算方法,包括三角形、四边形、圆等。

通过研究这些图形的性质,我们可以计算它们的周长、面积和体积,并解决与之相关的实际问题。

五、统计与概率统计学是数学的一个重要分支,它研究如何收集、整理、分析和解释数据。

我们学习了统计图表的绘制和解读,包括条形图、折线图和饼图等。

概率是指一个事件在所有可能事件中发生的可能性。

我们通过学习概率的基本概念和计算方法,可以预测事件发生的可能性,并进行合理的判断和决策。

六、方程与不等式方程是指一个等式,它包含一个或多个未知数。

我们通过解方程来确定未知数的值,从而满足等式的平衡。

不等式是指一个不等于号连接的数学表达式。

我们学习了如何解不等式,并应用到实际问题中,例如解决关于货币、年龄和长度等的不等式问题。

七、变量与代数表达式变量是数学中的一个重要概念,它是表示未知数的一个字母或符号。

八年级下册数学知识点全汇总

八年级下册数学知识点全汇总

八年级下册数学知识点全汇总八年级下册数学知识点包含了许多重要的内容,下面将对这些知识
点进行全面汇总和总结。

在这个学期里,同学们将继续学习更加深入
和复杂的数学知识,为进一步提高数学水平打下坚实的基础。

1. 有理数
在八年级下册,同学们将继续深入学习有理数的知识。

有理数包括
正整数、负整数、分数和小数等。

同学们将学习有理数的加减乘除运算,以及有理数之间的大小比较和简单的代数式计算。

2. 方程与不等式
在这一部分,同学们将学习如何解一元一次方程和一元一次不等式。

通过学习方程和不等式的性质和解题方法,同学们将能够熟练解决包
括应用题在内的各种数学问题。

3. 几何
在八年级下册的几何部分,同学们将学习多边形的性质、三角形的
性质、相似三角形、勾股定理等内容。

通过学习几何知识,同学们将
能够掌握基本的几何思维和方法,解决与几何相关的问题。

4. 数据统计
数据统计是数学中的一部分重要内容,同学们将学习如何收集数据、整理数据、制作统计表和统计图,以及如何从数据中获取有用信息。

通过数据统计的学习,同学们将培养分析和解决实际问题的能力。

5. 概率
概率是数学中的一门重要分支,同学们将学习事件的概率计算、概率的性质和概率的应用等内容。

通过学习概率知识,同学们将能够理解随机现象的规律,并且能够进行简单的概率计算。

八年级下册数学知识点全汇总就是以上内容,希望同学们能够认真学习,掌握好这些知识,提高自己的数学能力。

祝同学们学业有成,取得优异的成绩!。

八年级上下册数学知识点总结

八年级上下册数学知识点总结

数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。

2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。

3.乘方:乘方的概念,乘方的性质,乘方的运算法则。

4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。

5.分数:分数的概念,分数的性质,分数的加减法运算法则。

6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。

7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。

8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。

9.角:角的概念,角的分类,角的性质,角的度量。

10.平行线:平行线的概念,平行线的性质,平行线的判定。

二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。

2.勾股定理:勾股定理的概念,勾股定理的应用。

3.多边形:多边形的概念,多边形的分类,多边形的性质。

4.圆:圆的概念,圆的性质,圆的度量。

5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。

6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。

7.百分数:百分数的概念,百分数的性质,百分数的计算。

8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。

9.概率:概率的概念,概率的计算。

10.函数与图像:函数的概念,函数的性质,函数的图像。

八下数学重点内容总结

八下数学重点内容总结

八下数学重点内容总结
1.有效数字:一个近似数,从左边第一个不为0的数开始,到精确的数位止,
所有的数字都是有效数字。

2.概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

3.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三
角形。

4.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,
这个角的顶点与交点之间的线段叫做三角形的角平分线。

