2020年清华大学丘成桐数学英才班招生考试复试笔试试题全
最新北大清华南大等7所高校2020强基计划校测笔面试真题
学甚至没有做完题目。
物理这道题为竞赛专属知识,具体解答如下:5.道尔顿分压定律这道题为预赛知识点。
6.干涉这道题为竞赛预赛知识点。
7.半衰期这道题为竞赛预赛知识点。
8.转动定律和刚体转动惯量这道题为竞赛复赛知识点。
9.电介质电容器这道题为竞赛复赛知识点。
10.狭义相对论这道题为竞赛复赛知识点。
其中力学和相对论,用高考知识完全无法入手解答,和课内知识截然不同。
大部分热学与光学题用高考知识完全无法解答,少部分的用高考知识可以读懂题,但解答起来除非学生平时自学过全部选修3-3、3-4、3-5并加以大量练习,不然不具有解答可行性。
化学高中范围内的考察知识点基本囊括必修1、必修2、选修3、选修4、选修5所有内容;还有相当一部分是高中不涉及的,多为有机,难度达到了省赛中省二难度的要求。
而且有机占整部分的四成,比重非常重。
如果在结构、平衡计算和有机方面没有学过竞赛内容,做起来相当吃力。
1. 杂化轨道形式的判断这道题是比较常规的,选项中涉及了甲基正离子和甲基负离子的杂化形式判断。
2.离域π键的判断列举了四个有机化合物,判断哪个不存在离域π键。
这个问题用高中知识是完全没办法判断的,需要较多的结构化学知识拓展。
3.晶胞参数的计算给出碳化硅的晶胞,计算其中碳硅键的长度。
这道题涉及了原子坐标的定义、六方硫化锌晶胞的形式,以及晶胞中原子间距离的计算方法,也需要较多的结构化学知识拓展。
4.反应动力学实验涉及高价态酸根氧化碘离子的动力学问题,需要较多的化学动力学知识拓展,包括速率方程、反应级数的定义和计算、准级反应等。
5.锰的不同价态反应涉及了几小问,大多是氧化还原反应的问题。
6.平衡计算有两部分,一部分是氮氢合成氨,一部分是三氯甲烷萃取平衡。
涉及到平衡的移动、平衡常数与转化率的关系、萃取效率等。
考察侧重点与高中不同,重计算。
7.有机有机在卷面上占比非常重,感觉都到快一半了。
涉及的反应基本上高中都没见过,结构都比较复杂,用高中知识基本上一道题都做不出来。
2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷
2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷1、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第1题 2020~2021学年北京海淀区高三单元测试 已知x 2+y 2⩽1,求x 2+xy −y 2的最值.2、【来源】设a ,b ,c 均为大于零的实数,若一元二次方程ax 2+bx +c =0有实根,则( ). A. max {a,b,c }⩾12(a +b +c) B. max {a,b,c }⩾49(a +b +c) C. min {a,b,c }⩽14(a +b +c) D. min {a,b,c }⩽13(a +b +c)3、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第13题 2020~2021学年北京海淀区高三单元测试|a →|⩽1,|b →|⩽1,|a →+2b →+c →|=|a →−2b →|,则|c →|的最值为( ) A. 最大值为4√2 B. 最大值为2√5 C. 最小值为0 D. 最小值为24、【来源】在△ABC 中,AC =1, BC =√3,AB =2,M 为AB 的中点,将△BCM 沿CM 折起,使得三棱锥B −ACM 的体积为√212,则折起后AB 的长可以为( ).A. 1B. √2C. √3D. 25、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第5题2020~2021学年北京海淀区高三单元测试P为椭圆x24+y23=1上一点,A(1,0),B(1,1),求|PA|+|PB|的取值范围.6、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第7题2020~2021学年北京海淀区高三单元测试P为双曲线x24−y2=1上一点,A(−2,0),B(2,0),令∠PAB=α,∠PBA=β,下列为定值的是()A. tanαtanβB. tanα2tanβ2C. S△PAB tan(α+β)D. S△PAB cot(α+β)7、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第2题2020~2021学年北京海淀区高三单元测试非等边三角形ABC中,BC=AC,O,P分别为△ABC的外心和内心,D在BC上,OD⊥BP,下列选项正确的是()A. BODP四点共圆B. OD//ACC. OD//ABD. DP//AC8、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第3题已知集合A,B,C⊆{1,2,3,⋯,2020},且A⊆C,B⊆C,则有序集合组(A,B,C)的个数是().A. 22020B. 32020C. 42020D. 520209、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第4题已知数列{a n }满足a 0=1,|a i+1|=|a i +1|(i ∈N ),则A =|∑a k 20k=1|的值可能是( ). A. 0B. 2C. 10D. 1210、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第6题 已知△ABC 的三条边长均为整数,且面积为有理数,则|AB |的值可能是( ). A. 1B. 2C. 3D. 411、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第8题甲、乙、丙三人一起做同一道题,甲说:“我做错了.”,乙说:“甲做对了.”,丙说:“我做错了.”,而事实上仅有一人做对题目且仅有一人说谎了,那么谁可能做对了题目( ). A. 甲 B. 乙 C. 丙 D. 没有人12、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第9题 2020~2021学年北京海淀区高三单元测试Rt △ABC 中,∠ABC =90°,AB =√3,BC =1,PA→|PA →|+PB →|PB →|+PC →|PC →|=0→,以下正确的是( ).A. ∠APB =120°B. ∠BPC =120°C. 2BP =PCD. AP =2PC13、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第10题2020~2021学年北京海淀区高三单元测试 lim n→∞∑arctan n k=12k 2=( )A. 34π B. π C. 3π2D. 7π314、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第11题从0∼9这十个数中任取五个数组成一个为五位数ABCDE (A 可以为0),则396|ABCDE 的概率是( ). A.1396B.1324C.1315D.121015、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第12题随机变量X (=1,2,3,⋯),Y (=0,1,2),满足P (X =k )=12k 且Y ≡X (mod3),则E (Y )=( ). A. 47B. 87C. 127D. 16716、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第14题若存在x ,y ∈N ∗,使得x 2+ky ,y 2+kx 均为完全平方数,则正整数k 可能是( ). A. 2B. 4C. 5D. 617、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第15题 求值:sin(arctan1+arccos√10+arcsin√5)=( ).A. 0B. 12C. √22D. 118、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第16题已知正四棱锥中,相邻两侧面构成的二面角为α,侧棱和底面夹角为β,则().A. cosα+tan2β=1B. secα+tan2β=−1C. cosα+2tan2β=1D. secα+2tan2β=−119、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第17题2020~2021学年北京海淀区高三单元测试已知f(x)=2e xe x+e−x+sinx,x∈[−2,2],则f(x)上下界之和为.20、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第18题已知函数f(x)的图象如图所示,记y=f(x),x=a,x=t(a<t<c)及x轴围成的曲边梯形面积为S(t),则下列说法正确的是().A. S(t)⩽cf(b)B. S′(t)⩽f(a)C. S′(t)⩽f(b)D. S′(t)⩽f(c)21、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第19题 2020~2021学年北京海淀区高三单元测试定义数列{a n },若∀n ∈N ∗,∃m ∈N ∗,使得S n =a m ,则称数列{a n }为“某数列”,以下正确的是( )A. a n ={1,n =12n−2,n ⩾2,数列{a n }为“某数列”B. a n =kn ,k 为常数,则{a n }为“某数列”C. 