2019-2020学年北师大版九年级上期中数学试卷(含答案)

合集下载

2019—2020年新北师大版九年级数学上学期期中质量检测题及答案.docx

2019—2020年新北师大版九年级数学上学期期中质量检测题及答案.docx

第一学期九年级数学期中试卷一、单项选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()2.下列方程中是一元二次方程的是()3.若关于x的一元二次方程(m-2)x2-3x+m2-4=0的常数项为0,则m的值等于()A. -2B. 2C. -2或2D. 04.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位。

B. 先向左平移2个单位,再向下平移3个单位。

C. 先向右平移2个单位,再向下平移3个单位。

D. 先向右平移2个单位,再向上平移3个单位。

5.已知直角三角形边为x2-5x+6=0的两个根,则此直角三角形的斜边为()A. 3B. 13C.D.6.方程(2x+3)(x-1)=1的解的情况是()A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 有一个实数根7. 当点P关于x轴对称的点P1的坐标(2,3),那么点P关于原点的对称点P2的坐标是()A. (-3, -2)B. (2, -3)C. (-2, -3)D. (-2, 3)8.若方程x2-5x-10=0的两根为x1, x2, 则的值为( )A, 2 B.-2 C. D.9.某药品原价每盒25元,为了响应国家解决老百姓看病的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是()A. 25%B. 30%C. 20%D. 10%10.在同一直角坐标系中一次函数y=ax+c和函数y=ax2+c的图像大致是()二、填空题11. 二次函数y=2(x-1)²的图像的顶点坐标是___________12. ,当x=_____________时,函数值y随着x的增大而增大。

13. (x-3)2+5=6x化成一般形式是____________,其中一次项系数是_____。

14.将二次函数y=2x2+6x+3化为y=a(x-h)2+k的形式是___________________。

北师大版2019-2020学年度第一学期九年级数学上学期期中考试数学试题(含答案)

北师大版2019-2020学年度第一学期九年级数学上学期期中考试数学试题(含答案)

北师大版2019-2020学年度第一学期九年级数学上学期期中考试数学试题(含答案)考试时间120分钟;试卷总分100分一、选择题(每小题2分,共16分) 1、下列方程,是一元二次方程的是( ) ①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x+3=0 A .①② B .①④⑤ C .①③④ D .①②④⑤ 2、.已知3是关于x 的方程012342=+-a x 的一个根,则a 2的值是( ) A.11 B.12 C.13 D.14 3、观察下列表格,一元二次方程21.1x x -=的一个近似解是( )4、如图,如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,下列说法错误的是( ) A .AB ∥DC B .AC =BD C .AC ⊥BD D .OA =OC5、如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF 等于( ) A . 7 B . 7.5C . 8D . 8.56、某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4 7、下列命题中,错误的是( )4 题图5 题图ab cA B C D EF m n 6 题图A .平行四边形的对角线互相平分B .菱形的对角线互相垂直平分C .矩形的对角线相等且互相垂直平分D .角平分线上的点到角两边的距离相等8、如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM=MN ;②MP=BD ;③BN+DQ=NQ ;④为定值.其中一定成立的是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每小题2分,共16分)9、()x x 6542=+-化成一般形式是____________,其中一次项系数是___________10、抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是 ___________11、如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_____________m 。