5.三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这
个三角形的中线。

6.全等图形:两个能够重合的图形称为全等图形。

7.变量:变化的数量,就叫变量。

8.自变量:在变化的量中主动发生变化的,变叫自变量。

9.因变量:随着自变量变化而被动发生变化的量,叫因变量。

10.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相
重合,那么这个图形叫做轴对称图形。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。

八年级下册数学知识点

八年级下册数学知识点

八年级下册数学知识点八年级下册数学知识点15篇上学的时候,相信大家一定都接触过知识点吧!知识点也可以通俗的理解为重要的内容。

为了帮助大家掌握重要知识点,下面是店铺帮大家整理的八年级下册数学知识点,仅供参考,大家一起来看看吧。

八年级下册数学知识点11.旋转和平移平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。

旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。

2.平行四边形平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。

3.特殊平行四边形行特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。

这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。

解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。

这就需要同学们运用对比分析的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。

八年级下册数学知识点21、分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。

(3)分式值为零的条件:分式A/B=0的条件是A=0,且B≠0。

注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。

(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。

其中,a被称为被开方数。

最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。

如果两个二次根式的被开方数相同,那么它们就是同类二次根式。

二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。

二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。

应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。

勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。

直角三角形还有一些其他的性质,需要我们认真研究和掌握。

1.直角三角形的两个锐角互余,即∠A+∠B=90°。

2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。

4.三角形面积公式为AB•CD=AC•BC。

5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。

6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。

7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。

8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。

9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。

10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

初中八年级下册数学知识点

初中八年级下册数学知识点

初中八年级下册数学知识点
1. 勾股定理:勾股定理是一个基本的几何定理,用于描述直角三角形中三条边的关系。

在八年级下册,学生将学习如何使用勾股定理解决实际问题。

2. 二次根式:二次根式是数学中的一种表达式,表示一个数的平方根。

学生需要掌握二次根式的性质、运算规则以及与实数的关系。

3. 一元二次方程:一元二次方程是包含一个未知数的二次方程。

学生需要掌握一元二次方程的解法、应用以及与现实生活的关系。

4. 平面直角坐标系:平面直角坐标系是一个基本的数学工具,用于描述平面上的点的位置。

学生需要掌握如何使用坐标系表示点的位置,以及如何通过坐标系解决实际问题。

5. 一次函数与反比例函数:一次函数和反比例函数是两种基本的函数形式。

学生需要掌握它们的性质、图像以及在实际生活中的应用。

6. 数据的收集与整理:学生需要掌握如何收集和整理数据,以及如何使用图表来表示数据。

这将帮助他们更好地理解和分析现实生活中的问题。

以上是初中八年级下册数学的主要知识点。

在学习过程中,学生需要注重理解和应用,通过大量的练习来巩固所学知识。

八年级数学下册知识点总结(可编辑打印思维导图)

八年级数学下册知识点总结(可编辑打印思维导图)

二、方差
1、在一组数据中,各数据与他们的平均 数的差的平方的平均数,叫做这组数据
的方差,常用来表示,即:
基本公式:
2、方差的三种公式: 化简公式:
化简公式的变形公式:
3、设化简后的新数据组的方差为设的方 差为(其中),则;
4、方差的作用:用于表述一组数据波动 的大小,方差越小,该数据波动越小,
越稳定。
四边形
1.四边形的内角和与外角和定理:
2.多边形的内角和与外角和定理:
3.平行四边形的性质: 4.平行四边形的判定: 5.矩形的性质: 6. 矩形的判定: 7.菱形的性质: 8.菱形的判定: 9.正方形的性质:
(1)四边形的内角和等于360°; (2)四边形的外角和等于360°.
(1)n边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.
量。
一般地,在某一变化过程中有两个变量x 与y,如果对于x的每一个值,y都有唯一 确定的值与它对应,那么就说x是自变量
,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数 解析式或函数关系式。
使函数有意义的自变量的取值的全体, 叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一 个含有这两个变量及数字运算符号的等
式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值 列成一个表来表示函数关系,这种表示
法叫做列表法。
(3)图像法:用图像表示函数关系的方 法叫做图像法。
4、由函数解析式画其 图像的一般步骤
(1)列表:列表给出自变量与函数的一 些对应值
四边形,四边形的内角,四边形的外角 ,多边形,平行线间的距离,平行四边 形,矩形,菱形,正方形,中心对称, 中心对称图形,梯形,等腰梯形,直角