存在任意两项均不相同的某数列a n ,且对于任意n ∈N ∗,|a n |<√nD. 对任意等差数列{a n },存在“某数列”{b n }和{c n },使得a n =b n +c n22、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第20题求值:∫sin 2xsin 4x+cos 4x2πdx =( ).A. πB. √2πC. 2πD. √5π23、【来源】已知f(z)=z 10+z −10+12(z 5+z −5),则( ). A. f(z)=0存在实数解B. f(z)=0共有20个不同的复数解C. f(z)=0复数解的模长都等于1D. f(z)=0存在模长大于1的复数解24、【来源】设多项式f(x)的各项系数都是非负实数,且f(1)=f ′(1)=f ′′(1)=f ′′′(1)=1,则f(x)的常数项的最小值为( ). A. 12B. 13C. 14D. 1525、【来源】《红楼梦》《三国演义》《水浒》《西游记》四部书分列在只有四层架子的书柜的不同层上,小赵、小钱、小孙,小李分别借阅了四部书中的一部,现已知:小钱借阅了第一层的书籍,小赵借阅了第二层的书籍,小孙借阅的是《红楼梦》,《三国演义》陈列在第四层,则().A. 《水浒》一定陈列在第二层B. 《西游记》一定陈列在第一层C. 小孙借阅的一定是第三层的书籍D. 小李借阅的一定是第四层的书籍26、【来源】设数列{a n}的前n项和为S n=(−1)n a n+12n+n−3,且实数t满足(t−a n+1)(t−a n)<0,则t的取值范围是().A. (−34,11 4)B. (−34,11 5)C. (−35,11 4)D. (−35,11 5)27、【来源】已知实数a,b满足a3+b3+3ab=1,设a+b的所有可能取值构成的集合为M,则().A. M为单元素集B. M为有限集,但不是单元素集C. M为无限集,且有下界D. M为无限集,且无下界28、【来源】设A ,B 分别是x 轴,y 轴上的动点,若以AB 为直径的圆C 与直线2x +y −4=0相切,则圆C 面积的最小值为( ). A. π5B. 2π5C. 4π5D. π29、【来源】设α,β为锐角,且cos(α+β)=sin αsin β ,则tanα的最大值为( ). A. √24B. √33 C. 1 D. √230、【来源】设函数f(x)=e x +a(x −1)+b 在区间[1,3]上存在零点,则a 2+b 2的最小值为( ). A. e2 B. e C. e 22 D. e 231、【来源】设复数z 满足|3z −7i |=3,令z 1=z 2−2z+2z−1+i,则|z 1|的( ).A. 最大值为83B. 最大值为73C. 最小值为43D. 最小值为2332、【来源】在平面直角坐标系中,横坐标与纵坐标都是整数的点称为格点,所有顶点都是格点的多边形称为格点多边形.若一个格点多边形内部有8个格点,边界上有10个格点,则这个格点多边形的面积为( ). A. 10B. 11C. 12D. 1333、【来源】设实数x 1,x 2,⋯,x 21满足0⩽x i ⩽1(i =1,2,⋯,21),则∑21i=1∑|x i −x k |21k=1的最大值为( ). A. 110B. 120C. 220D. 24034、【来源】已知实数x ,y ,z 满足{ 19x 3−13y 2−y =119y 3−13z 2−z =119z 3−13x 2−x =1,则( ).A. (x,y,z)只有1组B. (x,y,z)有4组C. x ,y ,z 均为有理数D. x ,y ,z 均为无理数35、【来源】使得nsin1>1+5cos1成立的最小正整数n 的值为( ). A. 3B. 4C. 5D. 636、【来源】已知复数z 1,z 2在复平面内对应的点为Z 1,Z 2,O 为坐标原点,若|z 1|=1,5z 12−2z 1z 2+z 22=0,则△OZ 1Z 2的面积为( ).A. 1B. √3C. 2D. 2√31 、【答案】见解析;2 、【答案】 B;C;D;3 、【答案】 B;C;4 、【答案】 B;C;5 、【答案】[4−√5,4+√5];6 、【答案】 A;C;7 、【答案】 A;D;8 、【答案】 D;9 、【答案】 C;D;10 、【答案】 C;D;11 、【答案】 A;B;12 、【答案】 A;B;C;D;13 、【答案】 A;14 、【答案】 C;15 、【答案】 B;16 、【答案】 C;D;17 、【答案】 D;18 、【答案】 D;19 、【答案】 2;20 、【答案】 A;C;21 、【答案】 A;B;C;D;22 、【答案】 B;23 、【答案】 B;C;24 、【答案】 B;25 、【答案】 C;D;26 、【答案】 A;27 、【答案】 B;28 、【答案】 C;29 、【答案】 A;30 、【答案】 D;31 、【答案】 A;D;32 、【答案】 C;33 、【答案】 C;34 、【答案】 A;D;35 、【答案】 C;36 、【答案】 A;第11页,共11页。
2020年清华大学强基计划招生考试数学试题
2020年清华大学强基计划招生考试数学试题金石为开教研部整理1.已知122≤+y x ,22y xy x -+求的最值_________.2.非等边三角形ABC 中,AC BC =,P O ,分别为ABC ∆的外心和内心,D 在BC 上BP OD ⊥,下列选项正确的是().A.C.3.,B A 4.0=a A.A C.A 5.P 6.∆A.17.P 4β,下列为定值的是().A.βαtan tanB.2tan 2tanβαC.()βα+∆tan PAB S D.()βα+∆cos PAB S 8.甲乙丙做一道题,甲:我做错了,乙:甲做对了,丙:我做错了,老师:仅一人做对且一人说错,问以下正确的是().A.甲对B.对C.丙对D.以上说法均不对9.ABC Rt ∆中,︒=∠90ABC ,3=AB ,1=BC0=+PC PB PA ,以下说法正确的是().A.︒=∠120APBB.︒=∠120BPC C.PCBP =2 D.PCAP 2=10.∞→n lim A.π4311.从39612.望()Y E 13.A.214.y x ,A.x 2+B.x y y x 4422++与可以均为完全平方数C.x y y x 5522++与可以均为完全平方数D.x y y x 6622++与可以均为完全平方数15.⎪⎭⎫ ⎝⎛++51arcsin 103arccos 1arctan sin =_________.16.正四棱锥中,相邻两侧面夹角为α,侧棱与底面夹角为β,问一个βtan 与αcos 的关系,设高为h ,底面边长为a ,余弦定理刻画αcos 即可.17.()x ee e xf x x xsin 2++=-,[]2,2-上()x f 上下界之和为_________.18.()x f 的图像如图所示,()t x a x x f ==,与直线,x 轴围成图形的面积为()t S ,问()t S '的最大值为_________,()x f '的最大值为__________.19.定义数列{}n a ,若*N n ∈∀,*N m ∈∃,使得m n a S =,则称数列{}n a 为“某数列”,以下正确的是().A.{11222=≥-=n n n n a ,,,数列{}n a 为“某数列”B.kn a n =,k 为常数,则{}n a 为“某数列”C.忘记了D.任意的等差数列{}n a ,存在“某数列”{}n b ,{}n c ,使nn n c b a +=。
丘成桐数学英才班招生简章
丘成桐数学英才班招生简章一、机构与原则“丘成桐数学英才班”招生工作在清华大学招生工作领导小组的领导下,由清华大学招生办公室负责具体工作的组织和实施。
“丘成桐数学英才班”招生工作按照公平公正、宁缺毋滥的原则择优确定入围名单、录取名单,学校纪检监察部门全程监督,并接受社会监督。
二、招收对象及申请条件1.符合2023年统一高考报名条件的普通高中三年级毕业生,以及普通高中二年级在读学生;2.爱国爱党、崇尚科学、身心健康、成绩优秀、创新潜力突出并有志于从事数学研究,且在中学期间表现出有数学潜质和特长的学生。
三、招生专业“丘成桐数学英才班”2023年招生的学生,录取至清华大学“数学与应用数学”专业,且本科阶段原则上不得转入其他专业。