2019-2020学年北师大版山东省青岛市四区联考九年级第一学期期中数学试卷含解析

2019-2020学年北师大版山东省青岛市四区联考九年级第一学期期中数学试卷含解析

2019-2020学年九年级上学期期中数学试卷一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<37.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个二、填空题(共6小题)9.已知,则=.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有个白球.11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用张正方形纸片(不得把每个正方形纸片剪开).13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣117.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F(1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB 于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有种不同的放置方法.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P 作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.参考答案一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形解:A、有一组邻边相等的平行四边形是菱形,故A选项不符合题意;B、两条对角线互相垂直且平分的四边形是菱形,故B选项不符合题意;C、对角线相等的平行四边形是矩形,故C选项不符合题意;D、有一组邻边线段的菱形不是正方形,故D选项符合题意;故选:D.3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.故选:A.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故选:B.6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3 ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<3解:由表格可知:当x=2时,ax2+bx+c=4,当x=3时,ax2+bx+c=﹣2,∴关于x的一元二次方程ax2+bx+c=0(a≠0)的一个解x的范围是2<x<3,故选:D.7.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:∵DG∥AB,∴=,故本选项不符合题意;B、∵DF∥CE,∴△ADF∽△AEC,∴=≠,故本选项不符合题意;C、∵DF∥CE,∴△ADF∽△AEC,∴=,∵DG∥AB,∴=,∴=,故本选项符合题意;D、∵DF∥CE,∴=,∵DG∥AB,∴△DGE∽△ABE,∴=,∴≠,故本选项不符合题意;故选:C.8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,∵将△ABE,△ADF分别沿折痕AE,AF向内折叠,∴AB=AG=AD,BE=EG=1,DF=GF,∠BAE=∠GAE,∠DAF=∠GAF,∵∠BAE+∠GAE+∠DAF+∠GAF=90°,∴∠EAG+∠GAF=45°,即∠EAF=45°,∵EH⊥AE,∴∠EAH=∠H=45°,∴AE=EH,且EH⊥AE,∴△AEH是等腰直角三角形,故②符合题意,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=,∴DF=,∴DF=CF=DC,∴点F是CD中点,故③符合题意,由勾股定理可得:AF===,AE===,∴EH=AE=,∴AH===2,∴FH=AH﹣AF=,故④符合题意,∵=2,,∴∴△ADF与△ECF不相似,故①不合题意,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.已知,则=.解:∵,∴y=x,∴===,故答案为:.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有10 个白球.解:设盒子中原有的白球的个数为x个,根据题意得:,解得:x=10,经检验:x=10是原分式方程的解;∴盒子中原有的白球的个数为10个.故答案为:10;11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为20(1+x)+20(1+x)2=75 .解:设该校今明两年在实验器材投资上的平均增长率是x,依题意,得:20(1+x)+20(1+x)2=75.故答案为:20(1+x)+20(1+x)2=75.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用8 张正方形纸片(不得把每个正方形纸片剪开).解:如图所示:根据图形的相似拼一个与它形状相同但比它大的长方形,相似比为1:2,所以至少要用8张正方形纸片.故答案为8.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为0 .解:∵i4n+1=i,i4n+2=﹣1,i4n+3=﹣i,i4n+4=1,∴i+i2+i3+i4+…+i2019+i2020=i+(﹣1)+(﹣i)+1+i+(﹣1)+(﹣i)+1+…+i+(﹣1)+(﹣i)+1=0.故答案为0.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.解:如图,四边形ABCD为所作.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣1解:(1),则,∴.(2)3(x﹣1)2﹣(x2﹣1)=0,3(x﹣1)2﹣(x﹣1)(x+1)=0,(x﹣1)(3x﹣3﹣x﹣1)=0,(x﹣1)(2x﹣4)=0,∴x1=1,x2=2.17.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.解:四边形AECD是菱形,理由:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=BC=EC,∴平行四边形AECD是菱形.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?解:设仓库的边AB为x米,由题意得:x(32﹣2x+2)=140,整理,得x2﹣17x+70=0,解,得x1=10,x2=7,当x=10时,BC=14<18;当x=7 时,BC=20>18,∴x=7不合题意,应舍去.答:仓库的边AB为10米,BC为14米.20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F(1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.【解答】证明:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)解:∵E是BC的中点,BC=8,∴BE=EC=BC=4,∵∠B═90°,AB=3,∴AE===5,∵△ABE∽△ECF,∴,即∴EF=.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB 于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,∵∠G=∠BAC,∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?解:设该设备的销售单价为x万元.由题意列方程,得,整理,得x2﹣115x+3250=0解这个方程,得x1=50,x2=65,∵获利不高于30%∴∴x≤52∴x=65不合题意,舍去.∴x=50答:该设备的销售单价为50万元.23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有 4 种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有m﹣1 种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有98 种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有97 种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有93 种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有(m ﹣n+1)种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有 6 种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有11 种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有35 种不同的放置方法.解:探究1:当m=5,n=2时,由图可知有4种不同的选择方法,根据根据规律可知:从m个连续的自然数中选择2个连续的自然数,有(m﹣1)种不同的选择方法;故答案为:4、m﹣1.探究2:选择3个连续的自然数,选择方法的数量比数的个数少2,选择4个连续的自然数,选择方法的数量比数的个数少3,以此类推,选择8个连续的自然数,选择方法的数量比数的个数少7,选择n个连续自然数,选择方法的数量比数的个数少(n﹣1);故从100个连续的自然数中选择3个连续的自然数,有100﹣2=98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有100﹣3=97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有100﹣7=93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.故答案为:98、97、93、100﹣n+1.【问题解决】由规律可知:从m个连续的自然数中选择n个连续的自然数(n≤m),有(m﹣n+1)种不同的选择方法.故答案为:(m﹣n+1).【实际应用】(1)从连续7天选择连续2天,则m=7,n=2,总共有(7﹣2+1)=6种选择;(2)3号到15号总共13张电影票,选择3连号,则m=13,n=3,总共有(13﹣3+1)=11种不同的选择;故答案为:6、11.【拓展延伸】图案向右移动,每次一格,可看作8选2,可得7种放置方法,图案向下移动,每次一格,可看作,6选2,可得5种放置方法,故总共7×5=35种放置方法.故答案为:35.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P 作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.解:(1)过点A作AD⊥BC于点D,如图1所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,若△BPQ为直角三角形,根据题意只能∠BPQ=90°,则∠ADB=90°=∠BPQ,∵∠B=∠B,∴△ABD∽△QBP,∴,即,解得,答:当t为s时,△BPQ为直角三角形.(2)在Rt△ABD中,,过点P作PM⊥BC于点M,如图2所示:∴∠PMB=90°,∵∠ADB=90°,∴∠PMB=∠ADB,∵∠C=∠C,∴△ABD∽△BPM,∴,即,∴,∵PE∥BC,∴∠C=∠AEP,∠B=∠APE,∴△ABC∽△APE,∴,即,∴,∵四边形CQFE是平行四边形,∴EF=t,∴y=S梯形BPFQ=,==答:y与t的函数关系式是y=.(3)存在,理由如下:若S四边形BPFQ:S△ABC=7:6,则y=S△ABC∵S△ABC=∴=解得t1=5,答:t的值为5s或s时,S四边形BPFQ:S△ABC=7:6;(4)存在,理由如下:连接BF,如图3所示:若点F在∠ABC的平分线上,∴BF平分∠ABC,∴∠ABF=∠FBQ,∵PF∥BC,∴∠PFB=∠FBQ,∴∠ABF=∠PFB,∴PB=PF,即:,∴,答:当s时,点F在∠ABC的平分线上.。

