2019年昆山市初三数学上期末试题附答案
2019-2020学年江苏省苏州市昆山市、太仓市九年级(上)期末数学试卷
2019-2020学年江苏省苏州市昆山市、太仓市九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)方程2x2=1的解是( )A.x=±12B.x=±22C.x=12D.x=22.(3分)数据1,3,3,4,5的众数和中位数分别为( )A.3和3B.3和3.5C.4和4D.5和3.53.(3分)已知⊙O的半径为5,A为线段OP的中点,若OP=8,则点A与⊙O的位置关系是( )A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不确定4.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为( )A.15B.7.5C.6D.35.(3分)在平面直角坐标系中,二次函数y=﹣x2+6x﹣9与坐标轴交点个数( )A.3个B.2个C.1个D.0个6.(3分)下列说法:①三点确定一个圆;②任何三角形有且只有一个内切圆;③相等的圆心角所对的弧相等;④正多边形一定是中心对称图形,其中真命题有( )A.1个B.2个C.3个D.4个7.(3分)将抛物线y=2(x+1)2﹣3先向上平移3个单位长度,再向右平移一个单位长度( )A.y=2x2B.y=2(x+2)2C.y=2x2﹣6D.y=2(x+2)2﹣68.(3分)Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为( )A.12B.13C.14D.159.(3分)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC 交圆O于点F,则∠BAF等于( )A.12.5°B.15°C.20°D.22.5°10.(3分)如图所示,二次函数y=﹣x2+mx的图象与x轴交于坐标原点和(4,0),若关于x的方程x2﹣mx+t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是( )A.﹣5<t<3B.t>﹣5C.3<t≤4D.﹣5<t≤4二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知∠A为锐角,且cos A=32,则∠A度数等于 度.12.(3分)抛物线y=x2﹣1的顶点坐标是 .13.(3分)数据8,9,10,11,12的方差S2为 .14.(3分)圆锥的母线长为4cm,底面半径为3cm,那么它的侧面展开图的圆心角是 度.15.(3分)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值列表如下:x…﹣3﹣2﹣10…y…0﹣3﹣4﹣3…则关于x的方程ax2+bx+c=0的解是 .16.(3分)如图示,半圆的直径AB=40,C,D是半圆上的三等分点,点E是OA的中点,则阴影部分面积等于 17.(3分)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD= .18.(3分)如图示,在Rt△ABC中,∠ACB=90°,AC=3,BC=3,点P在Rt△ABC 内部,且∠PAB=∠PBC,连接CP,则CP的最小值等于 .三、解答题(本大题共10小题,共76分.应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算(1)9―(12)―1―|12―1|(2)sin30°―2tan45°cos30°―120.(5分)解方程:(2x+1)2=3(2x+1).21.(5分)如图示,在△ABC中,AC=8,∠A=30°,∠B=45°,求△ABC的面积.22.(6分)快乐的寒假即将来临小明、小丽和小芳三名同学打算各自随机选择到A,B两个书店做志愿者服务活动.(1)求小明、小丽2名同学选择不同书店服务的概率;(请用列表法或树状图求解)(2)求三名同学在同一书店参加志愿服务活动的概率.(请用列表法或树状图求解)23.(6分)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?24.(8分)已知函数y=ax2﹣2x﹣3(a是常数)(1)当a=1时,该函数图象与直线y=x﹣1有几个公共点?请说明理由;(2)若函数图象与x轴只有一公共点,求a的值.25.(8分)如图,利用135°的墙角修建一个梯形ABCD的储料场,其中BC∥AD,并使∠C=90°,新建墙BC上预留一长为1米的门EF.如果新建墙BE﹣FC﹣CD总长为15米,那么怎样修建才能使储料场的面积最大?最大面积多少平方米?26.(8分)(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.27.(10分)如图示,AB是⊙O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF于点AF.(1)求证:DE与⊙O相切:(2)若AE=8,AB=10,求DE长;(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AF•EF 的最大值.28.(12分)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6(a≠0)交x轴于A (﹣4,0),B(2,0),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)点D是第二象限内的抛物线上一动点.①求△ADE面积最大值并写出此时点D的坐标;②若tan∠AED=13,求此时点D坐标;(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A,则动点Q所经过的路径长等于 (直接写出答案)2019-2020学年江苏省苏州市昆山市、太仓市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)方程2x2=1的解是( )A.x=±12B.x=±22C.x=12D.x=2【考点】解一元二次方程﹣直接开平方法.【答案】B【分析】根据解一元二次方程的方法﹣直接开平方法解方程即可.【解答】解:2x2=1,∴x2=1 2,∴x=±2 2,故选:B.2.(3分)数据1,3,3,4,5的众数和中位数分别为( )A.3和3B.3和3.5C.4和4D.5和3.5【考点】中位数;众数.【答案】A【分析】先把数据按大小排列,然后根据中位数和众数的定义可得到答案.【解答】解:数据按从小到大排列:1,3,3,4,5.中位数是3;数据3出现2次,次数最多,所以众数是3.故选:A.3.(3分)已知⊙O的半径为5,A为线段OP的中点,若OP=8,则点A与⊙O的位置关系是( )A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不确定【考点】点与圆的位置关系.【答案】A【分析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,即可确定A与圆的位置关系.【解答】解:∵OP=8,A是线段OP的中点,∴OA=4,小于圆的半径5,∴点A在圆内.故选:A.4.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为( )A.15B.7.5C.6D.3【考点】三角形的外接圆与外心.【答案】B【分析】直角三角形的斜边是它的外接圆的直径,通过勾股定理求出AB即可.【解答】解:如图,∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴AB=92+122=15.又∵AB是Rt△ABC的外接圆的直径,∴其外接圆的半径为7.5.故选:B.5.(3分)在平面直角坐标系中,二次函数y=﹣x2+6x﹣9与坐标轴交点个数( )A.3个B.2个C.1个D.0个【考点】二次函数图象上点的坐标特征;抛物线与x轴的交点.【答案】B【分析】分别将x=0、y=0代入二次函数解析式中求出与之对应的y、x值,由此即可找出抛物线与坐标轴的交点坐标,此题得解.【解答】解:当x=0时,y=﹣x2+6x﹣9=﹣9,∴抛物线y=﹣x2+6x﹣9与y轴交于点(0,﹣9);当y=﹣x2+6x﹣9=0时,x1=x2=3,∴抛物线y=﹣x2+6x﹣9与x轴交于点(3,0).∴抛物线y=﹣x2+6x﹣9与坐标轴有2个交点.故选:B.6.(3分)下列说法:①三点确定一个圆;②任何三角形有且只有一个内切圆;③相等的圆心角所对的弧相等;④正多边形一定是中心对称图形,其中真命题有( )A.1个B.2个C.3个D.4个【考点】命题与定理.【答案】A【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【解答】解:①不在同一直线上的三点确定一个圆,①是假命题;②任何三角形有且只有一个内切圆,②是真命题;③在同圆或等圆中,相等的圆心角所对的弧相等,③是假命题;④边数是偶数的正多边形一定是中心对称图形,④是假命题;故选:A.7.(3分)将抛物线y=2(x+1)2﹣3先向上平移3个单位长度,再向右平移一个单位长度( )A.y=2x2B.y=2(x+2)2C.y=2x2﹣6D.y=2(x+2)2﹣6【考点】二次函数图象与几何变换.【答案】A【分析】先求出原抛物线的顶点坐标,再根据向上平移纵坐标加,向右平移横坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:抛物线y=2(x+1)2﹣3的顶点坐标为(﹣1,﹣3),∵先向上平移3个单位长度,再向右平移一个单位长度,∴平移后的抛物线的顶点横坐标为﹣1+1=0,纵坐标为﹣3+3=0,∴平移后的抛物线解析式为y=2x2.故选:A.8.(3分)Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为( )A.12B.13C.14D.15【考点】三角形的内切圆与内心.【答案】A【分析】作出图形,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF 可得四边形OECF是正方形,根据正方形的四条边都相等求出CE、CF,根据切线长定理可得AD=AF,BD=BE,从而得到AF+BE=AB,再根据三角形的周长的定义解答即可.【解答】解:如图,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF,∵∠C=90°,∴四边形OECF是正方形,∴CE=CF=1,由切线长定理得,AD=AF,BD=BE,∴AF+BE=AD+BD=AB=5,∴三角形的周长=5+5+1+1=12.故选:A.9.(3分)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC 交圆O于点F,则∠BAF等于( )A.12.5°B.15°C.20°D.22.5°【考点】等边三角形的判定与性质;平行四边形的性质;圆周角定理.【答案】B【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=12∠BOF=15°,故选:B.10.(3分)如图所示,二次函数y=﹣x2+mx的图象与x轴交于坐标原点和(4,0),若关于x的方程x2﹣mx+t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是( )A.﹣5<t<3B.t>﹣5C.3<t≤4D.﹣5<t≤4【考点】二次函数的性质;抛物线与x轴的交点.【答案】D【分析】先利用抛物线的对称轴求出m得到抛物线解析式为y=﹣x2+4x,再计算出自变量为1和5对应的函数值,然后利用函数图象写出直线y=t与抛物线y=﹣x2+4x在1<x<5时有公共点时t的范围即可.【解答】解:∵抛物线的对称轴为直线x=―m2×(―1)=2,解得m=4,∴抛物线解析式为y=﹣x2+4x,抛物线的顶点坐标为(2,4),当x=1时,y=﹣x2+4x=﹣1+4=3;当x=5时,y=﹣x2+4x=﹣25+20=﹣5,当直线y=t与抛物线y=﹣x2+4x在1<x<5时有公共点时,﹣5<t<4,如图.所以关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,t的取值范围为﹣5<t≤4.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知∠A为锐角,且cos A=32,则∠A度数等于 30 度.【考点】特殊角的三角函数值.【答案】见试题解答内容【分析】根据特殊角的三角函数值解决问题即可.【解答】解:∵cos A=3 2,∴∠A=30°,故答案为30.12.(3分)抛物线y=x2﹣1的顶点坐标是 (0,﹣1) .【考点】二次函数的性质.【答案】见试题解答内容【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1).故答案是:(0,﹣1).13.(3分)数据8,9,10,11,12的方差S2为 2 .【考点】方差.【答案】见试题解答内容【分析】根据平均数和方差的公式计算.【解答】解:数据8,9,10,11,12的平均数=15(8+9+10+11+12)=10;则其方差S2=15(4+1+1+4)=2.故答案为:2.14.(3分)圆锥的母线长为4cm,底面半径为3cm,那么它的侧面展开图的圆心角是 270 度.【考点】圆锥的计算.【答案】见试题解答内容【分析】由底面半径易得圆锥的底面周长,即为圆锥的侧面弧长,利用弧长公式即可求得侧面展开图的圆心角.【解答】解:圆锥的底面周长为2π×3=6πcm,设圆锥侧面展开图的圆心角是n,则:nπ×4180=6π,解得n=270°,故答案为:270.15.(3分)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值列表如下:x…﹣3﹣2﹣10…y…0﹣3﹣4﹣3…则关于x的方程ax2+bx+c=0的解是 x1=﹣3,x2=1 .【考点】二次函数图象上点的坐标特征;抛物线与x轴的交点.【答案】见试题解答内容【分析】首先根据表格确定对称轴,然后确定点(﹣3,0)关于对称轴的对称点,从而确定方程的答案即可.【解答】解:根据表格发现:抛物线经过点(﹣2,﹣3)和点(0,﹣3),所以抛物线的对称轴为x=―2+02=―1,设抛物线与x轴的另一交点为(x,0),∵抛物线经过点(﹣3,0),∴―3+x2=―1,解得:x=1,∴抛物线与x轴的另一交点为(1,0),∴关于x的方程ax2+bx+c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.16.(3分)如图示,半圆的直径AB=40,C,D是半圆上的三等分点,点E是OA的中点,则阴影部分面积等于 2003π 【考点】扇形面积的计算.【答案】见试题解答内容【分析】连接OC、OD、CD,如图,根据圆心角、弧、弦的关系得到∠AOC=∠COD=∠BOD=60°,再证明CD∥AB得到S△ECD=S△OCD,然后根据扇形的面积公式,利用阴影部分面积=S扇形COD进行计算.【解答】解:连接OC、OD、CD,如图,∵C,D是半圆上的三等分点,∴∠AOC=∠COD=∠BOD=60°,∵OC=OD,∴△OCD为等边三角形,∴∠OCD=60°,∵∠OCD=∠AOC,∴CD∥AB,∴S△ECD=S△OCD,∴阴影部分面积=S扇形COD=60⋅π⋅202360=2003π.故答案为2003π.17.(3分)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD= 2 .【考点】勾股定理;解直角三角形.【答案】见试题解答内容【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【解答】解:如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△OBF中,tan∠BOF=BFOF=2,∴tan∠AOD=2.故答案为:218.(3分)如图示,在Rt△ABC中,∠ACB=90°,AC=3,BC=3,点P在Rt△ABC 内部,且∠PAB=∠PBC,连接CP,则CP的最小值等于 7―2 .【考点】勾股定理.【答案】见试题解答内容【分析】构造点P在以AB为弦的圆上,首先求得∠APB=120°,然后求得半径和OC 的长,当点O、P、C在一条直线上时,CP有最小值.【解答】解:如图所示,∵在Rt△ABC中,∠ACB=90°,AC=3,BC=3,∴tan∠BAC=BCAC=33,∴∠BAC=30°,∴∠CBA=60°,即∠1+∠2=60°,∵∠PAB=∠1,∴∠APB=120°,∴点P在以AB为弦的圆O上,∴∠AOB=120°,∵OA=OB,∴∠3=∠4=30°,∴∠1+∠2+∠3=90°,即∠CBO=90°,∠DAO=∠BAC+∠4=60°,∠AOD=30°,过点O作OD⊥AC于点D,∴∠DOB=90°,∵∠DCB=90°,∴四边形DCBO是矩形,∴DC=OB,OD=BC=3,∴在Rt△ADO中,AD=OD•tan30°=3×33=1,∴DC=AC﹣DC=3﹣1=2,∴OB=OP=2,∴OC=OB2+BC2=4+3=7,当点O、P、C在一条直线上时,CP有最小值,∴CP的最小值为OC﹣OP=7―2.故答案为7―2.三、解答题(本大题共10小题,共76分.应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算(1)9―(12)―1―|12―1|(2)sin30°―2tan45°cos30°―1【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【答案】见试题解答内容【分析】(1)本题涉及绝对值、负整数指数幂、二次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果;(2)把特殊角的三角函数值代入计算即可求解.【解答】解:(1)9―(12)―1―|12―1|=3﹣2﹣1+2 2=2 2;(2)sin30°―2tan45°cos30°―1=12―2×132―1=―3 3―2=6+33.20.(5分)解方程:(2x+1)2=3(2x+1).【考点】解一元二次方程﹣公式法.【答案】见试题解答内容【分析】求出b2﹣4ac的值,代入公式x=―b±b2―4ac2a进行计算即可.【解答】解:方法一:化简方程得:2x2﹣x﹣1=0,∵b2﹣4ac=9,∴x=―b±b2―4ac2a=1±34,∴方程的解为x1=―12,x2=1.方法二:(2x+1)2=3(2x+1).(2x+1)2﹣3(2x+1)=0(2x+1)(2x+1﹣3)=02x+1=0或2x﹣2=0∴方程的解为x1=﹣0.5,x2=1.21.(5分)如图示,在△ABC中,AC=8,∠A=30°,∠B=45°,求△ABC的面积.【考点】三角形的面积;解直角三角形.【答案】见试题解答内容【分析】先作CD⊥AB于点D,再根据勾股定理和三角形的面积公式即可求解.【解答】解:如图,过点C作CD⊥AB,垂足为D,在Rt△ACD中,AC=8,∠A=30°,∴CD=4,AD=43.在Rt△BCD中,CD=4,∠B=45°,∴BD=CD=4,∴AB=4+43,∴S△ABC=12 AB•CD=12×4×(4+43)=8+83.答:△ABC的面积为8+83.22.(6分)快乐的寒假即将来临小明、小丽和小芳三名同学打算各自随机选择到A,B两个书店做志愿者服务活动.(1)求小明、小丽2名同学选择不同书店服务的概率;(请用列表法或树状图求解)(2)求三名同学在同一书店参加志愿服务活动的概率.(请用列表法或树状图求解)【考点】列表法与树状图法.【答案】(1)1 2;(2)1 4.【分析】(1)利用树状图或列表法列出所有可能出现的情况,再从中得到符合题意的结果数,从而求出答案;(2)利用树状图或列表法列出所有可能出现的情况,再从中得到符合题意的结果数,从而求出答案;【解答】解:(1)小明、小丽2名同学选择的所有可能的情况有:∴P选不同书店=24=12;(2)三名同学参加志愿服务的所有可能的情况有:∴P三名同学在同一书店=28=14.23.(6分)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?【考点】一元二次方程的应用.【答案】见试题解答内容【分析】设有x人参加这次旅游,求出当人数为30时所需总费用及人均费用为500元时的人数,当30<x<60时,由总费用=人均费用×人数,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;当x≥60时,由参加人数=总费用÷人均费用可求出参加人数,由该值小于60舍去.