四、申请办法学生需进行网上报名,在报名系统中填写申请表,填写完成后请将申请表进行打印,经所在中学核实加盖中学公章,扫描上传后提交(申请材料无需邮寄)。
请按照以下要求网上填写并提交申请材料:1. “学历信息”需提供可证明学生学籍中学、就读中学及所在年级的证明材料。
2. “标准化考试成绩信息”作为学生学术能力的重要体现,建议提供中学生标准学术能力测试等成绩,请上传认证成绩单的扫描件或照片。
3. “中学成绩信息”需由中学审核盖章以证明成绩真实。
4. “附加信息”需逐项填写,并上传相应的证明材料的扫描件或照片。
具体包括:(1)数学相关特长及获奖情况;(2)中学阶段物理、化学、生物、信息学奥林匹克竞赛获得的省级(含)以上奖项情况;(3)丘成桐中学生科学奖、丘成桐女子中学生数学竞赛及丘成桐中学生数学夏令营获奖情况;(4)中学阶段参与的科学研究和创新实践情况;(5)中学阶段获得的校级(含)以上个人荣誉情况等。
5. “申请理由”是初审的重要参考,请认真并据实填写(限800字)。
五、选拔程序1.初评:专家组对学生数学特长、平时表现、学术研究、创新潜质等方面进行综合评审,初评结果将在报名系统内公布。
2023北大数学英才班招生简章
2023北大数学英才班招生简章11月30日,清华大学公布2023年“丘成桐数学英才班”招生办法,最大的变化是取消多年“招收不超过30人”的限制,这意味着丘成桐数学英才班或将大幅度扩招。
当前,由清华大学求真学院牵头负责的有丘成桐数学科学领军人才培养计划、丘成桐数学英才班,定位略有不同。
领军人才计划主要针对初三年级到高二的学生,采用“‘3+2+3”本硕博衔接培养模式,为未来数学及相关领域培养领军人才,成功入围的国内学生无需参加高考即可被单独录取,招生人数达到100人。
丘成桐数学英才班主要面向高三和高二的在读学生,要求在中学期间表现出有数学潜质和特长并有志于从事数学研究,获得入围认定的学生应当进行高考报名,达到录取要求后由清华单独录取,录取到“数学与应用数学”专业,且本科阶段原则上不得转入其他专业。
从上述招生情况来看,丘成桐数学英才班的主要竞争对象是北京大学数学英才班,而丘成桐数学科学领军人才的对象类似于中科大的少年班。
从2018年5月发布数学英才班招生计划以来,清华大学一直严格限制招生人数,如第一年仅招收15人,从2019年起到2022年,招生人数也限制在30人以内,2023年的招生计划首次取消的30人的限额。
面对清华大学两大数学尖子班招生计划,一直排名数学第一的北京大学不甘示弱,在2021年9月公布的2022年“数学英才班”招生报名活动中,招生对象取消了原来高二和高三的限制,招生计划人数则从往年的30人大幅扩招至100人。
根据北京大学10月底公布的数据,2022年北大数学英才班实际录取人数增加到了98人,是往年30人的3倍多,这些同学来自19个省份,其中38%来自高二年级,8%来自高一年级,从而实现了招生人数和招生范围的双扩。
为扩大影响力,北京大学还举行了声势浩大的导师见面会,包括“数学天才”之称的韦东奕和其他10位数学教师被聘为数学英才班导师,北大官微以《北大数学英才班,欢迎新同学》为题,首次对数学英才班进行大规模的宣传报道。
丘成桐英才班考试范围
丘成桐英才班考试范围全文共四篇示例,供读者参考第一篇示例:一、数学1. 初等数论:包括整数、有理数等基本概念的考察,以及一些中级数论题目的解答。
2. 数列与数学归纳法:包括等差数列、等比数列等常见数列的求和公式,以及数列与数学归纳法在解题中的应用。
3. 平面几何:包括角度、三角形、四边形、圆等几何图形的性质和相关定理的考察。
4. 进阶数学:包括微积分、线性代数等高阶数学概念和定理的考察。
5. 竞赛数学:包括奥赛数学中的高难度题目和解题技巧的练习。
二、物理1. 力学:包括牛顿三大定律、摩擦力、弹簧力等力学知识和题目。
2. 热学:包括热力学、温度、热平衡等热学基础知识和问题。
3. 电磁学:包括电场、磁场、电流等电磁学基础知识和问题。
4. 光学:包括光的传播、反射、折射等光学知识和问题。
5. 现代物理:包括相对论、量子力学等现代物理领域的知识。
三、信息学1. 基本算法:包括排序算法、查找算法等常见算法的实现和应用。
2. 数据结构:包括链表、树、图等数据结构的基本概念和应用。
3. 计算机原理:包括计算机组成原理、操作系统、编程语言等计算机基础知识。
4. 算法设计:包括贪心算法、动态规划、回溯法等高级算法设计和分析。
5. 程序设计:包括编程能力、程序调试、算法实现等计算机编程技能的练习。
以上是丘成桐英才班考试范围的主要内容,学生们需要在这些领域取得一定的基础才能进入这个特殊的班级学习。
通过参加丘成桐英才班的学习,学生们将能够更好地提高自己的数学、物理和信息学能力,为未来参加奥赛比赛和科研工作打下坚实基础。
希望学生们在这个班级的学习过程中,不断努力,不断挑战自己,取得更好的成绩。
【2000字】第二篇示例:【丘成桐英才班考试范围】丘成桐英才班作为国内著名的数学培训机构,向来以其严格的教学标准和高质量的教育服务而闻名。
对于学生来说,通过丘成桐英才班的培训,不仅可以提高数学水平,更可以为未来的学业和职业发展打下坚实的基础。
2022年清华大学自主招生试题数学含解析
一、选取题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”( )条件 (A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 焦点 (D)O 到直线AB 距离不大于等于14.设函数()f x 定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 周长为3 (C)△ABC 23(D)△ABC 237.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值(C)若方程()f x =b 恰有一种实根,则b>36e (D)若方程()f x =b 恰有三个不同实根,则0<b<36e8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-=(C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }前n 项和为n S ,若对任意正整数n,总存在正整数m,使得n S =m a ,则( )(A){n a }也许为等差数列 (B){n a }也许为等比数列(C){n a }任意一项均可写成{n a }两项之差(D)对任意正整数n,总存在正整数m,使得n a =m S 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道选手得第一名;观众乙猜测:3道选手不也许得第一名;观众丙猜测:1,2,6道选手中一位获得第一名;观众丁猜测:4,5,6道选手都不也许获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛成果,此人是( )(A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 距离为( )(A)13 (B)23(C)213.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所示区域为D,其面积为S,则( )(A)若S=4,则k 值唯一 (B)若S=12,则k 值有2个 (C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 三边长是2,3,4,其外心为O,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 重心作直线将△ABC 提成两某些,则这两某些面积之比( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形顶点中选出3个构成钝角三角形,则不同选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r,使得圆周222x y r +=上正好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|最大值为1 (B)|z|最小值为13 (C)z 虚部最大值为23 (D)z 实部最大值为1320.