八年级下册数学知识点大纲

八年级下册数学知识点大纲

八年级下册数学知识点大纲一、分数
1. 什么是分数
2. 分数的分类
3. 分数的加减乘除
4. 分数化简
5. 分数的大小比较
6. 分数的应用
二、代数式
1. 什么是代数式
2. 代数式的分类
3. 代数式的加减乘除
4. 代数式的同类项合并
5. 代数式的化简
6. 代数式的应用
三、线性方程组
1. 什么是线性方程组
2. 线性方程组的解法
3. 线性方程组的应用
四、平面几何
1. 基本概念与性质
2. 垂线、角平分线、中线、高线与中垂线
3. 三角形的相似
4. 三角形的等角关系和全等关系
5. 三角形面积与勾股定理
五、正比例函数
1. 什么是正比例函数
2. 正比例函数的图像特征
3. 正比例函数的性质和应用
六、平方根与立方根
1. 平方根的计算及其性质
2. 立方根的计算及其性质
3. 平方根、立方根的化简与应用
七、统计与概率
1. 数据的收集、整理和表达
2. 统计量的计算及其意义
3. 概率的基本概念与性质
4. 事件的概率和互斥事件
八、三角函数
1. 什么是三角函数
2. 正弦函数、余弦函数、正切函数的性质
3. 三角函数的应用
以上为八年级下册数学知识点大纲。

在学习这些知识点时,需
要掌握概念、性质和公式等基础知识,加强练习、提高思维能力,将知识点应用于实际问题中,达到对数学知识的全面掌握和灵活
应用。

初二下学期数学 八年级下学期数学知识点总结(精选8篇)

初二下学期数学 八年级下学期数学知识点总结(精选8篇)

初二下学期数学八年级下学期数学知识点总结(精选8篇)初二下册数学知识点篇一1、平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析加权平均数、中位数、众数、极差、方差初二下册数学知识点归纳北师大版篇二第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

八年级数学知识点上册八年级下册数学知识点

八年级数学知识点上册八年级下册数学知识点

八年级数学知识点上册八年级下册数学知识点上册八年级数学知识点:
1. 整数和有理数
- 整数的概念
- 整数的数轴表示和比较
- 整数的运算:加法、减法、乘法和除法
- 有理数的概念和运算
2. 代数式与方程式
- 代数式的定义和运算
- 方程式的定义和解法
- 一元一次方程的解法
3. 几何形状与运动
- 平面图形的分类与性质
- 直角三角形和勾股定理
- 平行线与相交线
- 对称与中心对称
- 平移、旋转和翻转
4. 相似与全等
- 相似图形的性质和判定
- 三角形的全等定理和判定
- 相似三角形的性质和判定
下册八年级数学知识点:
1. 函数
- 函数的概念和表达方式
- 函数的图像和性质
- 函数的运算和复合函数
2. 统计与概率
- 统计的基本概念和图表表示
- 事件的概念和概率的计算
- 两个事件的复合事件和概率的计算
3. 空间与立体图形
- 空间图形的分类和性质
- 空间图形的展开图和计算体积
- 空间图形的表面积和体积
4. 数据分析
- 数据的收集和整理
- 数据的描述和分析
- 数据的比较和推理
5. 线性方程组
- 二元一次方程组的解法 - 三元一次方程组的解法 - 方程组问题的建立和解答。

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c bc a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为a bx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b) 一元一次不等式解集 图示叙述语言表达⎩⎨⎧>>b x ax x>bba 两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找 ⎩⎨⎧><bx ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八下数学知识点总结第十六章 分式 16.1 分式1. 分式:如果A 、B 表示两个整式,并且分母中含有字母,那么式子BA叫做分式。