综上此题得解.【解答】解:设有x人参加这次旅游,∵30×800=24000(元),24000<28000,∴x>30.(800﹣500)÷10+30=60(人).当30<x<60时,x[800﹣10(x﹣30)]=28000,整理,得:x2﹣110x+2800=0,解得:x1=40,x2=70(不合题意,舍去).当x≥60时,28000÷500=56(人),不合题意,舍去.答:参加这次旅游的人数为40人.24.(8分)已知函数y=ax2﹣2x﹣3(a是常数)(1)当a=1时,该函数图象与直线y=x﹣1有几个公共点?请说明理由;(2)若函数图象与x轴只有一公共点,求a的值.【考点】一次函数的性质;一次函数图象上点的坐标特征;二次函数的性质;抛物线与x 轴的交点.【答案】见试题解答内容【分析】(1)转化为求方程组,然后通过消元化为一元二次方程,通过判断一元二次方程的根的判别式,即可判断抛物线与直线的交点情况;(2)分两种情况讨论:①当函数为一次函数时,与x轴有一个交点;②当函数为二次函数时,利用判别式△=0,转化为方程即可解决问题.【解答】解:(1)a=1时,y=x2﹣2x﹣3,∴{y=x―1y=x2―2x―3,∴x2﹣3x﹣2=0,∵△=9﹣4×1×(﹣2)=17>0,∴方程有两个不相等的实数根,∴函数图象与直线有两个不同的公共点.(2)①当a=0时,函数y=﹣2x﹣3的图象与x轴只有一个交点(―32,0);②当a≠0时,若函数y=ax2﹣2x﹣3的图象与x轴只有一个交点,则方程ax2﹣2x﹣3=0有两个相等的实数根,所以△=(﹣2)2﹣4a•(﹣3)=0,解得a=―1 3.综上,若函数y=ax2﹣2x﹣3的图象与x轴只有一个交点,则a的值为0或―1 3.25.(8分)如图,利用135°的墙角修建一个梯形ABCD的储料场,其中BC∥AD,并使∠C=90°,新建墙BC上预留一长为1米的门EF.如果新建墙BE﹣FC﹣CD总长为15米,那么怎样修建才能使储料场的面积最大?最大面积多少平方米?【考点】二次函数的应用;直角梯形.【答案】见试题解答内容【分析】设CD的长为xcm,则BC的长为(16﹣x)cm,过A作AG⊥BC于G,推出四边形ADCG是矩形,得到AG=CD=x,AD=CG,根据梯形的面积公式和二次函数的性质即可得到结论.【解答】解:设CD的长为xcm,则BC的长为(16﹣x)cm,过A作AG⊥BC于G,∵AD∥BC,∠C=90°,∠BAD=135°,∴∠ADC=90°,∠ABC=45°,∴四边形ADCG是矩形,∴AG=CD=x,AD=CG,∴BG=AG=x,AD=CG=16﹣2x,∴S梯形ABCD=12x(16﹣2x+16﹣x)=―32x2+16x=―32(x―163)2+1283,∴当x=163时,储料场的面积最大,最大面积是1283平方米.26.(8分)(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.【考点】圆的综合题.【答案】见试题解答内容【分析】(1)设CD交⊙O于E,连接BE,由三角形外角性质得出∠BEC=∠BDC+∠DBE,得出∠BEC>∠BDC,由圆周角定理得出∠A=∠BEC,即可得出∠A>∠BDC;(2)延长CD交⊙O于点F,连接BF,由三角形外角性质得出∠BDC=∠BFC+∠FBD,得出∠BDC>∠BFC,由圆周角定理得出∠A=∠BFC,即可得出∠A<∠BDC;(3)由(1)、(2)可得当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN度数最大,①当点P在y轴的正半轴上时,设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,得出OP=O′H,O′P=OH=O′M,易求OM=1,MN=3,则MH=HN=12 MN=32,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,求出x=52,由勾股定理得出O′H=O′M2―MH2=2,即可得出点P的坐标为(0,2);②当点P在y轴的负半轴上时,同理可得O′H=OP=2,即可得出点P的坐标为(0,﹣2).【解答】解:(1)∠A>∠BDC,理由如下:设CD交⊙O于E,连接BE,如图1所示:∠BEC=∠BDC+∠DBE,∴∠BEC>∠BDC,∵∠A=∠BEC,∴∠A>∠BDC;(2)∠A<∠BDC,理由如下:延长CD交⊙O于点F,连接BF,如图2所示:∵∠BDC=∠BFC+∠FBD,∴∠BDC>∠BFC,又∵∠A=∠BFC,∴∠A<∠BDC;(3)由(1)、(2)可得:当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN 度数最大,①当点P在y轴的正半轴上时,如图3所示:设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,∴OP=O′H,O′P=OH=O′M,∵M(1,0),N(4,0),∴OM=1,MN=3,∴MH=HN=12MN=32,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,∴x﹣1=3 2,∴x=5 2,∴O′H=O′M2―MH2=(52)2―(32)2=2,∴OP=2,∴点P的坐标为(0,2);②当点P在y轴的负半轴上时,如图4所示:同理可得O′H=OP=2,∴点P的坐标为(0,﹣2);综上所述,当∠MPN度数最大时点P的坐标为(0,2)或(0,﹣2).27.(10分)如图示,AB是⊙O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF于点AF.(1)求证:DE与⊙O相切:(2)若AE=8,AB=10,求DE长;(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AF•EF 的最大值.【考点】圆的综合题.【答案】见试题解答内容【分析】(1)连接OD,则∠OAD=∠ODA,由AD平分∠BAF,得出∠OAD=∠FAD,推出∠ODA=∠FAD,则OD∥AF,由DE⊥AF,得出DE⊥OD,即可得出结论:(2)连接BD,易证∠AED=90°=∠ADB,又∠EAD=∠DAB,得出△AED∽△ADB,则AD:AB=AE:AD,求出AD2=AB×AE=80,在Rt△AED中,由勾股定理得出DE= AD2―AE2=4;(3)连接DF,过点D作DG⊥AB于G,易证△AED≌△AGD(AAS),得出AE=AG,DE=DG,由∠FAD=∠DAB,得出DF=DB,则DF=DB,证得Rt△DEF≌Rt△DGB(HL),得出EF=BG,则AB=AF+2EF,即x+2y=10,得出y=―12x+5,AF•EF=―12x2+5x=―12(x﹣5)+252,即可得出结果.【解答】(1)证明:连接OD,如图1所示:∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAF,∴∠OAD=∠FAD,∴∠ODA=∠FAD,∴OD∥AF,∵DE⊥AF,∴DE⊥OD,又∵OD是⊙O的半径,∴DE与⊙O相切:(2)解:连接BD,如图2所示:∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AF,∴∠AED=90°=∠ADB,又∵∠EAD=∠DAB,∴△AED∽△ADB,∴AD:AB=AE:AD,∴AD2=AB×AE=10×8=80,在Rt△AED中,由勾股定理得:DE=AD2―AE2=80―82=4;(3)连接DF,过点D作DG⊥AB于G,如图3所示:在△AED 和△AGD 中,{∠AED =∠AGD =90°∠DAE =∠DAG AD =AD, ∴△AED ≌△AGD (AAS ),∴AE =AG ,DE =DG ,∵∠FAD =∠DAB , ∴DF =DB ,∴DF =DB ,在Rt △DEF 和Rt △DGB 中,{DE =DG DF =DB ,∴Rt △DEF ≌Rt △DGB (HL ),∴EF =BG ,∴AB =AG +BG =AF +EF =AF +EF +EF =AF +2EF ,即:x +2y =10,∴y =―12x +5, ∴AF •EF =―12x 2+5x =―12(x ﹣5)2+252, ∴AF •EF 有最大值,当x =5时,AF •EF 的最大值为252.28.(12分)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6(a≠0)交x轴于A (﹣4,0),B(2,0),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)点D是第二象限内的抛物线上一动点.①求△ADE面积最大值并写出此时点D的坐标;②若tan∠AED=13,求此时点D坐标;(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A,则动点Q所经过的路径长等于 226 (直接写出答案)【考点】二次函数综合题.【答案】见试题解答内容【分析】(1)将A(﹣4,0),B(2,0)代入y=ax2+bx+6(a≠0),求得y=―34x2―32x+6;(2)①由已知可求:AE=25,AE的直线解析式y=―12x﹣2,设D(m,―34m2―32m+6),过点D作DK⊥y轴交于点K;K(0,―34m2―32m+6),S△ADE=S梯形DKOA+S△AOE﹣S△KED=―32(m+23)2+503;②过点A作AN⊥DE,DE与x中交于点F,由tan∠AED=13,可求AN=2,NE=32,因为Rt△AFN∽Rt△EFO,ANOE=NFOF,则有22=32―4+OF2OF,所以F(﹣2,0),得到EF直线解析式为y=﹣x﹣2,直线与抛物线的交点为D点;(3)由于Q点随P点运动而运动,P点在线段AC上运动,所以Q点的运动轨迹是线段,当P点在A点时,Q(﹣4,﹣4),当P点在C点时,Q(﹣6,6),Q点的轨迹长为226.【解答】解:(1)将A(﹣4,0),B(2,0)代入y=ax2+bx+6(a≠0),可得a=―34,b=―32,∴y=―34x2―32x+6;(2)①∵A(﹣4,0),E(0,﹣2),设D(m,―34m2―32m+6),过点D作DK⊥y轴交于点K;K(0,―34m2―32m+6),S△ADE=S梯形DKOA+S△AOE﹣S△KED=12×(KD+AO)×OK+12×AO×OE―12×KD×KE=12(﹣m+4)×(―34m2―32m+6)+12×4×2―12×(﹣m)×(2―34m2―32m+6)=―32(m+23)2+503,当m=―23时,S△ADE的面积最大,最大值为503,此时D点坐标为(―23,203);②过点A作AN⊥DE,DE与x轴交于点F,∵tan∠AED=1 3,∴AN=2,NE=32,Rt△AFN∽Rt△EFO,∴ANOE=NFOF,∵EF2=OF2+4,∴NF=32―EF,∴22=32―4+OF2OF,∴OF=2,∴F(﹣2,0),∴EF直线解析式为y=﹣x﹣2,∴﹣x﹣2=―34x2―32x+6时,x=―1―973,∴D(―1―973,―5+973);(3)∵Q点随P点运动而运动,P点在线段AC上运动,∴Q点的运动轨迹是线段,当P点在A点时,Q(﹣4,﹣4),当P点在C点时,Q(﹣6,6),∴Q点的轨迹长为226,故答案为226.。
2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】
2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________⼀、选择题1. -元⼆次⽅程x2-x=0的解为A.此⽅程⽆实数解 B.0 C.1 D.0或12. 在抛物线y=x2-4x-4上的⼀个点是A.(4,4) B.(-,-) C.(-2,-8) D.(3,-1)3. △ABC中,∠C=90°,BC=3,AB=5,则sinA的值为A. B. C. D.4. 在⼀副扑克牌(54张,其中王牌两张)中,任意抽取⼀张牌是“王牌”的概率是A. B. C. D.5. ⽤配⽅法解⽅程x2+x-1=0,配⽅后所得⽅程是A. B. C. D.6. 已知⼆次函数y=2+1,以下对其描述正确的是A.其图像的开⼝向下B.其图像的对称轴为直线x=-3C.其函数的最⼩值为1D.当x<3时,y随x的增⼤⽽增⼤7. 在半径为1的⊙O中,弦AB=1,则的长是A. B. C. D.8. 如图,在⊙O中,直径CD垂直弦AB,连接OA,CB,已知⊙O的半径为2,AB=2,则∠BCD等于A.20° B.30° C.60° D.70°9. 某校研究性学习⼩组测量学校旗杆AB的⾼度,如图在教学楼⼀楼C处测得旗杆顶部的仰⾓为60°,在教学楼三楼D处测得旗杆顶部的仰⾓为30°,旗杆底部与教学楼⼀楼在同⼀⽔平线上,已知CD=6⽶,则旗杆AB的⾼度为A.9⽶ B.9(1+)⽶ C.12⽶ D.18⽶10. 已知⼆次函数y=ax2+bx+c的图像如图所⽰,对称轴为直线x=1.有位学⽣写出了以下五个结论:(1)ac>0; (2)⽅程ax2+bx+c=0的两根是x1=-1,x2=3;(3)2a-b=0;(4)当x>1时,y随x的增⼤⽽减⼩;(5)3a+2b+c>0则以上结论中不正确的有A.1个 B.2个 C.3个 D.4个⼆、填空题11. cos30°的值为.12. 正⽅体的表⾯积S(cm2)与正⽅体的棱长a(cm)之间的函数关系式为.13. 如图,PA是⊙O的切线,A为切点,PO交⊙O于点B,PB=4,OB=6,则tan∠APO的值是.14. 圆⼼⾓为120°,弧长为12π的扇形半径为.15. 点A(2,y1)、B(3,y2)是⼆次函数y=x2-2x+1的图像上两点,则y1与y2的⼤⼩关系为y1 y2(填“>”、“<”、“=”).16. 某电动⾃⾏车⼚三⽉份的产量为1000辆,由于市场需求量不断增⼤,五⽉份的产量提⾼到1210辆,则该⼚四、五⽉份的⽉平均增长率为.17. 如图,⊙O与正⽅形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正⽅形ABCD的周长为44,且DE=6,则sin∠ODE=___ .18. 如图,直线y=x-2与x轴、y轴分别交于M、N两点,现有半径为1的动圆圆⼼位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN有公共点产⽣,当第⼀次出现公共点到最后⼀次出现公共点,这样⼀次过程中该动圆⼀共移动秒.三、计算题19. (本题满分5分)解⽅程:x2-6x-7=0.20. (本题满分5分)计算:2sin60°+cos60°-3tan30°.四、解答题21. (本题满分6分)如图,AC是△ABD的⾼,∠D=45°,∠B=60°,AD=10.求AB的长.22. (本题满分6分)已知关于x的⽅程x2-6x+m2-3m=0的⼀根为2.(1)求5m2-15m-100的值; (2)求⽅程的另⼀根.23. (本题满分6分)已知⼆次函数y=ax2+bx+1的图像经过(1,2),(2,4)两点.(1)求a、b值;(2)试判断该函数图像与x轴的交点情况,并说明理由.24. (本题满分6分)如图,△ABC是⊙O的内接三⾓形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.求证:(1)△ADC∽△ABE; (2)BE=CF.25. (本题满分6分)在⼀个⼝袋中有4个完全相同的⼩球,把它们分别标号为1,2,3,4.随机地摸取⼀个⼩球后放回,再随机地摸出⼀个⼩球,请⽤列举法(画树状图或列表)求下列事件的概率:(1)两次取得⼩球的标号相同;(2)两次取得⼩球的标号的和等于4.26. (本题满分8分)已知关于x的⼀元⼆次⽅程x2-2x+m=0有两个不相等的实数根.(1)求实数m的最⼤整数值;(2)在(1)的条件下,⽅程的实数根是x1,x2(x1>x2),求代数式x1+2x2的值.27. (本题满分9分)如图,折叠矩形ABCD的⼀边AD使点D落在BC边上的E处,已知折痕AF=10cm,且tan∠FEC=.(1)求矩形ABCD的⾯积;(2)利⽤尺规作图求作与四边形AEFD各边都相切的⊙O的圆⼼O(只须保留作图痕迹),并求出⊙O的半径.28. (本题满分9分)如图,在平⾯直⾓坐标系xOy中,⊙C经过点O,交x轴的正半轴于点B (2,0),P是上的⼀个动点,且∠OPB=30°.设P点坐标为(m,n).(1)当n=2,求m的值;(2)设图中阴影部分的⾯积为S,求S与n之间的函数关系式,并求S的最⼤值;(3)试探索动点P在运动过程中,是否存在整点P(m,n)(横、纵坐标都为整数的点叫整点)?若存在,请求出;若不存在,请说明理由.29. (本题满分10分)如图,⼆次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另⼀点A,顶点在第⼀象限.(1)求n的值和点A坐标;(2)已知⼀次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是⼆次函数图像的y轴右侧部分上的⼀个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。
(2019秋)江苏省昆山市九年级上期末考试数学试题(有答案)-(苏科版)-精编.doc
昆山市第一学期期末考试初三数学试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题卡范围内,答在本试卷上无效°2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。