设m,n 是不不大于零实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2α2α),12b =(2β2β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠(C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表达图形是椭圆有( )(A)ρ=1cos sin θθ+ (B)ρ=12sin θ+ (C)ρ=12cos θ- (D)ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A)()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 三边分别为a ,b,c,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( )(A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上任意n 个不同点k P (k=1,2,…,n),总存在两个不同点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 最小值为( ) (A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则)(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为1328.对于50个黑球和49个白球任意排列(从左到右排成一行),则( )(A)存在一种黑球,它右侧白球和黑球同样多 (B)存在一种白球,它右侧白球和黑球同样多 (C)存在一种黑球,它右侧白球比黑球少一种 (D)存在一种白球,它右侧白球比黑球少一种 29.从1,2,3,4,5中挑出三个不同数字构成五位数,其中有两个数字各用两次,例如12231,则能得到不同五位数有( )(A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+-- =212sin 2sincos333i πππ-⋅-22cos()sin()33sin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]66i ππ-+-1sin )6622i i ππ++-=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d,与公差d 符号关于,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅==≥=2,对的;答案(B),|OA|+|OB|≥2≥2,对的;答案(C),直线AB 斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB:(111x x -)x-y+1=0距离≤1,对的。
16岁就被清华录取,本硕博连读,究竟怎么回事
16岁就被清华录取,本硕博连读,究竟怎么回事16岁就被清华录取,本硕博连读作为国内顶尖大学的代表,进入清北的渠道有哪些?据清华大学官网介绍,目前国内本科生招生方式有10余种。
除“高考统一录取”外,还有竞赛推荐、强基计划、数学人才计划、高水平艺术团、高水平运动队等重要渠道。
其中,大赛推荐就是所谓的“五大学科(数学、物理、化学、生物和信息学)大赛”。
只要通过五大学科竞赛进入国家集训队,就可以获得清北推荐资格。
1月27日,一名来自广西的14岁男孩因为通过了清华大学的数学专业考试,同时被清华大学的本科、硕士、博士三个专业录取,成为新闻热点。
事实上,这样的新闻近年来并不少见。
以成都为例,同样是在清华大学2023年丘成桐数学科学领军人才培养计划第一批次招生中,成都也有3名学生入选,并且都是高一或者高二的学生。
换句话说,他们无需再参加高考,就能提前“上岸”清华。
成都市树德中学高二(11)班的陈思行同学成功入围清华大学2023年丘成桐数学科学领军人才培养计划第一批次招生,即将进入清华大学求真书院开启8年本硕博贯通学习。
值得一提的是,这一批次全国有数千人参加选拔,不到50人入选,成都仅有3人。
兴趣爱好广泛的“非典型学霸”小学开始感受数学的乐趣陈思行是一个“非典型学霸”,因为他的兴趣爱好非常广泛。
比如他从小就开始学习且热爱游泳,除此以外,他还非常喜欢篮球和绘画,自评“算是静中有动的一个人。
”陈思行提到,他对数学的兴趣和能力的确在小学就体现出来了,但真正开始系统地接触和学习是在小学六年级。
初中的时候,他也凭借自己出色的数学能力进入了成都树德实验中学,也得到了当时学校老师的重视。
进入中学后,陈思行对数学的兴趣一点都没有减弱,还经常买一些数学书自己看。
“不同的(数学)书包含了数学分支的各个方面,逐渐发现了不同数学知识之间的联系,并从中感受到了数学的乐趣。
”在整个过程中,他的父母尊重他的利益,没有干涉。
即将进入清华大学学习。
清华大学2020自主招生真题
清华大学2020自主招生真题清华大学自主招生一般考什么?出国留学高考网为大家提供清华大学2017自主招生真题,更多高考资讯请关注我们网站的更新!清华大学2017自主招生真题2017年自主招生测试主要分为笔试和面试,笔试依然采用机考的模式来进行。
2017年清华笔试在全国44个城市设有61考点,相比去年增加25个考点,其中,每个城市还设有多个考点。
【笔试真题】文科综合(文史)类:考题有明清时的自然经济瓦解、抗日战争、诗词等内容,不是考知识点记忆,主要考查阅读面、逻辑思维深度等,数学与逻辑难度较大。
今年的语文试题对语文基础知识与运用能力提出了更高要求,材料多出自社会热点或经典著作,注重对知识联系实际、学以致用能力的考查;注重考查对经典或常识的精准理解,注重对独立思考与批判思维的考查。
材料阅读:过去一年你关注的清华热点新闻。
材料中提供了“清华大学博士生、国际学生实行申请审核制”“杨振宁、姚期智先生放弃美国国籍加入中国国籍”“会游泳才能从清华毕业”等备受社会关注的热点新闻,要求学生针对不限于提供材料的热点新闻展开阐述,包括判断社会各界的舆论看法、如何向亲友介绍等多个层面。
点评:通过对阅读材料海量信息中有用信息的抓取,注重对学生思维公正性、思维勇气、甄辨能力以及价值观的考察,希望他们胸怀家国。
化学:新增化学试题注重对学科基础内容的考查、综合多模块内容、加强化学学科的应用性、创新试题的设问模式,充分体现化学学科的学术价值,考查了考生的基础知识、综合能力、科学素养和创新精神,关注环境问题,讨论产生酸雨的原因及危害、食品中的增塑剂与人体健康等社会焦点问题。
物理:注重基本概念的准确理解和灵活运用。
通过采用单选和多选题随机编排的方式,来考查学生构建正确、合理的物理模型,综合运用物理知识分析、解决实际问题的能力,同时增加了能力考查的区分度。
除了定量的分析和计算外,试题还设置了部分内容来考查学生运用物理学基本原理来定性和半定量分析问题的能力。
丘成桐数学英才班培养方案
“丘成桐数学英才班”培养方案(2018年03月 29日数学系教学委员会通过)“丘成桐数学英才班”首席教授:丘成桐教授一、培养目标和基本途径“丘成桐数学英才班”的根本任务是培养新一代的数学科学领军人才。
经过本科阶段的培养,使学生具有优秀科学素养、了解数学科学前沿领域、具备很强的数学创新意识和能力、成为德智体全面发展的一流本科毕业生。
他(她)将是与世界一流大学(如哈佛大学数学系)数学系本科毕业生具有同等、甚至更高竞争力的国际拔尖数学人才。
“丘成桐数学英才班”的培养将贯彻学校的“价值塑造、能力培养、知识传授”三位一体的教育模式,基本途径是:(1)全程安排高水平的师资力量进行教学,因材施教,以学为主;(2)采用世界名著作为教材。
同时,根据具体情况,支持任课教师编写相适应的讲义;(3)为每一位同学配备一名教研系列教师作为导师,提供全方位的指导和建议;(4)在导师的指导下,通过论文训练等方式接触数学研究的前沿课题。
二、基本要求在学习并掌握“数学分析”等十四门核心基础课程后,在导师指导下进一步选修专业核心课程,包括一些研究生基础课程,参加相应的实践环节和科研训练。
要求扎实掌握现代数学科学的基础知识和基本发展状况,具备开展自学、文献调研、论文写作、学术交流与合作等各方面的综合能力。
本科毕业论文的选题必须由前沿的数学科学问题所引领。
三、学制与学位授予学制:本科学制4年,按照学分制管理机制,实行弹性学习年限。
授予学位:理学学士学位。
四、基本学分学时本科学习阶段的总学分不小于160学分,其中春、秋季学期课程总学分不小于135学分;夏季学期实践环节(包括实践环节、写作课程、军事理论与技能训练)10学分;综合论文训练15学分。
五、专业核心课程基础核心课程为14门:(1)数学分析-I、(2)数学分析-II、(3)数学分析-III、(4)高等线性代数-I、(5)高等线性代数-II、(6)常微分方程、(7)抽象代数、(8)复分析、(9)测度与积分、(10)概率论-I、(11)拓扑学、(12)泛函分析-I、(13)偏微分方程-I、(14)微分几何。
2020年清华大学强基计划数学试题及其详解