2. 分式有意义的条件:分母不为零。

3. 分式值为零的条件:○1分子为零 ○2分母不为零4. 分数的基本性质:分式的分子与分母同乘或除以一个非零的整式,分式的值不变。

用式子表示为: (0≠C )5. 最简分式:一个分式的分子与分母没有公因式时,叫最简分式。

约分化简方法:○1分子分母同时分解因式 ○2约去公因式6. 通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分。

通分方法:○1把各个分式的分母进行因式分解 ○2找出最简公分母 ○3用分式的性质把各个分式化为同分母分式找最简公分母的方法:○1取各分式分母中系数(系数都取正数)的最小公倍数 ○2各分式分母中所有字母或因式都要取到 ○3相同字母或因式取指数最大的 ○4所得的系数的最小公倍数与各字母或因式的最高次幂的积,为最简公分母。

16.2 分式的运算1. 分式乘法法则:分式乘分式,用分子的乘积作为积的分子,分母的乘积作为分母。

表达式:b d bd ac ac•= 分式乘方法则: 分式乘方要把分子、分母分别乘方。

2. 分式除法法则:分式除以分式,等于被除式乘以除式的倒式,再将所得结果约分。

表达式:b c b d bd a d a c ac÷=•= 3. 乘除与乘方的混合运算顺序:先做乘方,再做乘除。

4. 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减。

表达式:同分母加减法则:()0b c b c a a a a±±=≠ 异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠C B C A B A ⋅⋅=CB CA B A ÷÷=5. 负整数指数幂:na -=na1(a ≠0,n 是正整数)6. 整数指数幂性质:同正整数指数幂运算性质 (1)同底数的幂的乘法:n m n ma a a +=⋅;(2)幂的乘方:mn nm a a=)(;(3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n ma a a-=÷( a ≠0);(5)商的乘方:n nn ba b a =)(;(b ≠0)7. 科学计数法:将一个数字表示成 (a ×10的n 次幂的形式),其中1≤|a|<10,n 表示整数,这种记数方法叫科学记数法。

16.3 分式方程1. 分式方程:分母中含未知数的方程叫做分式方程。

2. 解分式方程:○1实质:将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

○2步骤:(1) 能化简的先化简 (2) 方程两边同乘以最简公分母,化为整式方程 (3) 解整式方程 (4) 验根(原因是:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根)。

3. 增根:○1其值应使最简公分母为0 ○2其值应是去分母后所的整式方程的根。

4. 列方程应用题的步骤:○1审 ○2设 ○3列 ○4解 ○5答5. 应用题基本类型:○1行程问题:路程=速度×时间 顺水逆水问题 v顺水=v 静水+v 水 v 逆水=v 静水-v 水○2工程问题 基本公式:工作量=工时×工效 第十七章 反比例函数 17.1反比例函数1. 反比例函数:一般地,函数y =xk(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

2. 反比例函数图象及其性质:反比例函数的图像是双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y=-x 。

对称中心是:原点xy 01 2y = — k xy=xy=-x反比例函数 )0(≠=k xky k 的符号K > 0 K < 0图像yOxyO x性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,函数图像的两个分支分别 在第一、三象限。

在每个象限内, y 随x 的增大而减小。

①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,函数图像的两个分支分别 在第二、四象限。

在每个象限内, y 随x 的增大而增大。

3. |k|的几何意义:表示反比例函数图像上的点,向两坐标轴所作的x 轴与y 轴 围成的矩形的面积。

如图:S 四边形OAPB = |k|第十八章 勾股定理 18.1 勾股定理1. 勾股定理:如果直角三角形的两条直角边长分别为a ,b ,斜边边长为c ,那么a 2+b 2=c 2。