一、选择题(每小题3分,共30分;把下列各题中睢一正确答案前面的字母填涂在答题卡相应的位置上.)1.sin60°是A.12B.32C.33D.32.下列二次根式:①12②0.5③23④27中,与3是同类二次根式的是A.①和③B.②和③C.①和④D.③和④3.关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是A.k>-1 B.k<1且k≠0 C.k≥-1且k≠0 D.k>-1且k≠0 4.已知1是关于x的一元二次方程(m—1)x2+x+1=0的一个根,则m的值是A.1 B.-1 C.0 D.无法确定5.已知抛物线y=ax2-2ax-a+1的顶点在x轴上,则a的值是A.-2 B.12C.-1 D.16.如图,已知∠POx=120°,OP=4,则点P的坐标是A.(2,4) B.(-2,4)C.(-2,23)D.(-23,2)7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数是A.35°B.45°C.55°D.75°8.如图,平面直角坐标系中,⊙O半径长为1,点P(a,0),⊙P的半径长为2,把⊙P向左平移,当⊙P与⊙O相切时,a的值为A.3 B.1 C.1,3 D.+1,±39.如图,抛物线y=ax2+bx+c交X轴于(-1,0)、(3,0)两点,则下列判断中,正确的是①图象的对称轴是直线x=1②当x>1时,y随x的增大而减小③一元二次方程ax2+bx+c=0的两个根是-1和3④当-1<x<3时,y<0A.①②B.①②④C.①②③D.④10.如图,直线y x 与x 轴、y 轴分别相交于A 、B 两点, 圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O .若将⊙P 沿x 轴向左移动,当⊙P 与该直线相交时,满足横坐标为整 数的点P 的个数是 A .3 B .4C .5D .6二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.有意义的x 的取值范围 ▲ ; 12= ▲ ; 13.二次函数y =x 2-2x -3的图象与x 轴的两个交点间的距离为 ▲ ; 14.将半径为3cm 的半圆围成一个圆锥的侧面,这个圆锥的底面 半径是 ▲ ;15.如图,AB 是⊙O 的弦,OC ⊥AB 于点D ,交⊙O 于点C ,若⊙O 的半径为5,CD =2,那么AB 的长为 ▲ ;16.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别 交PA 、PB 于点E 、F ,切点C 在EF 上,若PA 长为2,则△PEF 的周长是 ▲ ;17.已知m 是方程x 2-x -3=0的一个实数根,则代数式(m 2-m )(m -3m+1)的值为 ▲ ;18.如图,在Rt △AOB 中,OA =OB =,⊙O 的半径为1, 点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ(点P 为切点).则切线长PQ 的最小值为 ▲ .三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.) 19.计算(每题3分,共6分)(2) 20.解方程(每题3分,共6分) (1)x 2-2x -2=0(2)(x -2)2-3(x -2)=021.(本题6分)如图所示,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D .求∠BCD 的三个三角函数值.22.(本题6分)已知⊙O1经过A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.(1)在右边的平面直角坐标系中画出直线1,则直线l与⊙O1的交点坐标为▲;(2)若⊙O1上存在点P1使得△APD为等腰三角形,则这样的点P有▲个,试写出其中一个点P坐标为▲.23.(本题6分)如图,二次函数的图象与x轴相交于A(-3,0)、B(1,0)两点,与y轴相交于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)D点坐标(▲);(2)求一次函数的表达式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.(本题6分)高考英语听力测试期间,需要杜绝考点周围的噪音,如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点突发火灾,消防队必须立即赶往救火,已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明1.732)25.(本题6分)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)用尺规在AB边上作点O,并以点O为圆心作⊙O,使它过A、D两点.(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由.(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)26.(本题8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2019年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?27.(本题8分)如图,AB为⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C(1)求证:CD是⊙O的切线(2)若CB=2,CE=4,求AE的长28.(本题8分)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC、BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB、BC所在的直线相交,交点分别为E、F.(1)当PE⊥AB,PF⊥BC时,如图1,则PEPF的值为▲.(2)现将三角板绕点P逆时针旋转α(0°<α< 60°)角,如图2,求PEPF的值.(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,PEPF的值是否变化?证明你的结论.29.(本题10分)如图,抛物线y =49x 2-83x -12与x 轴交于A 、C 两点,与y 轴交于B 点. (1)△AOB 的外接圆的面积 ▲ ;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向 运动;同时,点Q 从点B 出发,以每秒1个单位沿射线 BA 方向运动,当点P 到达点C 处时,两点同时停止运 动,问当t 为何值时,以A 、P 、Q 为顶点的三角形与 △OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N .①是否存在这样的点M ,使得四边形OMNB 恰为平行四 边形?若存在,求出点M 的坐标;若不存在,请说明理 由.②当点肘运动到何处时,四边形CBNA 的面积最大?求 出此时点M 的坐标及四边形CBNA 面积的最大值.。
2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)
九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。
昆山市数学九年级上册期末试卷(带解析)
昆山市数学九年级上册期末试卷(带解析)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数 B .方差 C .中位数 D .极差 2.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π3.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2425.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 6.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数7.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .8.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+9.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y =23x +D .y =x 2+1x+1 10.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4 B .4.5C .5D .611.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠D B .∠C =∠E C .AD ABAE AC= D .AC BCAE DE= 12.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.cos60︒的值等于( ) A .12B .22C 3D 3 14.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论: ①∠BAE =30°;②射线FE 是∠AFC 的角平分线; ③CF =13CD ; ④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个15.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 18.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 19.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.20.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.21.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).22.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 23.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.24.抛物线()2322y x =+-的顶点坐标是______.25.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.26.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.27.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.28.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.29.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.30.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.三、解答题31.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .32.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.33.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QABS=,求出此时点Q 的坐标.34.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形? (2)当AB=3时,求□ABCD 的周长.35.如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.四、压轴题36.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.37.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.38.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.39.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.40.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.3.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P 点的运动轨迹是解答此题的关键.4.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得2b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.D解析:D【解析】【分析】 只要证明AC AB AE AD =,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差7.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.9.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y =12x 是正比例函数,不符合题意; B. y =2x 2-1是二次函数,符合题意;C. yD. y =x 2+1x+1不是二次函数,不符合题意. 故选:B .【点睛】 本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.10.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.11.D解析:D【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;C 、添加AD AB AE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意; D 、添加AC BC AE DE =不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D .【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.12.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值. 14.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩,∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴=5AE AF,=5BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF ⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x 2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0,x 1=2,x 2=4,当x =2时,2+3<6,不符合三角形的三边关系定理,所以x =2舍去,当x =4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.17.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,,∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 18.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴13=,CQ=AC-AQ=9,∴15=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.19.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.20.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.21.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.22.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm .故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.23.【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB 是 解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.24.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .25.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=,3∴AB =【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.26.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==,2设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.27..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】 平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.28.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.29.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 30.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题31.(1)见解析;(2)12 5【解析】【分析】(1)连接OD,如图,先证明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根据切线的判定定理得到结论;(2)证明△ABD∽△ADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接OD∵AD平分∠BAC∴∠BAD=∠DAC∵OA=OD∴∠BAD=∠ODA∴∠ODA=∠DAC∴OD∥AE∴∠ODE+∠E=180°∵DE⊥AE∴∠E=90°∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE∵点D在⊙O上∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.32.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.33.(1)223y x x =--;(2)(1,2)P -;(3)1(1Q - ,2(1Q + ,3(1,4)Q -【解析】。
2019年苏州市九年级上数学期末综合试题(5)(有答案)
第一学期初三数学期末考试综合试卷(5)试卷分值130分一、选择题:(本大题共10小题,每小题3分,共30分)1.(2015•西宁)下列说法正确的是………………………………………………………( )A .了解飞行员视力的达标率应使用抽样调查;B .一组数据3,6,6,7,9的中位数是6;C .从2000名学生中选200名学生进行抽样调查,样本容量为2000;D .掷一枚质地均匀的硬币,正面朝上是必然事件;2.方程24x x =的根是………………………………………………………………( )A .4;B .-4;C .0或4;D .0或-4;3.(2016•湘潭)抛物线()2231y x =-+的顶点坐标是……………………………( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)4. 如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为………………( ) A .30°; B .45° ;C .60°; D .90°;5.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则cosA 等于……………………( )A .43;B .34;C .45;D .35; 6.若二次函数()22y 1332a x x a a =-++-+的图象经过原点,则a 的值必为……( )A .1或2 ;B .0 ;C .1;D .2;7.(2015•南通)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB=6,AD=5,则AE 的长为………………………………………………………………( )A .2.5;B .2.8;C .3;D .3.2;8.(2015•泰安)如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是……………………………( )A .20海里;B .40海里; C.3海里; D.3海里;第5题图第8题图第9题图第7题图9.(2015•日照)如图,等腰直角△ABC 中,AB=AC=8,以AB 为直径的半圆O 交斜边BC 于D ,则阴影部分面积为(结果保留π)……………………………………………( )A .24-4π;B .32-4π;C .32-8π;D .16;10.(2015•遂宁)二次函数2y ax bx c =++(a ≠0)的图象如图所示,下列结论:①2a+b >0;②abc <0;③240b ac ->;④a+b+c <0;⑤4a-2b+c <0,其中正确的个数是……( )A .2;B .3;C .4;D .5;二、填空题:(本大题共8小题,每小题3分,共24分)11. △ABC 中,∠A 、∠B 都是锐角,若cosB=12,则∠C= . 12.一组数据2,5,1,6,2,,3中唯一的众数是x ,这组数据的平均数和中位数的差是 .13.(2015•娄底)从-1、00.3、π、13这六个数中任意抽取一个,抽取到无理数的概率为 .14.将抛物线()231y x =+-先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为 .15. 如图,四边形ABCD 是⊙O 的内接四边形,若∠C=130°,则∠BOD= °.16.(2015•佛山)如图,在Rt △ABC 中,AB=BC ,∠B=90°,AC=BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上).