2020年清华大学强基计划数学试题及其详解甘志国(北京丰台二中㊀100071)摘㊀要:2020年清华大学强基计划数学试题共20道不定项选择题ꎬ该试题较其他2020年重点大学强基计划的数学试题难度都要大.本文给出该试题(回忆版)的详细解答ꎬ对准备参加重点大学强基计划考试的读者仍有重要参考作用.关键词:清华大学强基计划ꎻ数学试题ꎻ不定项选择题ꎻ详细解答中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2021)04-0063-07收稿日期:2020-11-05作者简介:甘志国(1971-)ꎬ男ꎬ湖北省竹溪人ꎬ硕士ꎬ中学正高级教师ꎬ特级教师ꎬ从事高中数学教学研究.基金项目:北京市教育学会 十三五 教育科研滚动立项课题 数学文化与高考研究 (课题编号:FT2017GD003)㊀㊀全卷共20道不定项选择题.以下试题是回忆版ꎬ但对准备参加重点大学强基计划考试的读者仍有重要参考作用.该试题较其他2020年重点大学强基计划的数学试题难度都要大.针对下面的试题题号按难度渐升的顺序叙述如下:第8题是简易逻辑问题ꎻ第16题是立体几何中的空间角问题ꎻ第1题是求二元函数的最值ꎻ第17题考查函数的奇偶性ꎻ第5ꎬ7题是平面解析几何问题(后者是双曲线与三角函数的综合)ꎻ第15题是反三角函数问题ꎻ第2题是平面几何问题ꎻ第9题是平面向量问题ꎻ第13题是空间向量问题ꎻ第12题是求期望(但涉及无穷递缩等比数列各项的和)ꎻ第18题涉及定积分与导数ꎻ第19题是关于数列前n项和的新定义问题ꎻ第10题是求极限(涉及反三角函数及不易想到的裂项法求数列前n项和)ꎻ第3题是集合与排列组合的综合ꎻ第4题是递推数列问题ꎻ第6ꎬ14题是初等数论中的整数性质问题ꎻ第11题是概率与整数性质的综合问题(用枚举法求解时情况较多)ꎻ第20题是定积分.㊀㊀一㊁试题呈现1.若x2+y2ɤ1(xꎬyɪR)ꎬ则x2+xy-y2的取值范围是(㊀㊀).A.-32ꎬ32[]㊀㊀㊀B.[-1ꎬ1]C.-52ꎬ52[]D.[-2ꎬ2]2.在非等边ΔABC中ꎬBC=ACꎬ点OꎬP分别是ΔABC的外心与内心.若点D在边BC上且ODʅBPꎬ则下列选项正确的是(㊀㊀).A.BꎬDꎬOꎬP四点共圆㊀㊀㊀B.ODʊACC.ODʊABD.DPʊAC3.若AꎬBꎬC⊆1ꎬ2ꎬ3ꎬ ꎬ2020{}ꎬA⊆CꎬB⊆Cꎬ则有序集合组(AꎬBꎬC)的组数是(㊀㊀).A.22020㊀B.32020㊀㊀C.42020㊀㊀D.520204.若a0=0ꎬai+1=ai+1(iɪN)ꎬ则ð20k=1ak的值可以是(㊀㊀).A.0㊀㊀B.2㊀㊀C.10㊀㊀D.125.已知点A(1ꎬ0)ꎬB(1ꎬ1).若P为椭圆x24+y23=1上的动点ꎬ则PA+PB的最大值与最小值分别是(㊀㊀).㊀A.4+2ꎬ4-2㊀㊀B.4+3ꎬ4-3C.4+5ꎬ4-5D.4+6ꎬ4-66.若一个三角形的各边长均为整数且其面积为有理数ꎬ则该三角形某一边的长可以是(㊀㊀).A.1㊀㊀B.2㊀㊀C.3㊀㊀D.47.已知两点A(-2ꎬ0)ꎬB(2ꎬ0)ꎬP为双曲线x24-y2=1上不是顶点的动点.若øPAB=αꎬøPBA=βꎬ则下列各式中为定值的是(㊀㊀).A.tanαtanβ㊀㊀㊀㊀B.tanα2tanβ236C.SәPABtan(α+β)D.SәPABcot(α+β)8.甲㊁乙㊁丙三人做同一道题.甲说 我做错了 ꎬ乙说甲做对了 ꎬ丙说 我做错了 ꎬ老师说 有且仅有一人做对ꎬ有且仅有一人说错了 .若老师说的话一定正确ꎬ则(㊀㊀).A.甲说的对㊀㊀B.乙说的对C.丙说的对D.甲㊁乙㊁丙说的均不对9.在RtәABC中ꎬøABC=90ʎꎬAB=3ꎬBC=1ꎬPAңPAң+PBңPBң+PCңPCң=0ꎬ则(㊀㊀).A.øAPB=120ʎB.øBPC=120ʎC.2BP=PC㊀㊀D.AP=2PC10.limnң¥ðnk=1arctan2k2=(㊀㊀).A.3π4㊀㊀B.π㊀㊀C.3π2㊀㊀D.7π311.若从0ꎬ1ꎬ2ꎬ ꎬ9中选取5个两两互异的数字依次排成一个五位数(包括0在首位的五位数ꎬ其大小就是把0去掉后的四位数)ꎬ则它能被396整除的概率是(㊀㊀).㊀A.1396㊀B.1324㊀㊀C.1315㊀㊀D.121012.已知P(X=k)=12k(k=1ꎬ2ꎬ3ꎬ )ꎬ若Y为X除以3所得的余数ꎬ则随机变量Y的期望是(㊀㊀).A.47㊀B.87㊀㊀C.127㊀㊀D.16713.若空间向量aꎬbꎬc满足|a|ɤ1ꎬ|b|ɤ1ꎬ|a+2b+c|=|a-2b|ꎬ则|c|的最值为(㊀㊀).A.最大值为42B.最大值为25C.最小值为0D.最小值为214.若xꎬyɪN∗ꎬ则下列说法正确的是(㊀㊀).A.x2+2y与y2+2x可以均为完全平方数B.x2+4y与y2+4x可以均为完全平方数C.x2+5y与y2+5x可以均为完全平方数D.x2+6y与y2+6x可以均为完全平方数15.sinarctan1+arccos310+arcsin15æèçöø÷=(㊀㊀).A.0㊀㊀B.12㊀㊀C.22㊀㊀D.116.若某个正四棱锥的相邻两个侧面所成二面角的大小为αꎬ侧棱与底面所成线面角的大小为βꎬ则(㊀㊀).A.cosα+tan2β=1㊀㊀B.secα+tan2β=-1C.cosα+2tan2β=1D.secα+2tan2β=-117.函数f(x)=2exex+e-x+sinx(-2ɤxɤ2)的最大值与最小值之和是(㊀㊀).A.2㊀B.e㊀㊀C.3㊀㊀D.4图118.已知y=f(x)是上凸函数ꎬx=c是其极大值点ꎬ函数y=f(x)的部分图象如图1所示.若函数y=f(x)的图象与直线x=aꎬx=t(a<t<b)ꎬy=0围成图形的面积为S(t)ꎬ则当xɪ[aꎬb]时ꎬ函数fᶄ(x)ꎬSᶄ(x)的最大值分别是(㊀㊀).A.f(b)ꎬfᶄ(a)㊀B.fᶄ(a)ꎬf(b)C.f(c)ꎬfᶄ(a)㊀D.fᶄ(a)ꎬf(c)19.把数列an{}的前n项和记作Sn.若∀nɪN∗ꎬ∃mɪN∗ꎬSn=amꎬ则称数列an{}为 某数列 .以下选项中正确的是(㊀㊀).A.若an=1ꎬn=12n-2ꎬnȡ2{ꎬ则an{}为 某数列B.若an=k(k为常数)ꎬ则an{}为 某数列 C.若an=kn(k为常数)ꎬ则an{}为 某数列D.对于任意的等差数列an{}ꎬ均存在两个 某数列bn{}ꎬcn{}ꎬ使得an=bn+cn20.ʏ2π0sin2xsin4x+cos4xdx=(㊀㊀).A.π㊀B.2π㊀㊀C.2π㊀㊀D.5π㊀㊀二㊁试题解析1.C.可设x=rcosθꎬy=rsinθ(0ɤθ<2πꎬ0ɤrɤ1)ꎬ得x2+xy-y2=r212sin2θ+cos2θæèçöø÷.由辅助角公式ꎬ可得12sin2θ+cos2θ的取值范围是-52ꎬ52[].再由0ɤrɤ1ꎬ可得x2+xy-y2的最大值与最图2小值分别是52ꎬ-52.2.AD.由题设ꎬ可得点OꎬP不重合.㊀如图2所示ꎬ可得点OꎬP在等腰әABC底边上的高CE上(点E是边AB的中点).可设直线ODꎬBP交于点Rꎬ可得øR=øCEB=90ʎꎬ所以OꎬRꎬEꎬB四点共圆.46再由题设 点P是әABC的内心 ꎬ可得øCBP=øRBE=øROPꎬ所以BꎬDꎬOꎬP四点共圆ꎬ得选项A正确.㊀由BꎬDꎬOꎬP四点共圆ꎬ可得øBDP=øBOP.由题设 点O是әABC的外心 ꎬ可得øBOP=2øBCO=øBCAꎬ所以øBDP=øBCA.所以DPʊACꎬ得选项D正确ꎬ选项B错误.若ODʊABꎬ由CEʅABꎬ可得CEʅOD.又由PBʅODꎬ可得PBʊCE.而直线PBꎬCE交于点Pꎬ所以选项C错误.3.解法1㊀D.若集合C已确定ꎬ由A⊆C可得集合A有2C种可能(其中C表示集合C的元素个数)ꎻ同理ꎬ由B⊆C可得集合B有2C种可能.所以有序集合组(AꎬB)的组数是2C2C=4C.所以有序集合组(AꎬBꎬC)的组数是ð2020C=0(CC20204C)=(1+4)2020=52020.图3解法2㊀D.如图3所示ꎬ其中U=1ꎬ2ꎬ3ꎬ ꎬ2020{}ꎬ可得元素1ꎬ2ꎬ3ꎬ ꎬ2020均有5种填法:∁UCꎬ∁U(AɣB)ꎬ∁A(AɘB)ꎬAɘBꎬ∁B(AɘB).由分步乘法计数原理ꎬ可得所求答案是52020.4.BC.先用数学归纳法证明a2kꎬa2k+1(kɪN)分别是偶数㊁奇数.当k=0时成立ꎬa0=0ꎬa1=ʃ1.假设k=n时成立ꎬ即a2nꎬa2n+1分别是偶数㊁奇数.可得a2n+2=a2n+1+1ꎬ所以a2n+2是偶数ꎻ再由a2n+3=a2n+2+1ꎬ可得a2n+3是奇数.所以k=n+1时也成立.所以欲证结论成立.由题设ꎬ得a2k=a2k-1+1或a2k=-a2k-1-1(kɪN∗)ꎬ所以a2k-1+a2k=2a2k-1+1或a2k-1+a2k=-1(kɪN∗).可设a2k-1=2m-1(mɪZ)ꎬ当a2k-1+a2k=2a2k-1+1时ꎬ可得a2k-1+a2k=4m-1.所以总有a2k-1+a2kʉ-1(mod4).因而ð20k=1akʉ2(mod4)ꎬ进而可排除选项AD.当(a0ꎬa1ꎬa2ꎬ ꎬa20)=(0ꎬ-1ꎬ0ꎬ-1ꎬ0ꎬ1ꎬ-2ꎬ1ꎬ-2ꎬ1ꎬ-2ꎬ1ꎬ-2ꎬ1ꎬ2ꎬ3ꎬ-4ꎬ3ꎬ-4ꎬ3ꎬ4)时ꎬ满足题设ꎬ且此时ð20k=1ak=2ꎬ所以选项B正确.当a0=a2=a4= =a20=0ꎬa1=a3=a5= =a19=-1时ꎬ满足题设ꎬ且此时ð20k=1ak=10ꎬ所以选项C正确.5.C.由题意ꎬ得椭圆x24+y23=1的左㊁右焦点分别为Aᶄ(-1ꎬ0)ꎬA(1ꎬ0).由椭圆定义ꎬ得PA+PB=4+(PB-PAᶄ)ꎬPB-PAᶄɤAᶄB=(1+1)2+(1-0)2=5.所以PA+PB的最大值与最小值分别是4+5ꎬ4-5.㊀6.CD.