2. 定理:经过证明被确认正确的命题。

3. 勾股定理的证明方法:方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

18.2 勾股定理的逆定理1. 勾股定理逆定理:如果三角形三边长a ,b ,c满足a2+b2=c2,那么这个三角形是直角三角形。

2. 原命题、逆命题:如果两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。

如果把其中的一个叫原命题,那么另一个就是它的逆命题。

第十九章四边形19.1 平行四边形1. 平行四边形:有两组对边分别平行的四边形叫做平行四边形。

2. 平行四边形的性质:○1平行四边形的对边相等;○2平行四边形的对角相等;○3平行四边形的对角线互相平分。

(归纳:看性质从边、角、对角线三方面来看)3. 平行四边形的判定:①两组对边分别平行的四边形是平行四边形。

(定义)②两组对边分别相等的四边形是平行四边形。

③一组对边平行且相等的四边形是平行四边形。

④两组对角分别相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

4. 三角形中位线性质:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

19.2 特殊的平行四边形1.矩形:有一个角是直角的平行四边形。

2. 矩形的性质:○1矩形的四个角都是直角;○2矩形的对角线互相平分。

3. 直角三角形性质:○1在直角三角形中,如果一个角等于30°,那么30°角所对的直角边是斜边的一半。

○2直角三角形斜边上的中线等于斜边的一半。

4. 矩形的判定:○1有一个角是直角的平行四边形是矩形。

(定义)○2对角线相等的平行四边形是矩形。

○3有三个角是直角的四边形是矩形。

5. 菱形:有一组邻边相等的平行四边形。

S菱形=1/2×ab(a、b为两条对角线)6. 菱形的性质:○1菱形的四边都相等;○2菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

7. 菱形的判定:○1一组邻边相等的平行四边形是菱形。

(定义)○2对角线互相垂直的平行四边形是菱形。

○3四条边相等的四边形是菱形。

8. 正方形:四条边相等,四个角相等。

9. 正方形的性质:正方形既是矩形,又是菱形。

所以它具有矩形的性质,又具有菱形的性质。

10. 正方形的判定:○1对角线相等的菱形是正方形。

○2有一个角为直角的菱形是正方形。

○3对角线互相垂直的矩形是正方形。

○4一组邻边相等的矩形是正方形。

○5一组邻边相等且有一个角是直角的平行四边形是正方形。

○6对角线互相垂直且相等的平行四边形是正方形。

○7对角线互相垂直,平分且相等的四边形是正方形。

○8一组邻边相等,有三个角是直角的四边形是正方形。

19.3 梯形1. 梯形:一组对边平行,另一组对边不平行的四边形叫做梯形。

2. 等腰梯形:两腰相等的梯形。

等腰梯形的性质:○1等腰梯形同一底边上的两个角相等;○2等腰梯形两条对角线相等。

等腰梯形的判定:同一底边上的两个角的梯形是等腰梯形。

3. 直角梯形:有一个角是直角的梯形。

4. 解梯形问题常用的辅助线:19.4 重心1. 重心:简单说就是物体的平衡点。

2. 线段的重心:线段的中点。

3. 平行四边形的重心:对角线的交点。

4. 三角形的重心:三条中线的交点。

三角形重心的性质:○1三角形的重心把三角形的中线分成1:2。

如图G 为重心,则GD :AG = GE :BG = 1:2○2重心和三角形顶点的连线把三角形分成面积相等的三个三角形(各为总面积的13)。

如图G 为重心,则ABG BCG CAG ABC 1S =S =S =S 3∆∆∆∆5. 黄金矩形:宽和长的比是21-5(约为0.618)的矩形。

6. 中点四边形:依次连接任意四边形各边中点所得的四边形。

中点四边形性质:○1中点四边形的形状始终是平行四边形。

○2中点四边形的面积为原四边形面积的一半。

第二十章 数据的分析 20.1 数据的代表1. 加权平均数:若n 个数n 21x x x ,...,,的权分别是n 21w w w ,...,,,GABCDE则n21nn 2211w w w w x w x w x ++++++......叫做这n个数的加权平均数。

2.中位数:将一组数据按照从大到小(或者从小到大)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则处于中间位置的两个数的平均数就是这组数据的中位数。

3.众数:一组数据中出现次数最多的数据就是这组数据的众数。

相关文档
最新文档