则此正方形的面积是 .17.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:的值为 .18. 如图所示,已知A 点从(1,0)点出发,以每秒1个单位长的速度沿着轴的正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且∠AOC=60°,又以P (0,4)为圆心,PC 为半径的圆恰好与OA 所在的直线相切,则t= .三、解答题:(本大题共10大题,满分76分)19.(本题满分4分) 第18题第15题第16题图 第10题图已知234x y z ==且6x y z +-=,求x ,y ,z 的值.20. (本题满分15分)(1)计算:)()20201212sin 3013π-⎛⎫-︒--+- ⎪⎝⎭;(2)解不等式组:()3241213x x x x --≥⎧⎪⎨+>-⎪⎩(3)先化简,再求值:22151939x x x x x x --⎛⎫÷- ⎪---⎝⎭,其中3tan301x =︒+.21. (本题满分6分)已知关于的方程22210x mx m ++-=(1)试说明无论m 取何值时,方程总有两个不相等的实数根;(2)若方程有一个根为3,求22122016m m ++的值.22. (本题满分5分)(2015•黔西南州)为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.23.(本题满分8分)如图,抛物线y=a2-5+4a与轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.⑴求a的值和该抛物线顶点P的坐标.⑵求 PAB的面积;⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.24.(本题满分6分)(2016•达州)如图,在一条笔直的东西向海岸线l上有一长为1.5m的码头MN和灯塔C,灯塔C距码头的东端N有20m.一轮船以36m/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12m.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.≈1.4 1.7)25.(本题满分7分)(2015•崇左)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?26.(本题满分9分)为满足市场需求,某超市在五月初五“端午节”临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.(本题满分9分)(2016•桂林)如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.28.(本题满分9分)(2016•安顺)如图,抛物线经过A (-1,0),B (5,0),C 50,2⎛⎫-⎪⎝⎭三点. (1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标; (3)点M 为轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.参考答案一、选择题:1.B ;2.C ;3.A ;4.C ;5.D ;6.D ;7.B ;8.D ;9.A ;10.B ;二、填空题:11.60°;12.1;13.13;14. ()241y x =++;15.100;16.25;17.-27;18.1; 三、解答题: 19.(1)12x =,18y =,24z =.20.(1)-10;(2)1x ≤;(3)11x =- 21.(1) 4∆=;(2)2000;22.(1)200;(2)略;(3)12; 23.(1)1a =,59,24P ⎛⎫- ⎪⎝⎭;(2)278;(3)23124y x ⎛⎫=+- ⎪⎝⎭; 24. 解:(1)延长AB 交海岸线l 于点D ,过点B 作BE ⊥海岸线l 于点E ,过点A 作AF ⊥l 于F ,如图所示. ∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36×4060=24, 备用图∴AB=2BC ,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t=121363=小时=20分钟, ∴轮船照此速度与航向航向,上午11:00到达海岸线.(2)∵BD=BC ,BE ⊥CD ,∴DE=EC ,在RT △BEC 中,∵BC=12,∠BCE=30°,∴BE=6,EC=10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.25.(1)略;(2)48㎝;(3)2400;26. 解:(1)由题意得,y=700-20(-45)=-20+1600;(2)P=(-40)(-20+1600)=220240064000x x -+- =()220608000x =--+, ∵≥45,a=-20<0,∴当=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得()220608000x =--+ =6000,解得1x =50,2x =70.∵抛物线P=-20(-60)2+8000的开口向下,∴当50≤≤70时,每天销售粽子的利润不低于6000元的利润.又∵≤58,∴50≤≤58.∵在y=-20+1600中,=-20<0,∴y 随的增大而减小,∴当=58时,y 最小值=-20×58+1600=440,即超市每天至少销售粽子440盒.27. (1)证明:如图1,连结CO .∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,222102426+=,∴△ACD 是直角三角形,∠C=90°.∵AD 为⊙O 的直径,∴AO=OD ,OC 为Rt △ACD 斜边上的中线,∴OC=12AD=r ,∴点C 在圆O 上;(2)解:如图2,延长BC 、DE 交于点F ,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°, 又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB . 在Rt △ABC 中,tan ∠ACB=6384=,∴tan ∠CDE=tan ∠ACB=34; (3)解:如图3,连结AE ,作OG ⊥ED 于点G ,则OG ∥AE ,且OG=12AE . 易证△ABC ∽△CFD ,∴AB AC CF CD =,即61024CF =,∴CF=725,∴BF=BC+CF=72112855+= . ∵∠B=∠F=∠AED=90°,∴四边形ABFE 是矩形,∴AE=BF=1125,∴OG=12AE=565, 即圆心O 到弦ED 的距离为565. 28.(1)215y 222x x =--; (2)P (2,32-);(3)N 54,2⎛⎫-⎪⎝⎭,522⎛⎫+ ⎪⎝⎭,522⎛⎫ ⎪⎝⎭;。
(苏科版)江苏省昆山市2019届九年级上期末考试数学测试题(有答案)
昆山市2018~2019学年第一学期期末考试测试初三数学试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题卡范围内,答在本试卷上无效°2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。
一、选择题(每小题3分,共30分;把下列各题中睢一正确答案前面的字母填涂在答题卡相应的位置上.)1.sin60°是A.12B.32C.33D.32.下列二次根式:①12②0.5③23④27中,与3是同类二次根式的是A.①和③B.②和③C.①和④D.③和④3.关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是A.k>-1 B.k<1且k≠0 C.k≥-1且k≠0 D.k>-1且k≠0 4.已知1是关于x的一元二次方程(m—1)x2+x+1=0的一个根,则m的值是A.1 B.-1 C.0 D.无法确定5.已知抛物线y=ax2-2ax-a+1的顶点在x轴上,则a的值是A.-2 B.12C.-1 D.16.如图,已知∠POx=120°,OP=4,则点P的坐标是A.(2,4) B.(-2,4)C.(-2,23)D.(-23,2)7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数是A.35°B.45°C.55°D.75°8.如图,平面直角坐标系中,⊙O半径长为1,点P(a,0),⊙P的半径长为2,把⊙P向左平移,当⊙P与⊙O相切时,a的值为A.3 B.1 C.1,3 D.+1,±39.如图,抛物线y=ax2+bx+c交X轴于(-1,0)、(3,0)两点,则下列判断中,正确的是①图象的对称轴是直线x=1②当x>1时,y随x的增大而减小③一元二次方程ax2+bx+c=0的两个根是-1和3④当-1<x<3时,y<0A.①②B.①②④C.①②③D.④10.如图,直线y x 与x 轴、y 轴分别相交于A 、B 两点, 圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O .若将⊙P沿x 轴向左移动,当⊙P 与该直线相交时,满足横坐标为整数的点P 的个数是A .3B .4C .5D .6二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.有意义的x 的取值范围 ;12= ; 13.二次函数y =x 2-2x -3的图象与x 轴的两个交点间的距离为 ;14.将半径为3cm 的半圆围成一个圆锥的侧面,这个圆锥的底面半径是 ;15.如图,AB 是⊙O 的弦,OC ⊥AB 于点D ,交⊙O 于点C ,若⊙O的半径为5,CD =2,那么AB 的长为 ;16.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在EF 上,若PA 长为2,则△PEF的周长是 ;17.已知m 是方程x 2-x -3=0的一个实数根,则代数式(m 2-m )(m -3m+1)的值为 ;18.如图,在Rt △AOB 中,OA =OB =,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ(点P为切点).则切线长PQ 的最小值为 .三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.分)(2) 20.解方程(每题3分,共6分)(1)x 2-2x -2=0(2)(x -2)2-3(x -2)=021.(本题6分)如图所示,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D .求∠BCD 的三个三角函数值.22.(本题6分)已知⊙O1经过A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.(1)在右边的平面直角坐标系中画出直线1,则直线l与⊙O1的交点坐标为;(2)若⊙O1上存在点P1使得△APD为等腰三角形,则这样的点P有个,试写出其中一个点P坐标为.23.(本题6分)如图,二次函数的图象与x轴相交于A(-3,0)、B(1,0)两点,与y轴相交于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)D点坐标();(2)求一次函数的表达式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.(本题6分)高考英语听力测试期间,需要杜绝考点周围的噪音,如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点突发火灾,消防队必须立即赶往救火,已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明1.732)25.(本题6分)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)用尺规在AB边上作点O,并以点O为圆心作⊙O,使它过A、D两点.(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由.(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)26.(本题8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?27.(本题8分)如图,AB为⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C(1)求证:CD是⊙O的切线(2)若CB=2,CE=4,求AE的长28.(本题8分)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC、BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB、BC所在的直线相交,交点分别为E 、F .(1)当PE ⊥AB ,PF ⊥BC 时,如图1,则PE PF的值为 . (2)现将三角板绕点P 逆时针旋转α(0°<α< 60°)角,如图2,求PE PF的值. (3)在(2)的基础上继续旋转,当60°<α<90°,且使AP :PC =1:2时,如图3,PE PF 的值是否变化?证明你的结论.29.(本题10分)如图,抛物线y =49x 2-83x -12与x 轴交于A 、C 两点,与y 轴交于B 点. (1)△AOB 的外接圆的面积 ;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向 运动;同时,点Q 从点B 出发,以每秒1个单位沿射线BA 方向运动,当点P 到达点C 处时,两点同时停止运动,问当t 为何值时,以A 、P 、Q 为顶点的三角形与△OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N .①是否存在这样的点M ,使得四边形OMNB 恰为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.②当点肘运动到何处时,四边形CBNA 的面积最大?求出此时点M 的坐标及四边形CBNA 面积的最大值.。
2019年苏州市区九年级上数学期末考试试题(有答案)苏科版
苏州市区学校第二学期期终考试 试卷九 年级 数学本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟.注意事项1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上.1. 数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 (▲)A .-3+5 B. -3-5 C. |-3+5| D. |-3-5|2. 下列计算正确的是 (▲)A .330--=B .02339+=C .331÷-=-D .()1331-⨯-=-3.下列运算正确的是 (▲)A .4+2=6B .2•3=6C .(2)3=6D .2﹣y 2=(﹣y )24. 我市5月的某一周七天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是 (▲)A .23,24B .24,22C .24,24D .22,245.已知M =a ﹣1,N =a 2﹣a (a 为任意实数),则M 、N 的大小关系为 (▲)A .M <NB .M =NC .M >ND .不能确定6. 在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得函数图象的解析式为(▲)A .222y x =+B .222y x =-C .22(2)y x =-D .22(2)y x =+ 7. 由二次函数22(3)1y x =-+,可知 (▲)A.其图像的开口向下B.其图像的对称轴为直线3x =-C.其最小值为1D.当3x <时,y 随x 的增大而增大8. 下列命题中,正确的是 (▲)A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .平分弦的直径垂直于这条弦D .与某圆一条半径垂直的直线是该圆的切线P9. 如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧AMB上不与点A 、点B 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是 (▲)A .15°B .20°C .25°D .30°10. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为 (▲)A .-3B .1C .5D .8第18题.时,分式,已知1g =1000mg ,那么0.000037mg 可以2b b a ⎪⎝⎭▲ .14.在一个暗箱中,只装有a 个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a = ▲ .15. 一圆锥的侧面积为15π,底面半径为3,则该圆锥的母线长为 ▲ .16. 已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= ▲ . 17. 已知抛物线y =2-2m -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为 ▲ 。
【期末复习】2019年 九年级数学上册 期末复习 概率初步 知识点+易错题精选(含答案)
2019年九年级数学上册期末复习概率初步知识点+易错题精选概率的概念某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.事件类型:①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.②不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为(1)列表法求概率当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
(2)树状图法求概率当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
利用频率估计概率①利用频率估计概率:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
概率初步 易错题精选一、选择题1.下列成语中描述的事件必然发生的是( )A .水中捞月B .瓮中捉鳖C .守株待兔D .拔苗助长2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C.至少有2个球是黑球 D .至少有2个球是白球3.如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向指针右边的扇形),则指针指向红色的概率是( )A .41B .83C .85D .214.如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )5.市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )A .23B .31C .41 D .1 6.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图所示),从中任意一张是数字3的概率是( )A .61B .31C .21D .32 7.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A .13 B .16 C .518 D .56 8.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )A .23B .15C .0.4D .359.向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为( )A 1-B .16C .1-.1510.一个质地均匀的正四面体的四个面上依次标有数字-2、0、1、2,连续抛掷两次,朝下一面的数字分别是a 、b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0)、B(2,0)、C(0,2)为顶点的三角形内(包含边界)的概率是( )A .B .C .D .11.甲、乙、丙三位同学参加一次节日活动,很幸运的是,他们都得到了一件精美的礼物。