因为三边长分别是3ꎬ4ꎬ5的三角形的面积6是有理数ꎬ所以选项D正确.若满足题设的三角形的某一边长可以是1ꎬ则可设其另外边长分别是bꎬc(1ɤbɤcꎻbꎬcɪN∗).由 三角形两边之和大于第三边 ꎬ可得1+b>cꎬ即1+bȡc+1ꎬ所以bȡcꎬ所以b=c.可得该三角形的面积121b2-14=4b2-14ꎬ因而设4b2-1=(2n-1)2(bꎬnɪN∗)ꎬ得2(b2-n2+n)=1(bꎬnɪN∗)ꎬ这不可能!所以选项A错误.若满足题设的三角形的某一边长可以是2ꎬ则可设其另外边长分别是bꎬc(2ɤbɤcꎻbꎬcɪN∗).由 三角形两边之和大于第三边 ꎬ可得2+b>cꎬ即2+bȡc+1ꎬ所以bȡc-1.所以b=c-1或c.若b=c-1ꎬ由海伦公式ꎬ可得该三角形的面积是143[4b(b+1)-3]ꎬ因而设4b(b+1)-3=3(2n-1)2(bꎬnɪN∗)ꎬ得2[b(b+1)-3n2+3n-1]=1(bꎬnɪN∗)ꎬ这不可能!若b=cꎬ可得该三角形的面积122 b2-1=b2-1(bȡ2).由(b-1)2<b2-1<b2ꎬ可得b2-1∉Qꎬ与题设矛盾!所以选项B错误.7.AC.由对称性知ꎬ可不妨设点P(mꎬn)(m>2ꎬn>0)ꎬ得m24-n2=1ꎬ即4-m2=-4n2.所以tanα=nm+2ꎬtanβ=-nm-2=n2-m.所以tanαtanβ=nm+2 n2-m=n24-m2=-14.故选项A正确.所以tan(α+β)=tanα+tanβ1-tanαtanβ=nm+2+n2-m1+14=165 n4-m2=-45nꎬcot(α+β)=-54nꎬSәPAB=12(2+2)n=2n.56所以SәPABtan(α+β)=-85ꎬSәPABcot(α+β)=-52n2.故选项C正确㊁D错误.可选(mꎬn)=(4ꎬ3)ꎬ得tanα=123ꎬtanβ=-32ꎬ所以tanα2=13-23ꎬtanβ2=23+213.所以tanα2tanβ2=239+273-67-123.还可选(mꎬn)=(6ꎬ22)ꎬ得tanα=122ꎬtanβ=-12ꎬ所以tanα2=3-22ꎬtanβ2=2+3.所以tanα2tanβ2=32+33-26-4.可证得239+273-67-123<32+33-26-4ꎬ所以选项B错误.8.A.若仅甲说的对ꎬ则甲做错了ꎻ可得乙㊁丙均说错了ꎬ得丙做对了.满足题设 有且仅有一人做对ꎬ有且仅有一人说错了 .若仅乙说的对ꎬ则甲做对了ꎻ可得甲㊁丙均说错了ꎬ得丙也做对了.不满足题设 有且仅有一人做对 .若仅丙说的对ꎬ则丙做错了ꎻ可得甲说错了ꎬ得甲做对了ꎻ还可得乙说错了ꎬ得甲也做错了.前后矛盾!综上所述ꎬ可得仅甲说的对.图49.ABCD.如图4ꎬ设PAңPAң=PDңꎬPBңPBң=PEңꎬPDң+PEң=PFңꎬ可得菱形PDFEꎬ且射线PF平分øAPB.所以PFң+PCңPCң=0.所以CꎬPꎬF三点共线ꎬ得øAPC=øBPC.同理ꎬ可得øBPC=øBPA.再由øAPC+øBPC+øBPA=360ʎꎬ可得øAPC=øBPC=øBPA=120ʎꎬ因而选项AꎬB均正确.在RtәABC中ꎬ可得øBAC=30ʎꎬøACB=60ʎ.设øPAC=θ(0ʎ<θ<30ʎ)ꎬ可得øPCA=60ʎ-θꎬøPCB=θꎬ所以әPACʐәPCBꎬ得PCPB=PAPC=ACCB=2ꎬ即2BP=PCꎬAP=2PCꎬ因而选项CꎬD均正确.注㊀在图4中ꎬ若设PAңPAң=PDңꎬPBңPBң=PEңꎬPCңPCң=PHңꎬ由题设可得PDң=PEң=PHң=1ꎬPDң+PEң+PHң=0ꎬ进而可得øAPC=øBPC=øBPA=120ʎꎬ也得选项AꎬB均正确.点P是әABC的费马点.10.A.先证明arctan2k2=arctan(k+1)-arctan(k-1)(kɪN∗)成立.因为tan[arctan(k+1)-arctan(k-1)]=(k+1)-(k-1)1+(k+1)(k-1)=2k2ꎬ又arctan(k+1)ꎬarctan(k-1)ɪ0ꎬπ2[öø÷(kɪN∗)ꎬarctan(k+1)>arctan(k-1)ꎬ所以arctan2k2ꎬarctan(k+1)-arctan(k-1)ɪ0ꎬπ2æèçöø÷ꎬ所以欲证结论成立.因而limnң¥ðnk=1arctan2k2=limnң¥[arctan(n+1)+arctann-arctan1-arctan0]=limnң¥[arctan(n+1)+arctann]-π4=limnң¥π-arctan2n+1n2+n-1[]-π4=π-π4=3π4.11.C.可得396=4ˑ9ˑ11.若排成的五位数是9的倍数ꎬ则这5个数字之和是9的倍数ꎬ进而可得所选取的5个数字只可能是0ꎬ1ꎬ2ꎬ6ꎬ9ꎻ0ꎬ1ꎬ2ꎬ7ꎬ8ꎻ0ꎬ1ꎬ3ꎬ5ꎬ9ꎻ0ꎬ1ꎬ3ꎬ6ꎬ8ꎻ0ꎬ1ꎬ4ꎬ5ꎬ8ꎻ0ꎬ1ꎬ4ꎬ6ꎬ7ꎻ0ꎬ2ꎬ3ꎬ4ꎬ9ꎻ0ꎬ2ꎬ3ꎬ5ꎬ8ꎻ0ꎬ2ꎬ3ꎬ6ꎬ7ꎻ0ꎬ2ꎬ4ꎬ5ꎬ7ꎻ0ꎬ3ꎬ4ꎬ5ꎬ6ꎻ0ꎬ3ꎬ7ꎬ8ꎬ9ꎻ0ꎬ4ꎬ6ꎬ8ꎬ9ꎻ0ꎬ5ꎬ6ꎬ7ꎬ9ꎻ1ꎬ2ꎬ3ꎬ4ꎬ8ꎻ1ꎬ2ꎬ3ꎬ5ꎬ7ꎻ1ꎬ2ꎬ4ꎬ5ꎬ6ꎻ1ꎬ2ꎬ7ꎬ8ꎬ9ꎻ1ꎬ3ꎬ6ꎬ8ꎬ9ꎻ1ꎬ4ꎬ5ꎬ8ꎬ9ꎻ1ꎬ4ꎬ6ꎬ7ꎬ9ꎻ1ꎬ5ꎬ6ꎬ7ꎬ8ꎻ2ꎬ3ꎬ5ꎬ8ꎬ9ꎻ2ꎬ3ꎬ6ꎬ7ꎬ9ꎻ2ꎬ4ꎬ5ꎬ7ꎬ9ꎻ2ꎬ4ꎬ6ꎬ7ꎬ8ꎻ3ꎬ4ꎬ5ꎬ6ꎬ9ꎻ3ꎬ4ꎬ5ꎬ7ꎬ8之一.若所选取的5个数字是0ꎬ1ꎬ2ꎬ6ꎬ9ꎬ由排成的五位数是4的倍数ꎬ可得末两位数只可能是20ꎬ60ꎬ12ꎬ92ꎬ16ꎬ96之一.再由排成的五位数是11的倍数ꎬ可得排成的五位数只可能是10692ꎬ60192ꎬ10296ꎬ20196之一.又由4ꎬ9ꎬ11两两互质ꎬ所以得到的4个五位数均满足题设.进而可得满足题设的五位数共96个:10692ꎬ60192ꎬ10296ꎬ20196ꎬ17820ꎬ87120ꎬ21780ꎬ71280ꎬ08712ꎬ78012ꎬ07128ꎬ17028ꎬ13860ꎬ83160ꎬ31680ꎬ61380ꎬ08316ꎬ38016ꎬ03168ꎬ13068ꎬ15840ꎬ85140ꎬ41580ꎬ51480ꎬ01584ꎬ51084ꎬ05148ꎬ15048ꎬ30492ꎬ40392ꎬ29304ꎬ39204ꎬ37620ꎬ67320ꎬ23760ꎬ73260ꎬ06732ꎬ76032ꎬ02376ꎬ32076ꎬ47520ꎬ57420ꎬ25740ꎬ75240ꎬ04752ꎬ74052ꎬ07524ꎬ57024ꎬ35640ꎬ65340ꎬ43560ꎬ53460ꎬ03564ꎬ53064ꎬ04356ꎬ34056ꎬ68904ꎬ98604ꎬ60984ꎬ90684ꎬ38412ꎬ48312ꎬ21384ꎬ31284ꎬ14652ꎬ64152ꎬ14256ꎬ24156ꎬ87912ꎬ97812ꎬ81972ꎬ91872ꎬ47916ꎬ97416ꎬ6641976ꎬ91476ꎬ57816ꎬ87516ꎬ51876ꎬ81576ꎬ85932ꎬ95832ꎬ83952ꎬ93852ꎬ76824ꎬ86724ꎬ72864ꎬ82764ꎬ46728ꎬ76428ꎬ42768ꎬ72468ꎬ45936ꎬ95436ꎬ43956ꎬ93456.所以所求答案是96A510=1315.注㊀用电脑编程可以验证上述答案是正确的.12.B.可得P(Y=0)=123+126+129+ =1231-123=17ꎻP(Y=1)=121+124+127+ =1211-123=47ꎻP(Y=2)=122+125+128+ =1221-123=27所以随机变量Y的期望是E(Y)=0ˑ17+1ˑ47+2ˑ27=87.13.BC.由题设ꎬ可得|a-2b|=|a+2b+c|ȡ|c|-|a+2b|ꎬ|c|ɤ1 |a+2b|+1 |a-2b|.由柯西不等式ꎬ可得(1 |a+2b|+1 |a-2b|)2ɤ(12+12)(|a+2b|2+|a-2b|2)=4(|a|2+4|b|2)ɤ20.所以|c|ɤ25.当a=(0ꎬ1)ꎬb=(1ꎬ0)ꎬc=(-4ꎬ-2)时满足题设ꎬ且|c|=25.综上ꎬ|c|的最大值为25ꎬ故选项A错误ꎬB正确.还可得a=(0ꎬ1)ꎬb=(1ꎬ0)ꎬc=(0ꎬ0)满足题设ꎬ进而可得|c|的最小值为0ꎬ故选项C正确ꎬD错误.14.CD.由对称性知ꎬ可不妨设xɤy.对于选项Aꎬ由y2<y2+2xɤy2+2y<(y+1)2ꎬ所以y2+2x不为完全平方数ꎬ故选项A错误.对于选项Bꎬ由y2<y2+4xɤy2+4y<(y+2)2ꎬ所以若y2+2x为完全平方数ꎬ则y2+4x=(y+1)2ꎬ2(2x-y)=1ꎬ这不可能!故选项B错误.选x=y=4ꎬ得x2+5y=y2+5x=62ꎬ故选项C正确.选x=y=2ꎬ得x2+6y=y2+6x=42ꎬ故选项D正确.15.1.设复数z1=1+iꎬz2=2+iꎬz3=3+iꎬ可得argz1=arctan1ꎬargz2=arcsin15ꎬargz3=arccos310.所以z1z2z3=(1+i)(5+5i)=10iꎬarg(z1z2z3)=π2.所以sinarctan1+arccos310+arcsin15æèçöø÷=sinπ2=1.16.D.如图5ꎬ设正四棱锥的底面边长AB=2ꎬ高PO图5=hꎬ可得tanβ=tanøPAO=POAO=h2.㊀㊀在RtәPOB中ꎬ可求得PB=PO2+OB2=h2+2.