江苏省昆山、太仓市2019-2020学年九年级上学期期末数学试题(word无答案)
江苏省昆山、太仓市2019-2020学年九年级上学期期末数学试题(word 无答案)一、单选题(★) 1 . 方程 的解是()A .B .C .D .(★) 2 . 数据1,3,3,4,5的众数和中位数分别为() A .3和3 B .3和3.5 C .4和4 D .5和3.5(★) 3 . 己知的半径为 ,点 是线段 的中点,当 时,点 与 的位置关系是() A .点在外 B .点在上 C .点在内 D .不能确定(★) 4 . 在Rt△ABC 中,∠C = 90°,AC = 9,BC = 12,则其外接圆的半径为( )A .15B .7.5C .6D .3(★) 5 . 在平面直角坐标系中,二次函数与坐标轴交点个数() A .3个 B .2个 C .1个 D .0个(★) 6 . 下列说法:①三点确定一个圆;②任何三角形有且只有一个内切圆;③相等的圆心角所对的弧相等;④正多边形一定是中心对称图形,其中真命题有() A .1个 B .2个 C .3个 D .4个(★) 7 . 将抛物线 先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A.B.C.D.(★) 8 . 在Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.15B.12C.13D.14(★★) 9 . 如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )A.12.5°B.15°C.20°D.22.5°(★★★★) 10 . 如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是()A.B.C.D.二、填空题(★) 11 . 已知为锐角,且,则度数等于______度.(★★) 12 . 抛物线的顶点坐标是 ______________ .(★) 13 . 数据8,9,10,11,12的方差等于______.(★) 14 . 圆锥的母线长为,底面半径为,那么它的侧面展开图的圆心角是______度. (★) 15 . 已知二次函数的自变量与函数的部分对应值列表如下:…-3-2-1……-3-4-3…则关于 的方程 的解是______.(★★) 16 . 如图示,半圆的直径, ,是半圆上的三等分点,点 是的中点,则阴影部分面积等于______.(★★) 17 . 如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan∠AOD= ________ .(★★★★) 18 . 如图示,在 中,,,,点 在内部,且 ,连接 ,则 的最小值等于______.三、解答题(★) 19 . 计算(1)(2)(★★) 20 . 解方程(2x+1) 2=3(2x+1)(★) 21 . 如图示,在中, , , ,求 的面积.(★) 22 . 快乐的寒假即将来临小明、小丽和小芳三名同学打算各自随机选择到 , 两个书店做志愿者服务活动.(1)求小明、小丽2名同学选择不同书店服务的概率;(请用列表法或树状图求解)(2)求三名同学在同一书店参加志愿服务活动的概率.(请用列表法或树状图求解)(★) 23 . 根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?(★) 24 . 己知函数(是常数)(1)当时,该函数图像与直线有几个公共点?请说明理由;(2)若函数图像与轴只有一公共点,求的值.(★★★★) 25 . 如图,利用的墙角修建一个梯形的储料场,其中,并使,新建墙上预留一长为1米的门.如果新建墙总长为15米,那么怎样修建才能使储料场的面积最大?最大面积多少平方米?(★★★★) 26 . (1)如图①,点,,在上,点在外,比较与的大小,并说明理由;(2)如图②,点,,在上,点在内,比较与的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点,,点在轴上,试求当度数最大时点的坐标.(★★★★) 27 . 如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.(★★★★) 28 . 如图示,在平面直角坐标系中,二次函数()交轴于,,在轴上有一点,连接.(1)求二次函数的表达式;(2)点是第二象限内的点抛物线上一动点①求面积最大值并写出此时点的坐标;②若,求此时点坐标;(3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转至,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)。
九年级上册昆山数学期末试卷测试卷(解析版)
九年级上册昆山数学期末试卷测试卷(解析版)一、选择题1.一组数据0、-1、3、2、1的极差是( ) A .4 B .3 C .2 D .1 2.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-23.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2424.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .345.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 26.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .312y y y >=C .123y y y >>D .123y y y =>7.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个8.cos60︒的值等于( ) A .12B .22C 3D 3 9.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣110.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 2>y 1>y 311.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°12.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>二、填空题13.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.14.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 15.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;16.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.17.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.18.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.19.如图,O 半径为2,正方形ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.20.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .21.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.22.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.23.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____. 24.已知234x y z x z y+===,则_______ 三、解答题25.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)26.二次函数y =ax 2+bx +c 中的x ,y 满足下表 x … -1 0 1 3 … y…31…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质: (1) ; (2) ; (3) .27.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.28.如图,四边形OABC 为矩形,OA =4,OC=5,正比例函数y=2x 的图像交AB 于点D ,连接DC ,动点Q 从D 点出发沿DC 向终点C 运动,动点P 从C 点出发沿CO 向终点O 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s .(1)求点D 的坐标;(2)若PQ ∥OD ,求此时t 的值? (3)是否存在时刻某个t ,使S △DOP =52S △PCQ ?若存在,请求出t 的值,若不存在,请说明理由;(4)当t 为何值时,△DPQ 是以DQ 为腰的等腰三角形?29.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.30.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形? (2)当AB=3时,求□ABCD 的周长.31.如图①,抛物线y =x 2﹣(a +1)x +a 与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C .已知△ABC 的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P ,使得∠POB =∠CBO ,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图②,M 是抛物线上一点,N 是射线CA 上的一点,且M 、N 两点均在第二象限内,A 、N 是位于直线BM 同侧的不同两点.若点M 到x 轴的距离为d ,△MNB 的面积为2d ,且∠MAN =∠ANB ,求点N 的坐标.32.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D是第二象限内的点抛物线上一动点①求ADE∆面积最大值并写出此时点D的坐标;②若1tan3AED∠=,求此时点D坐标;(3)连接AC,点P是线段CA上的动点.连接OP,把线段PO绕着点P顺时针旋转90︒至PQ,点Q是点O的对应点.当动点P从点C运动到点A,则动点Q所经过的路径长等于______(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221m x m∵10a =-<,抛物线开口向下,∴当x m < 时,y 的值随x 值的增大而增大, ∵当2x <-时,y 的值随x 值的增大而增大, ∴2m ≥- , 故选:C . 【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.3.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=A(0,2)、B(a ,a +2)= 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =-(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.4.A解析:A 【解析】 【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解. 【详解】 如图,∵∠C =90°,AC =8,BC =6,∴AB =222268BC AC +=+=10, ∴sin B =84105AC AB ==. 故选:A . 【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.5.D解析:D 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】如图,设函数y =(x−a )(x−b ), 当y =0时, x =a 或x =b , 当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,由抛物线的图象可知:x 1<a <b <x 2 故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.6.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.7.C解析:C 【解析】 【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即 BC AC BCAC BC-=解得AC ,故④正确. 【详解】①BC 是⊙A 的内接正十边形的一边, 因为AB =AC ,∠A =36°, 所以∠ABC =∠C =72°,又因为BD 平分∠ABC 交AC 于点D , ∴∠ABD =∠CBD =12∠ABC =36°=∠A , ∴AD =BD ,∠BDC =∠ABD +∠A =72°=∠C , ∴BC =BD ,∴BC =BD =AD ,正确; 又∵△ABD 中,AD+BD >AB ∴2AD >AB, 故③错误.②根据两角对应相等的两个三角形相似易证△ABC ∽△BCD ,∴BC CDAB BC =,又AB =AC , 故②正确,根据AD =BD =BC ,即 BC AC BCAC BC-=,解得AC ,故④正确, 故选C . 【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质.8.A解析:A 【解析】 【分析】根据特殊角的三角函数值解题即可. 【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.9.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.10.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.11.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.D解析:D【解析】 【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 二、填空题13.y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y =2(x -2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.14.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 15.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.16.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.17.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49, 故答案为:49. 【点睛】 此题考查几何概率,解题关键在于掌握运算法则.18.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,22CM r =∴NC=ND -CD=4-2r根据勾股定理可得:NC 2+PN 2=CP 2即()222422r r -+= 解得:124223,4223r r -+==(此时DM >OD ,点M 不在射线OB 上,故舍去)故答案为:4223-.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.19.【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取解析:51-【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取AB 的中点G ,连接GF ,CG ,∵ABCD 是圆内接正方形,2OA OD ==∴90AOD ∠=︒,∴()222222AD OA OD =+==, ∵AF ⊥BE ,∴90AFB ∠=︒,∴112GF AB ==,2222CG BG BC=+=+=,125当点C、F、G在同一直线上时,CF有最小值,如下图:-,最小值是:51-.故答案为:51【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF的最小值是解决本题的关键.20.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.21.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.22.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.23.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:14【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8, 所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数. 24.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =,∴2423x z k ky k++==;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k来表示x、y、z.三、解答题25.(1)2mn;(2)见解析.【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则AB ACAC AP=,即m nn AP=,∴AP=2mn.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.26.(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【解析】【分析】根据表格中数据,可得抛物线与x轴交点坐标,与y轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【点睛】本题考查二次函数性质,数形结合思想解题是本题的解题关键.27.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.(2)由图像可知,当12y y >时,2x <-或3x >.(3)令0x =,则3y =,∴()0,3C .∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==.设点(),3E a a -,则()3,6D a a +-,∴()()263233a a a -=-++++,∴11a =,26a =-(舍去). ∴()4,5D -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.28.(1)D (2,4);(2)52t =;(3)存在,t 的值为2 ;(4)当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形 【解析】【分析】(1)由题意得出点D 的纵坐标为4,求出y=2x 中y=4时x 的值即可得;(2)由PQ ∥OD 证△CPQ ∽△COD ,得CQ CP CD CO=,即555t t -=,解之可得; (3)分别过点Q 、D 作QE ⊥OC ,DF ⊥OC 交OC 与点E 、F ,对于直线y=2x ,令y=4求出x 的值,确定出D 坐标,进而求出BD ,BC 的长,利用勾股定理求出CD 的长,利用两对角相等的三角形相似得到三角形CQE 与三角形CDF 相似,由相似得比例表示出QE ,由底PC ,高QE 表示出三角形PQC 面积,再表示出三角形ODP 面积,依据S △DOP =52S △PCQ 列出关于t的方程,解之可得; (4)由三角形CQE 与三角形CDF 相似,利用相似得比例表示出CE ,PE ,进而利用勾股定理表示出PQ 2,DP 2,以及DQ ,分两种情况考虑:①当DQ=DP ;②当DQ=PQ ,求出t 的值即可.【详解】解:(1)∵OA =4∴把4y =代入2y x =得2x =∴D (2,4).(2)在矩形OABC 中,OA =4,OC=5∴AB =OC =5,BC =OA =4∴BD =3,DC =5由题意知:DQ =PC =t∴OP =CQ =5-t∵PQ ∥OD∴CQ CP CD CO = ∴555t t -= ∴52t = . (3)分别过点Q 、D 作QE ⊥OC , DF ⊥OC 交OC 与点E 、F则DF =OA =4∴DF ∥QE∴△CQE ∽△CDF∴QE CQ DF CD = ∴545QE t -=∴455t QE -=() ∵ S △DOP =52S △PCQ ∴151********t t =t ()()--⨯⨯⨯ ∴12t =,25t =当t =5时,点P 与点O 重合,不构成三角形,应舍去∴t 的值为2.(4)∵△CQE ∽△CDF∴QE CQ DF CD= ∴4(5)5QE t =- 38(5)355PE t t t =--=- ∴222216(5)816(3)16252555t PQ t t t -=+-=-+ 2224(3)DP t =+-2DQ t =①当DQ PQ =时,221616255t t t =-+, 解之得:1225511t ,t == ②当DQ DP =时,2224(3)t t +-=解之得:256t = 答:当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形. 【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.29.两次摸到的球都是红球的概率为19. 【解析】【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=19.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解. 30.(1)32)14【解析】【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;(2)由AB=3知方程的一个解为3,代入方程求出m的值,从而还原方程,再利用根与系数的关系得出AB+AD的值,从而得出答案.【详解】解:(1)若四边形ABCD是菱形,则AB=AD,所以方程有两个相等的实数根,则△=(-m)2-4×1×12=0,解得m=43±检验:当m=43,x=23符合题意;当m=-43,x=3-,不符合题意,故舍去.综上所述,当m为3,四边形ABCD是菱形.(2)∵AB=3,∴9-3m+12=0,解得m=7,∴方程为x2-7x+12=0,则AB+AD=7,∴平行四边形ABCD的周长为2(AB+AD)=14.【点睛】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.31.(1)y=x2+2x﹣3;(2)存在,点P坐标为113331322⎛+⎝⎭或53715337-+-⎝⎭;(3)点N的坐标为(﹣4,1)【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 坐标为1133313,22⎛⎫++ ⎪ ⎪⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x ,则2323y x y x x =-⎧⎨=+-⎩∴115372153372y x ⎧-+=⎪⎪⎨-⎪=⎪⎩,225372153372y x ⎧--=⎪⎪⎨+⎪=⎪⎩,∴点P 坐标为53715337,⎛⎫-+- ⎪ ⎪⎝⎭, 综上可得,点P 坐标为1133313,⎛⎫++ ⎪ ⎪⎝⎭或53715337,⎛⎫-+- ⎪ ⎪⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ;∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d ,∴S △AMB =S △MNB ,∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM ,∴四边形AEFN 是矩形,∴AN ∥BM ,∵∠MAN =∠ANB ,∴GN =GA ,∵AN ∥BM ,∴∠MAN =∠AMB ,∠ANB =∠NBM ,∴∠AMB =∠NBM ,∴GB =GM ,∴GN +GB =GA +GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ),∴∠ABM =∠NMB ,∵OA =OC =3,∠AOC =90°,∴∠OAC =∠OCA =45°,又∵AN ∥BM ,∴∠ABM =∠OAC =45°,∴∠NMB =45°,∴∠ABM +∠NMB =90°,∴∠BHM =90°,∴M 、N 、H 三点的横坐标相同,且BH =MH ,∵M 是抛物线上一点,∴可设点M 的坐标为(t ,t 2+2t ﹣3),∴1﹣t =t 2+2t ﹣3,∴t 1=﹣4,t 2=1(舍去),∴点N 的横坐标为﹣4,可设直线AC :y =kx ﹣3,则0=﹣3k ﹣3,∴k =﹣1,∴y =﹣x ﹣3,当x =﹣4时,y =﹣(﹣4)﹣3=1,∴点N 的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.32.(1)233642y x x =--+;(2)①503,点D 坐标为220,33⎛⎫- ⎪⎝⎭;②1533D ⎛⎫-+ ⎪ ⎪⎝⎭;(3)【解析】【分析】(1)根据点坐标代入解析式即可得解;(2)①由A 、E 两点坐标得出直线AE 解析式,设点D 坐标为()22,336t t t --+,过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --,然后构建ADE ∆面积与t 的二次函数,即可得出ADE ∆面积最大值和点D 的坐标;②过点M 作MN AE ⊥,在AME ∆中,由1tan 2MAE ∠=,1tan 3MEA ∠=,AE =M 的坐标,进而得出直线ME 的解析式,联立直线ME 和二次函数,即可得出此时点D 的坐标;(3)根据题意,当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),动点Q 所经过的路径是直线QQ′,求出两点之间的距离即可得解.【详解】(1)依题意得:016460426a b a b =-+⎧⎨=++⎩,解得3432a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴233642y x x =--+ (2)①∵()4,0A -,()0,2E -∴设直线AE 为y kx b =+将A 、E 代入,得042k b b =-+⎧⎨-=⎩∴122k b ⎧=-⎪⎨⎪=-⎩ ∴直线1:22AE y x =-- 设点D 坐标为()22,336t t t --+,其中20t -<<过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --∴2328DF t t =--+。
昆山市数学九年级上册期末试卷(含答案)
昆山市数学九年级上册期末试卷(含答案)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人2.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断3.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°4.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 5.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定6.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断7.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 8.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π9.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°10.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 11.二次函数y =x 2﹣2x +1与x 轴的交点个数是( )A .0B .1C .2D .312.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14C .16D .1313.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上 B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内14.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =30°;②射线FE 是∠AFC 的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A.1 个B.2 个C.3 个D.4 个15.如图,AB为O的切线,切点为A,连接AO BO、,BO与O交于点C,延长BO与O交于点D,连接AD,若36ABO∠=,则ADC∠的度数为( )A.54B.36C.32D.27二、填空题16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.18.如图,在Rt△ABC中,BC AC⊥,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.19.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.20.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.21.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).22.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.23.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .24.一组数据3,2,1,4,x 的极差为5,则x 为______.25.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.28.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.30.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43,求FH 的长.32.如图,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在点A 处用高1.5米的测角仪测得古树顶端点H 的仰角HDE ∠为45︒,此时教学楼顶端点G 恰好在视线DH 上,再向前走7米到达点B 处,又测得教学楼顶端点G 的仰角GEF ∠为60︒,点A 、B 、C 点在同一水平线上.(1)计算古树BH 的高度;(2)计算教学楼CG 的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7≈). 33.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由. 34.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 3为半径画⊙B ,若直线3与⊙B 的“最美三3B 的横坐标B x 的取值范围.35.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次 第二次 第三次 第四次 甲 9 8 8 7 乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.四、压轴题36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度.37.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).38. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F ,(1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离.故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..3.C解析:C 【解析】 【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解. 【详解】解:∵OA=OB ,∠ABO=35°, ∴∠BAO=∠ABO=35°, ∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°. 故选:C . 【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.4.D解析:D 【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm ,∴直线和圆相切,故选B .【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.6.A解析:A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH .故选:A .【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.7.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴12ABC AOC4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 8.B解析:B【解析】【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.9.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵DF=CF,BE=CE,∴12DH DFHB AB==,12BG BEDG AD==,∴13DH BGBD BD==,∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6 S△AGH,∴S△AGH:ABCDS平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12EFBD=,∴14EFCBCDDSS=,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.11.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.12.A解析:A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE ∥BC , ∴△ADE ∽△ABC ,∵AD :DB=1:2,∴AD :AB=1:3,∴S △ADE :S △ABC =1:9.故选:A .【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.13.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.14.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴AE AF BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAEB AGEAE AE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt △EFG和Rt△EFC中,==GE CEEF EF⎧⎨⎩,Rt△EFG≌Rt△EFC(HL),∴GF=CF ,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.15.D解析:D【解析】【分析】由切线性质得到AOB∠,再由等腰三角形性质得到OAD ODA∠=∠,然后用三角形外角性质得出ADC∠【详解】切线性质得到90BAO∠=903654AOB∴∠=-=OD OA=OAD ODA∠=∠∴AOB OAD ODA∠=∠+∠27ADC ADO∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠E DC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x 2﹣2x+1=1,解得:x 1=0,x 2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.20.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.21.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.22.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB=90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即222272OA AB ===∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.23.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π.24.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x 是最大值,则x-(1)=5,所以x=6;当x 是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x 可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x 是最大值,则x-(1)=5,所以x=6;当x 是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.25.25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案.【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可【详解】设每次降价的百分比为x,280(1)45x,解得:x1=0.25=25%,x2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x)2=后量,即可解答此类问题.26.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.27.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.28.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<3.故答案为﹣1<x<3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点. 29.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值. 【详解】∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 30.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x+-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a﹣2,解得a=﹣1,∴平移后函数的解析式为()212y x+=--,故答案为()212y x+=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