设等腰әPAB的底边AB的中点是Mꎬ可得PMʅAB.还可求得PM=PA2+AM2=h2+1.作AHʅPB于点Hꎬ连接CHꎬ可得α=øAHCꎬCH=AH.还可得2SәPAB=AB PM=AH PB.所以CH=AH=AB PMPB=2h2+1h2+2ꎬAC=22.在әACH中ꎬ由余弦定理ꎬ可求得cosα=cosøAHC=AH2+CH2-AC22AH CH= =-1h2+1.进而可得secα+2tan2β=-1.17.A.由 闭区间上的连续函数存在最大值与最小值 ꎬ可得函数f(x)的最大值与最小值均存在.可得f(x)-1=ex-e-xex+e-x+sinx(-2ɤxɤ2)ꎬ则g(x)=f(x)-1(-2ɤxɤ2)是奇函数.当xɪ[0ꎬ1]时ꎬg(x)<2ꎬ所以函数g(x)的最大值与最小值均存在且互为相反数ꎬ可分别设为Mꎬ-M.所以函数f(x)的最大值与最小值分别是1+Mꎬ1-M.所以所求答案是(1+M)+(1-M)=2.18.D.由f(x)是上凸函数ꎬ可得fᶄ(x)是减函数ꎬ所以当xɪ[aꎬb]时ꎬ函数fᶄ(x)的最大值是fᶄ(a).还可得S(t)=ʏtaf(x)dxꎬ所以Sᶄ(x)=f(x).由题设及图1ꎬ可得Sᶄ(x)max=f(x)max=f(c).19.ABD.对于选项Aꎬ可求得Sn=2n-1(nɪN∗)ꎬ所以Sn=an+1(nɪN∗)ꎬ故选项A正确.选项B错误.若k=12ꎬ则∀mɪN∗ꎬS2=1ʂam.选项C正确.∀nɪN∗ꎬSn=k(1+2+ +n)=a1+2+ +n.选项D正确.设等差数列an{}的公差为dꎬ可得an=dn+(a1-d)(nɪN∗).选bn=dnꎬcn=a1-dꎬn=10ꎬnȡ2{(nɪN∗)ꎬ易知an=bn+cn.由于∀nɪN∗ꎬTn=a1(其中Tn表76示数列cn{}的前n项和)ꎬ所以cn{}是 某数列 .由选项C正确ꎬ知bn{}是 某数列 .20.解法1㊀B.设函数f(x)=sin2xsin4x+cos4x(xɪR)ꎬ则f(x)=f(x+π)ꎬf(x)=f(π-x)(xɪR)ꎬ所以π是函数f(x)的一个周期且函数f(x)的图象关于直线x=π2对称.因而ʏ2π0sin2xsin4x+cos4xdx=2ʏπ0sin2xsin4x+cos4xdx=4ʏπ/20sin2xsin4x+cos4xdx=ʏπ/201-cos2x1-12sin22xd(2x)=2ʏπ01-cost2-sin2tdt=2ʏπ01-cost1+cos2tdt=2ʏπ011+cos2tdt-2ʏπ0cost1+cos2tdt=(设t=u+π2)2ʏπ/2-π/212sin2u+cos2udu+2ʏπ/2-π/2sinu1+sin2udu.再由y=12sin2u+cos2uꎬy=sinu1+sin2u-π2ɤuɤπ2æèçöø÷分别是偶函数㊁奇函数ꎬ可得ʏ2π0sin2xsin4x+cos4xdx=4ʏπ/2012sin2u+cos2udu=(设u=π/2-v)-4ʏ0π/21sin2v+2cos2vdv=4ʏπ/201sin2v+2cos2vdv=22ʏπ/20dtanv2æèçöø÷tanv2æèçöø÷2+1=(设w=tanv2)22ʏ+¥0dww2+1=22arctanw+¥0=22π2-0æèçöø÷=2π.解法2㊀B.在解法1中ꎬ已得ʏ2π0sin2xsin4x+cos4xdx=4ʏπ/20sin2xsin4x+cos4xdx.所以ʏπ/20sin2xsin4x+cos4xdx=(设x=t+π2)ʏ0-π/2cos2tsin4t+cos4tdt=(设t=-x)ʏπ/20cos2xsin4x+cos4xdx.所以ʏ2π0sin2xsin4x+cos4xdx=2ʏ0sin2x+cos2xsin4x+cos4xdx=2ʏ0tan2x+1tan4x+1dtanx=(设tanx=t)2ʏ+¥0t2+1t4+1dt=2ʏ+¥0dt-1tæèçöø÷t-1tæèçöø÷2+2=(设t-1t=u)2ʏ+¥-¥duu2+2=22arctanu2+¥-¥=2π2--π2æèçöø÷[]=2π.解法3㊀B.由降幂公式ꎬ可得sin2xsin4x+cos4x=1-cos2x21-cos2x2æèçöø÷2+1+cos2x2æèçöø÷2=1-cos2x1+cos22x=1-cos2x1+1+cos4x2=2(1-cos2x)3+cos4x.所以ʏ2π0sin2xsin4x+cos4xdx=ʏ2π01-cos2x3+cos4xd(2x)=(设t=2x)ʏ4π01-cost3+cos2tdt.设函数f(t)=1-cost3+cost(tɪR)ꎬ可得f(t)=f(t+2π)ꎬf(t)=f(2π-t)(tɪR)ꎬ所以2π是函数f(t)的一个周期且函数f(t)的图象关于直线x=π对称.因而ʏ2π0sin2xsin4x+cos4xdx=ʏ4π01-cost3+cos2tdt=2ʏ2π01-cost3+cos2tdt=4ʏπ01-cost3+cos2tdt=2ʏπ01-cost1+cos2tdt=(设u=cost)2ʏ1-11-u(1+u2)1-u2du=2ʏ1-111+u21-u1+udu=(设v=1-u1+u)4ʏ+¥0v2v4+1dv=2ʏ+¥0vv2-2v+1dv-2ʏ+¥0vv2+2v+1dv=2ʏ+¥0v-12æèçöø÷+12v-12æèçöø÷2+12dv-2ʏ+¥0v+12æèçöø÷-12v+12æèçöø÷2+12dv=2ʏ+¥0v-12v-12æèçöø÷2+12dv-2ʏ+¥0v+12v+12æèçöø÷2+12dv86+ʏ+¥0dvv-12æèçöø÷2+12+ʏ+¥0dvv+12æèçöø÷2+12=2ʏ+¥-ww2+12dw-2ʏ+¥ww2+12dw+ʏ+¥-dww2+12+ʏ+¥dww2+12=2ʏ-ww2+12dw+2arctan2w+¥-+2arctan2w+¥=2π2--π4æèçöø÷[]+2π2-π4æèçöø÷=2π.(因为y=ww2+12-12ɤwɤ12æèçöø÷是奇函数)解法4㊀B.因为sin4x+cos4x=(sin2x+cos2x)2-2sin2xcos2x=1-12sin22xꎬ可得12ɤsin4x+cos4xɤ1ꎬsin2xɤsin2xsin4x+cos4xɤ2sin2x.所以ʏ2π0sin2xdx<ʏ2π0sin2xsin4x+cos4xdx<2ʏ2π0sin2xdx.再由ʏ2π0sin2xdx=2x-sin2x42π0=πꎬ可得π<ʏ2π0sin2xsin4x+cos4xdx<2π.再由排除法ꎬ可知答案是B.[责任编辑:李㊀璟]换元转化㊀化难为易叶文明㊀李㊀阳(浙江省松阳二中㊀323406)摘㊀要:换元法是解数学题的一种常用方法ꎬ它的实质是通过换元转化ꎬ从而把复杂问题简单化ꎬ有利于问题的解决.关键词:换元ꎻ绝对值ꎻ最值中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2021)04-0069-02收稿日期:2020-11-05作者简介:叶文明(1967-)ꎬ男ꎬ中学高级教师ꎬ从事高中数学教学研究.李阳(1991-)ꎬ男ꎬ中学二级教师ꎬ从事高中数学教学研究.㊀㊀解数学题时ꎬ常把某个式子看成一个整体ꎬ用一个变量去代替它ꎬ从而使问题得到简化的方法叫换元法.换元法的实质是转化ꎬ把复杂问题简单化.换元法在研究方程㊁不等式㊁函数㊁数列㊁解析几何等问题中有广泛的应用ꎬ它几乎涵盖高中阶段的所有内容ꎬ是一种常用的解题方法.例1㊀(2020浙江新高考学考模拟卷五)已知正数xꎬy满足x+y=1ꎬ则x2x+2+y2y+1的最小值为.解析㊀方法一㊀4x+2+1y+1=14ˑ4x+2+1y+1æèçöø÷x+2+y+1()ȡ94ʑx2x+2+y2y+1=x-2+4x+2+y-1+1y+1=4x+2+1y+1+x+y-3ȡ14ꎬ即最小值为14.方法二㊀(换元)令x+2=aꎬy+1=bꎬ则a+b=4.96。
重点高校2020强基计划笔试真题