昆山市九年级上册期末测试数学试题(含答案)
昆山市九年级上册期末测试数学试题(含答案)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是()A.5人B.6人C.4人D.8人2.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-3 3.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm4.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60°B.65°C.70°D.80°5.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A.B.C.D.6.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐7.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定8.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16 B .13 C .12 D .569.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3410.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .511.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 12.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角13.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上 B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内14.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°15.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A .(6,0)B .(6,3)C .(6,5)D .(4,2)二、填空题16.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.17.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 18.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 21.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .22.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.23.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.24.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接CP,以 CP 为边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.25.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.26.如图,点G为△ABC的重心,GE∥AC,若DE=2,则DC=_____.27.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.28.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…29.若a bb=23,则ab的值为________.30.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题31.抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).32.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?33.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.34.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?35.如图,⊙O 的直径为AB ,点C 在⊙O 上,点D ,E 分别在AB ,AC 的延长线上,DE ⊥AE ,垂足为E ,∠A =∠CDE . (1)求证:CD 是⊙O 的切线; (2)若AB =4,BD =3,求CD 的长.四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.38.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上..方的部分围成的图形中..........(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.3.B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.5.C【解析】 【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8), 故选:C. 【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.6.B解析:B 【解析】 【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键7.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.8.B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,2共2个,∴卡片上的数为无理数的概率是21 =63.故选B.【点睛】本题考查了无理数的定义及概率的计算.9.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.10.B解析:B【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.11.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.C解析:C【解析】试题解析:因为A,B,D 给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A ,B ,D 错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C 正确. 故选C.13.A【解析】【分析】 根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268+,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.14.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=∠=︒,然后根据三角形外角性质计算∠PCA 的度数.【详解】解:∵PD 切⊙O 于点C ,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =40°,∴∠DOC =90°﹣40°=50°,∵OA =OC ,∴∠A =∠ACO ,∵∠COD =∠A +∠ACO ,∴1252A COD ∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.15.B解析:B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.二、填空题16.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年江苏省苏州市昆山市九年级(上)期末数学试卷解析版
2018-2019学年江苏省苏州市昆山市九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.方程x2-4=0的解为()A. 2B.C.D. 42.已知关于x的方程x2+mx-6=0的一个根为x=3,则实数m的值为()A. B. C. 1 D. 23.下列一元二次方程中,有两个不相等的实数根的方程是()A. B. C. D.4.有一组数据:2,0,2,1,-2,则这组数据的中位数、众数分别是()A. 1,2B. 2,2C. 2,1D. 1,15.关于二次函数y=-2x2+1,下列说法中正确的是()A. 它的开口方向是向上B. 当时,y随x的增大而增大C. 它的顶点坐标是D. 当时,y有最大值是6.已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴的一个交点为(-1,0),则关于x的一元二次方程ax2-2ax+c=0的两实数根是()A. ,B. ,C. ,D. ,7.如图,在Rt△ABC中,∠ACB=90°,,则下列结论中正确的是()A.B.C.D.8.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A. 2B. 3C. 4D. 59.如图,C,D是以线段AB为直径的⊙O上两点(位于AB两侧),CD=AD,且∠ABC=70°,则∠BAD的度数是()A.B.C.D.10.已知点A(-3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是()A. B. C. D.二、填空题(本大题共8小题,共24.0分)11.一元二次方程x2=2x的根是______.12.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是______.13.“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图游戏板,由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形游戏板,其中直角三角形的两直角边之比均为2:3,假设飞镖投中大正方形区域内每一点是等可能的(投中直角三角形、小正方形的边界或没有投中游戏板,则重投1次),现随机地向大正方形内部区域投掷飞镖,则飞镖投中阴影区域的概率是______.14.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是______ cm2(结果保留π)15.抛物线y=x2-(t+2)x+1的顶点在x轴正半轴上,则t=______.16.如图所示,⊙O是△ABC的外接圆,AD⊥BC于D,且AB=5,AC=4,AD=4,则⊙O的直径的长度是______.17.已知抛物线y=2x2-4x+5,将该抛物线沿x轴翻折后的新抛物线的解析式为______.18.如图,已知正方形ABCD的边长为6,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)2sin30°-+tan60°(2)|-2cos45°四、解答题(本大题共9小题,共68.0分)20.解下列方程:(1)x2-2x=2(2)(2x-1)2=4x-221.已知关于x的一元二次方程x2-2(k-1)x+k2-1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.22.某班有甲,乙,丙三个综合实践活动课题研究小组,现各课题小组将逐个进行研究成果的展示,并通过抽签确定三个小组展示的先后顺序.(1)求甲小组第一个展示的概率;(2)用列举法(画树状图或列表)求丙小组比甲小组先展示的概率.23.已知一副直角三角板如图放置,点C在ED的延长线上,AB∥CE,∠ACB=∠EAD=90°,∠E=45°,∠B=60°,BC=6,求CD的长.24.如图,已知抛物线y1=ax2+bx+c(a≠0)交x轴于点A(-1,0),B(3,0),交y轴于点C(0,-3),直线y2=x-1交抛物线y1=ax2+bx+c(a≠0)于点M,N(M在N的左侧),抛物线顶点为P.(1)求该抛物线的解析式;(2)求△PMN的面积S△PMN;(3)若y1<y2≤0,则此时横坐标x的取值范围是______.(直接写出结果)25.如图所示,建筑物MN一侧有一斜坡AC,在斜坡坡脚A处测得建筑物顶部N的仰角为60°,当太阳光线与水平线夹角成45°时,建筑物MN的影子的一部分在水平地面上MA处,另一部分影子落在斜坡上AP处,已知点P的距水平地面AB的高度PD=5米,斜坡AC的坡度为(即tan∠PAD=),且M,A,D,B在同一条直线上.(测倾器的高度忽略不计,结果保留根号)(1)求此时建筑物MN落在斜坡上的影子AP的长;(2)求建筑物MN的高度.26.某网店以每件80元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件的售价每降低2元,其销售量可增加10件.(1)该网店销售该商品原来一天可获利润______元.(2)设后来该商品每件售价降价x元,网店一天可获利润y元.①若此网店为了尽可能增加该商品的销售量,且一天仍能获利1080元,则每件商品的售价应降价多少元?②求y与x之间的函数关系式,当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.27.如图,AB是⊙O的直径,AF是⊙D的弦,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若AB=10,AF=6,求AE的长.28.如图1,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,M为抛物线的顶点,直线MD⊥x轴于点D,E是线段DM上一点,DE=1且∠DBE=∠BMD.(1)求抛物线的解析式;(2)连接AC,在直线MD上是否存在点P,使得△PAC成为直角三角形?若存在,求出点P坐标;若不存在,请说明理由.(3)如图2,连接MC交x轴于点F,G为线段MD上一动点,以G为等腰三角形顶角顶点,GA为腰构造等腰△GAH,且H点落在线段MF上,若在线段MF上始终能找到两个这样的点H,则此时动点G 的纵坐标y G的取值范围是______.(直接写出结果)答案和解析1.【答案】C【解析】解:移项得x2=4,解得x=±2.故选:C.这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b (b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2.【答案】B【解析】解:把x=3代入方程x2+mx-6=0得9+3m-6=0,解得m=-1.故选:B.把x=3代入方程x2+mx-6=0得9+3m-6=0,然后解关于m的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】D【解析】解:A.此方程判别式△=(-1)2-4×1×1=-3<0,无实数根;B.此方程判别式△=0-4×1×1=-4<0,无实数根;C.此方程判别式△=22-4×1×1=0,有两个相等实数根;D.此方程判别式△=(-3)2-4×1×1=5>0,有两个不相等的实数根;故选:D.分别计算出每个方程的判别式的值,从而做出判断.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.【答案】A【解析】解:把这组数据按照从小到大的顺序排列-2,0,1,2,2,所以中位数是1;在这组数据中出现次数最多的是2,即众数是2,故选:A.把这组数据按照从小到大的顺序排列,找出最中间的数即是中位数,在这组数据中出现次数最多的是2,从而得到这组数据的众数.本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.5.【答案】B【解析】解:∵二次函数y=-2x2+1,a=-2,∴该函数图象开口向下,故选项A错误,当x<0时,y随x的增大而增大,故选项B正确,它的顶点坐标为(0,1),故选项C错误,当x=0时,y有最大值1,故选项D错误,故选:B.根据题目中的函数解析式和二次函数的性质可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.6.【答案】C【解析】解:∵二次函数y=ax2-2ax+c(a≠0)的图象与x轴的一个交点为(-1,0),∴该函数的对称轴是直线x=-=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2-2ax+c=0的两实数根是x1=-1,x2=3,故选:C.根据二次函数y=ax2-2ax+c(a≠0),可以求得该函数的对称轴,再根据该函数的图象与x轴的一个交点为(-1,0),从而可以求得该函数图象与x轴的另一个交点,从而可以得到方程ax2-2ax+c=0的两实数根.本题考查抛物线与x轴的交点、函数与方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.7.【答案】D【解析】解:∵在Rt△ABC中,∠ACB=90°,,∴设BC=x,则AC=2x,故AB=x,故sinA===,故A选项错误;sinB===,故B选项错误;cosA===,故C选项错误;tanB==2,故D选项正确;故选:D.分别利用未知数表示出各边长,再利用锐角三角三角函数关系得出答案.此题主要考查了锐角三角三角函数关系,正确记忆边角关系是解题关键.8.【答案】A【解析】解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5-3=2故选:A.连接OA,由M为圆O中弦AB的中点,利用垂径定理的逆定理得到OM垂直于AB,由AB的长求出AM的长,在直角三角形OAM中,由AM与OM的长,利用勾股定理求出OA的长,即为圆O的半径.此题考查了垂径定理的逆定理,以及勾股定理,熟练掌握定理是解本题的关键.9.【答案】B【解析】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=70°,∴∠BAC=20°,∵DA=DC,∴∠DAC=∠DCA,∵∠ADC=∠B=70°,∴∠DAC=∠DCA=55°,∴∠BAD=∠DAC-∠BAC=35°,故选:B.根据∠BAD=∠DAC-∠BAC,只要求出∠DAC,∠BAC即可.本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】C【解析】解:∵点P(m,n)是该抛物线的顶点,∴抛物线的对称轴为x=m,∵点A(-3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,且y1>y2≥n,∴<m,解得m >,故选:C.根据点A(-3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,y1>y2≥n,可知该抛物线开口向上,对称轴是直线x=m,则<m,从而可以求得m的取值范围,本题得以解决.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.11.【答案】x1=0,x2=2【解析】解:移项,得x2-2x=0,提公因式得,x(x-2)=0,x=0或x-2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.先移项,再提公因式,使每一个因式为0,从而得出答案.本题考查了一元二次方程的解法:解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.【答案】k<2且k≠1【解析】解:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.根据一元二次方程的定义和判别式的意义得到k-1≠0且△=(-2)2-4(k-1)>0,然后求出两个不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.【答案】【解析】解:设两直角边分别是2x,3x,则斜边即大正方形的边长为x,小正方形边长为x,所以S大正方形=13x2,S小正方形=x2,S阴影=12x2,则针尖落在阴影区域的概率为=;故答案为:.针尖落在阴影区域的概率就是四个直角三角形的面积之和与大正方形面积的比.此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.14.【答案】10π【解析】解:圆锥的侧面积=2π×2×5÷2=10π(cm2).故答案为:10π.圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.15.【答案】0【解析】解:∵抛物线y=x2-(t+2)x+1的顶点在x轴正半轴上,∴解得,t=0,故答案为:0.根据抛物线y=x2-(t+2)x+1的顶点在x轴正半轴上,可以得到,->0,从而可以求得t的值,本题得以解决.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】5【解析】解:如图,连接AO,BO,∵AD⊥BC,且AC=4,AD=4,∴CD==4 ∴CD=AD,∴∠ACB=45°,∵∠AOB=2∠ACB∴∠AOB=90°∴AO2+BO2=AB2,∴AO=BO=∴⊙O的直径的长度是5故答案为:5由勾股定理可求AD=CD,即可得∠ACB=45°,由圆的有关性质可得∠AOB=90°,由勾股定理可求AO的长,即可得⊙O的直径的长度.本题考查了三角形的外接圆和外心,圆周角定理,勾股定理等知识,求∠AOB=90°是本题的关键.17.【答案】y=-2(x-1)2-3【解析】解:抛物线y=2x2-4x+5=2(x-1)2+3,其顶点坐标是(1,3),将该抛物线沿x轴翻折后的新抛物线的顶点坐标是(1,-3),抛物线开口方向与原抛物线方向相反,所以新抛物线的解析式为y=-2(x-1)2-3.故答案是:y=-2(x-1)2-3.图象沿x轴的翻折后,顶点为(2,5),a=-2即可求解.考查了二次函数图象与几何变换.注意:新旧抛物线的顶点之间的变换关系.18.【答案】3-3【解析】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,∵∠G=90°,FG=BG=AB=6,∴OG=9,∴OF==3,∴EF=3-3,故PD+PE的长度最小值为3-3,故答案为:3-3.根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.本题考查了轴对称-最短路线问题,正方形的性质,勾股定理,正确的作出辅助线是解题的关键.19.【答案】解:(1)原式=2×-2+=1-;(2)原式=()2+-1-2×=+-1-=-.【解析】(1)直接利用特殊角的三角函数值分别代入化简得出答案;(2)直接利用特殊角的三角函数值分别代入化简得出答案.此题主要考查了实数运算,正确记忆相关数据是解题关键.20.【答案】解:(1)x2-2x+1=3,(x-1)2=3,x-1=±,所以x1=1+,x2=1-;(2)(2x-1)2-2(2x-1)=0,(2x-1)(2x-1-2)=0,2x-1=0或2x-1-2=0,所以x1=,x2=.【解析】(1)利用配方法得到(x-1)2=3,然后利用直接开平方法解方程;(2)先变形得到(2x-1)2-2(2x-1)=0,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.21.【答案】解:(1)△=[-2(k-1)]2-4(k2-1)=4k2-8k+4-4k2+4=-8k+8.∵原方程有两个不相等的实数根,∴-8k+8>0,解得k<1,即实数k的取值范围是k<1;(2)由根与系数的关系,x1+x2=2(k-1),x1x2=k2-1,∵|x1+x2|=2x1x2,∴|2(k-1)|=2k2-2,∵k<1,∴2-2k=2k2-2,化简得k2-k-2=0,∴k=1(舍)或k=-2,∴k=-2.【解析】(1)根据一元二次方程有两个不相等的实数根,得出△=b2-4ac的值大于0,建立关于k的不等式,解不等式即可求出k的取值范围;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=2(k-1),x1x2=k2-1,再将它们代入|x1+x2|=2x1x2,即可求出k的值.本题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,用到的知识点:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根;(4)x1+x2=-;(5)x1•x2=.22.【答案】解:(1)有可能甲小组第一个展示,也有可能乙小组第一个展示,还有可能丙小组第一个展示,∴甲小组第一个展示的概率是;(2)画树状图如下:∴共有6种等可能出现的结果,其中丙小组比甲小组先展示有3种结果,∴丙小组比甲小组先展示的概率为:=.【解析】(1)根据概率公式可直接得出答案;(2)根据题意先画出树状图得出所有等可能的情况数和丙小组比甲小组先展示的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】解:作CF⊥AB于F,AH⊥EC于H,则∠CFB=∠AHC=90°,∵∠B=60°,∴∠BCF=30°,∴BF=BC=3,由勾股定理得,CF==3,四边形AHCF为矩形,则AH=CF=3,∵∠ADH=45°,∴DH=AH=3,∵AB∥CE,∴∠ACH=∠BAC=30°,∴CH==9,∴CD=CH-DH=9-3.【解析】作CF⊥AB于F,AH⊥EC于H,根据直角三角形的性质求出BF,根据勾股定理求出CF,根据矩形的性质求出AH,根据直角三角形的性质计算即可.本题考查的是直角三角形的性质,平行线的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.24.【答案】-<x≤【解析】解:(1)根据题意得,,解得,,∴抛物线的解析式为:y=x2-2x-3;(2)解方程组,得,,∴M(-,-),N(4,5),∵y=x2-2x-3=(x-1)2-4,∴P(1,-4),过P作PE垂直x轴于E,与MN交于点F,∴F(1,),∴PF=,∴S△PMN=S△PMF+S△PNF =;(3)当y2=0时,0=,解得,x=,∴直线y2=x-1与x轴的交点为(,0),由图象可知,当y1<y2≤0时,-<x≤.故答案为:-<x≤.(1)用待定系数法进行解答;(2)联立两个函数解析,求出M、N点的坐标,由抛物线顶点坐标公式求P点坐标,过P作PE 垂直x轴于E,与MN交于点F,根据S△PMN=S△PMF+S△PNF求△PMN的面积;(3)根据观察函数图象,直接写答案便可.本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.25.【答案】解:(1)如图,作PH⊥MN于H.则四边形PDMH是矩形.∵tan∠PAD==,PD=5,∴AD=15,PA==5(米),∴此时建筑物MN落在斜坡上的影子AP的长为5米.(2)∵∠NPH=45°,∠PHN=90°,∴∠PNH=∠NPH=45°,∴NH=PH,设NH=PH=x米,则MN=(x+5)米,AM=(x-15)米,在Rt△AMN中,∵tan60°=,∴MN=AM,∴x=5=(x-15)解得x=(10+25)(米),∴MN=x+5=(10+30)米.【解析】(1)如图,作PH⊥MN于H.则四边形PDMH是矩形.解直角三角形求出PA即可.(2)设NH=PH=x米,在Rt△AMN中,根据tan60°=,可得MN=AM,由此构建方程即可解决问题.本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.26.【答案】1000【解析】解:(1)该网店销售该商品原来一天可获利润为(100-80)×50=1000(元),故答案为1000;(2)①y=(100-80-x)(50+5x)=-5x2+50x+1000,当y=1080时,-5x2+50x+1000=1080,整理得x2-10x+16=0,解得x1=2,x2=8,答:每件商品的售价应降价2元或8元;②y=(100-80-x)(50+5x)=-5x2+50x+1000=-5(x-5)2+1125,当x=5时,y有最大值,最大值为1125,则100-x=95,答:当该商品每件售价为95元时,该网店一天所获利润最大,最大利润值为1125元.(1)用每件利润乘以50件即可;(2)每件售价降价x元,则每件利润为(100-80-x)元,销售量为(50+5x)件,它们的乘积为利润y,①利用y=1080得到方程(100-80-x)(50+5x)=1080,然后解方程即可;②由于y=(100-80-x)(50+5x),则可利用二次函数的性质确定最大利润值.本题考查了二次函数的应用:在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.27.【答案】(1)证明:∵AE平分∠DAC,∴∠CAE=∠DAE.∵OA=OE,∴∠OEA=∠OAE.∴∠DAE=∠AEO,.∴AD∥OE.∵AD⊥CD,∴OE⊥CD.∴CD是⊙O的切线.(2)解:连接BF交OE于K.∵AB是直径,∴∠AFB=90°,∵AB=10,AF=6,∴BF==8,∵OE∥AD,∴∠OKB=∠AFB=90°,∴OE⊥BF,∴FK=BK=4,∵OA=OB,KF=KB,∴OK=AF=3,∴EK=OE-OK=2,∵∠D=∠DFK=∠FKE=90°,∴四边形DFKE是矩形,∴DE=KF=4,DF=EK=2,∴AD=AF+DF=8,在Rt△ADE中,AE===4.【解析】(1)只要证明OE⊥CD即可.(2)在Rt△ADE中,求出AD,DE,利用勾股定理即可解决问题.本题考查切线的判定和性质,勾股定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.28.【答案】0<n<【解析】解:(1)令y=0,则x=1±,即点B(1+,0),则:BD=,∵∠DBE=∠BMD,∴△DBE∽△DMB,∴,DE=1,DM=4,即:-=4,则a=-1,故:抛物线的解析式:y=-(x-1)2+4;(2)存在,理由:点A(-1,0)、C(0,3),设点P的坐标为(1,m),直线AC所在的直线k值为:3,直线PC所在直线的k值为:m-3,直线PA所在直线的k值为:m,①当∠PAC=90°时,由题意得:(m-3)•m=1,解得:m=1或2;②当∠APC=90°时,同理可得:m=-;③当∠ACP=90°时,同理可得:m=,故:点P的坐标为:(1,1)或(1,2)或(1,-)或(1,);(3)作CK⊥DM交于点K,过点G作GH⊥MC交于点H,连接AG,∵点M坐标为(1,4)、点C(0,3),函数对称轴为x=1,故:CK=KM=1,∴∠HMG=45°,设点G坐标为(1,n),则HG=MGsin45°=(4-n),则AG==,若在线段MF上始终能找到两个这样的点H,则AG>HG,即:,>(4-n),解得:n<2-4,故答案为:0<n-4.(1)令y=0,则x=1±,则:BD=,利用△DBE∽△DMB,即可求解;(2)∠PAC=90°、∠APC=90°、∠ACP=90°,三种情况求解即可;(3)设点G坐标为(1,n),则HG=MGsin45°=(4-n),则AG==,若在线段MF上始终能找到两个这样的点H,则AG>HG,即可求解.本题为二次函数综合运用题,涉及到解直角三角形、一次函数、不等式等知识,其中(3),若在线段MF上始终能找到两个这样的点H,则AG>HG,是本题的难点.第11页,共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 =5 cm,
∴S阴影部分=S△ABC−S扇形面积= (cm2),
故选:A.
【点睛】
本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt△ABC的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.
3.C
解析:C
【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.
2019年昆山市初三数学上期末试题附答案
一、选择题
1.一元二次方程 的根是()
A. B. C. D.
2.如图,Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以 的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分面积为( )
A.(24− )cm2B. cm2
14.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.
15.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=_____.
16.抛物线 关于x轴对称的抛物线的解析式为_______
17.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.
解析:相离
【解析】
r=2,d=3,则直线l与⊙O的位置关系是相离
15.68°【解析】【分析】根据∠AOE的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵AB是⊙O的直径∴劣弧的度数为180°﹣78°=1
解析:68°
【解析】
【分析】
根据∠AOE的度数求出劣弧 的度数,得到劣弧 的度数,根据圆心角、弧、弦的关系定理解答即可.
解析:5
【解析】
试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D为AB的中点,∴OD= AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.
故答案为1.5.
14.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离
∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.
故选B.
【点睛】
本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.
8.C
解析:C
【解析】
【分析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
【详解】
解:连接OD,
在Rt△OCD中,OC= OD=2,
∴∠ODC=30°,CD=
∴∠COD=60°,
∴阴影部分的面积= ,
故选:C.
【点睛】
本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
7.A
解析:A
【解析】
【分析】
先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.
【详解】
解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),
因为点(0,0)向左平移3个单位长度后得到(-3,0),
【分析】
先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.
【详解】
画树状图如下:
分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是 .
故选A.
【点睛】
本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
18.请你写出一个有一根为0的一元二次方程:______.
19.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
20.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.
12.与y=2(x﹣1)2+3形状相同的抛物线解析式为()
A.y=1+ x2B.y=(2x+1)2C.y=(x﹣1)2D.y=2x2
二、填空题
13.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.
4.B
解析:B
【解析】
【分析】
根据三角形的内切圆得出∠OBC= ∠ABC,∠OCB= ∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.
【详解】
∵点O是△ABC的内切圆的圆心,∴∠OBC= ∠ABC,∠OCB= ∠ACB.
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
24.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.
y=2(x﹣1)2+3中,a=2.
故选D.
【点睛】
本题考查了抛物线的形状与a的关系,比较简单.
二、填空题
13.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm∵点D为AB的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1OB1处∴OB1=OB=
(1)a=,c=;
(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?
(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
25.某水果商场经销一种高档水果,原价每千克50元.
【详解】
∵∠AOE=78°,∴劣弧 的度数为78°.
∵AB是⊙O的直径,∴劣弧 的度数为180°﹣78°=102°.
∵点C、D是弧BE的三等分点,∴∠COE 102°=68°.
故答案为:68°.
【点睛】
本题考查了圆心角、弧、弦的关系定理,掌握在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解题的关键.
【详解】
根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
解得a≤ 且a≠6,
所以整数a的最大值为5.
故选B.
【点睛】
本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.
11.C
解析:C
【解析】
【分析】
由题意使x=0,求出相应的y的值即可求解.
三、解答题
21.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6
(1)当每吨销售价为多少万元时,销售利润为0.96万元?
(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?
所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.
故选:A.
【点睛】
本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
【详解】
∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).
故选C.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.
12.D
解析:D
【解析】
【分析】
抛物线的形状只是与a有关,a相等,形状就相同.
【详解】
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
22.解方程:
(1)x2-3x+1=0;
(2)x(x+3)-(2x+6)=0.
23.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);