重点高校2020年强基计划笔试真题目录清华大学 (2)336689北京大学.............................................................................................................................................(一)数学.........................................................................................................................................(二)物理.........................................................................................................................................(三)化学.........................................................................................................................................南京大学.............................................................................................................................................浙江大学.............................................................................................................................................中山大学..........................................................................................................................................山东大学..........................................................................................................................................关于我们 (101112)清华大学清华大学2020强基计划笔试共考三门:数学、物理和化学。
2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案
2019年北京大学自主招生数学试题2019年清华大学自主招生数学试题2019年中国科学技术大学自主招生数学试题4.记3cos(),4cos()36x t y t =+-=++,则22x y +的最大值为__________。
5.设点0(1,0)P ,i OP (i =1,2,3…)绕原点按顺时针旋转θ得到向量i OQ , i Q 关于y 轴对称点记为1 i P +,则2019P 的坐标为__________。
.,且.已知,且9.将△D 1D 2D 3的各中点连线,折成四面体ABCD ,已知12233112,10,8D D D D D D ===,求四面体ABCD 的体积。
10.求证:对于任意的在R 上有仅有一个解0x =11.已知(1)求证:存在多项式()p x ,满足cos (cos )n p θθ=;(2)将()p x 在R [x ]上完全分解。
2019年中国科学技术大学自主招生数学试题参考答案2.B红色曲线为y =sin 2x ,蓝色曲线为y =-cos 3x综上,知:00100110cos sin cos sin 01sin cos sin cos x x x y y y θθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭那么222(,)P x y 满足:200020002cos sin 10sin cos 01x x x x y y y y θθθθ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这也就说明了20,P P 重合。
故2019P 坐标为(cos ,sin )θθ--6.首先将递推公式两侧取倒数,则:112(1)11112(1)n n n n nn x n x x x x ++++=⇔-=+累加,即:21122(1)n n n k k x x n n =-=⇒=+∑裂项求和,则:2019112019*********k k x ==-=∑7.如图所示,我们定义a ~b 表示复数a 和b之间的边11z z -+是纯虚数,表明0~(z-1)与0~(z+1)垂直,进而说明|z~(z-1)|=|0~z|=|z~(z+1)|=1故||1z =,进一步,我们设cos sin z i θθ=+则222222222|3|(cos 2cos 3)(sin 2sin )cos 2cos 96cos 6cos 22cos cos 2sin 2sin 2sin 2sin 116cos 2812cos 8cos 53z z cos θθθθθθθθθθθθθθθθθθ++=++++=++++++++=++=++≥等号成立条件为1cos 3θ=-8.9.简解:由题意,易知四面体ABCD为等腰四面体,将其嵌入长方体后割补法即可图示蓝色边框为等腰四面体,黑色为被嵌入的长方体答案:410.首先,我们定义()()n f x 代表函数()f x 的n 阶导数令0()!kn x k x f x e k ==-∑注意到()()1n x f x e =-在R 上单调递增,故其在R 上仅有一根x =0,从而(1)()1n x f x e x -=--在R 上有最小值,即(1)(1)()(0)0n n f x f --≥=进而2(2)()12n x x f x e x -=---在R 上单调递增以此类推,可知:(2)()n k f x -在R 上单调递增,仅有一根x =0(21)()n k f x --在R 先减后增,且恒为非负实数,且仅有一根x =0综上,不论n 取何值,0()!knx k x f x e k ==-∑在R 上仅有一根x =011.本题考察内容十分清晰,旨在考察Chebyshev 多项式(1)采取归纳法证明,若对于不同的n ,存在满足题设的多项式,则记其为()n p x 首先,当1n =时,存在多项式1()p x x=其次,当2n =时,存在多项式22()21p x x =-我们假定命题在2,1n n --的情形下成立,下面考察n 的情形cos cos[(1)]cos(1)cos sin(1)sin 1cos(1)cos [cos cos(2)]2n n n n n n n θθθθθθθθθθθ=-+=-⋅--⋅=-⋅+--进而有cos 2cos cos(1)cos(2)n n n θθθθ=---即12()2()()n n n p x xp x p x --=-因为12(),()n n p x p x --都是多项式,所以()n p x 也是多项式。
高中资料库 2020年清华大学强基计划笔试试题
2020年清华大学强基计划笔试试题1.已知实数x,y满足x2+y2≤1,则x2+xy−y2的最大值为__________。
A.1B. √52C. √103D.√22.设a,b,c均为正实数,若一元二次方程ax2+bx+c=0有实根,则__________。
A.max{a,b,c}≥12(a+b+c) B.max{a,b,c}≥49(a+b+c)C.min{a,b,c}≤14(a+b+c) D.min{a,b,c}≤13(a+b+c)3.已知平面向量a,b满足|a|≤2,|b|≤1,且c满足|a−2b−c|≤|a+2b|.那么对所有可能的c而言,|c|的__________。
A.最大值为4√2B.最大值为2√6C.最小值为0D.最小值为√24.在ΔABC中,AC=1,BC=√3,AB=2.M为AB中点。
将ΔABC沿CM折起,使得B−ACM的体积为√22,则折起后AB的长度可能为__________。
A.1B.√2C.√3D.25.已知A(1,1),Q(1,0),P为椭圆x24+y23=1上的动点,则|PA|+|PQ|的________。
A.最大值为4+√3B.最大值为4+√5C.最小值为4−√3D.最小值为4−√56.已知A,B分别为双曲线x24−y2=1的左、右顶点,P为该双曲线上不同于A,B 的任意一点。
设∠PAB=α,∠PBA=β,ΔPAB的面积为S,则__________。
A. tanαtanβ为定值B. tanα2tanβ2为定值C.S⋅tan(α+β)为定值D.S⋅cot(α+β)为定值7.设正四棱锥的侧棱与底面所成角为α,相邻两侧面所成角为β,则__________。
A.cosβ=cos2αcos2α−2B.cosβ=cos2α−1cos2α+1C.tanβ2=sinα D.cotβ2=sinα8.已知复数z1,z2在复平面内对应的点为Z1,Z2.O为坐标原点,若|z1|=1,5z12−2z1z2+z22=0,则ΔOZ1Z2的面积为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专注名名校自主选拔 2
专注名校自主选拔
复试 笔试二
丘成桐数学英才班第二日的测试采用的是现学现考形式。这种形式非常常见,在小升初、 初升高、大学自主选拔活动中都有出现,这样的考试形式对于高中生来说难以提前准备,侧 重于考察学生的快速学习能力和数学研究能力。
清华本次安排为上午进行两场授课讲座,下午直接对所学内容笔试,笔试时间为 13:00-16:00,共 3 个小时,题目分 A、B 组,其中 A 组共 5 道大题;B 组共 3 道大题(7 道小题),内容主要为纽结理论和代数表示论,均是大学数学知识。