北师大初中数学九年级上册第一次月考测试题(2019-2020学年辽宁省沈阳市

北师大初中数学九年级上册第一次月考测试题(2019-2020学年辽宁省沈阳市

2019-2020学年辽宁省沈阳市九年级(上)第一次月考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.(2分)方程x(x﹣2)=x﹣2的解是()A.x=0B.x=1C.x1=0,x2=2D.x1=1,x2=2 2.(2分)已知3x=2y,那么下列式子中一定成立的是()A.B.C.D.3.(2分)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15B.(x﹣3)2=3C.(x+3)2=15D.(x+3)2=3 4.(2分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm5.(2分)两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率6.(2分)如图,在正方形ABCD的外侧作等边三角形CDE,则∠DAE的度数为()A.20°B.15°C.12.5°D.10°7.(2分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=458.(2分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.9.(2分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.10m B.9m C.8m D.7m10.(2分)如图,点E,F,G,H分别是四边形ABCD中AD,BD,BC,AC的中点,当四边形ABCD满足什么条件时,四边形EFGH是菱形()A.AC⊥BD B.AB=CD C.AC=BD D.AB⊥CD二、填空题(每小题3分,共18分)11.(3分)若一元二次方程x2+x+a=0有两个不相等的实数根,则a的取值范围为.12.(3分)某公司销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元.已知2月份和3月份利润的月增长率相同,设2、3月份利润的月增长率为x,根据题意列方程为.13.(3分)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为.14.(3分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,则线段AC的长=.15.(3分)如图,∠1=∠2,若△ABC∽△ADE,可添加的一个条件是(填写一个条件即可)16.(3分)如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,点D在斜边AB上,将△ACD沿直线CD翻折,使得点A落在同一平面内的点A'处,当A′D平行于△ABC的直角边时,AD的长为.三、解答题(第17题6分,第18、19题各8分,共22分)17.(6分)解方程:3x2+8x﹣3=018.(8分)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE和DE交于点E.求证:四边形OCED是矩形.19.(8分)桌面上三张完全相同的不透明卡片,正面分别写有数字2,3,4,把这三张卡片洗匀后背面朝上放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗的平从中随机抽取一张卡片并再次记录数字.请用列表法或画树状图法求两次抽取的卡片上的数字都是偶数的概率.四、(每小题8分,共16分)20.(8分)如图,在矩形ABCD中,DC=14cm,AD=6cm,动点P从点A出发,以4cm/s 的速度沿A→B方向向点B运动,动点Q从点C出发,以1cm/s的速度沿C﹣D方向向点D运动,两点同时出发,一点到达终点时另一点即停,设运动时间为t(s),求t为何值时,点P和点Q之间的距离是10cm.21.(8分)某网店销售一款童装,每件售价60元时每周可卖300件,为避免产品积压,最大限度的减少库存,该店决定降价销售,经市场调查发现,每降价1元每周可多卖30件.已知该款童装每件成本价为40元.若总利润要达到6480元,问每件童装的售价应定为多少元.五、(本题10分)22.(10分)如图,平行四边形ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F,连接BD交AF于点G.(1)求证:AB=FC;(2)当AD=AB时,直接写出的值.六、(本题10分)23.(10分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=,BC=(用含t的代数式表示);②当点D是线段BC的中点时,S=;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE为腰的等腰三角形时,直接写出点C的坐标.七、(本题12分)24.(12分)矩形ABCD中,点P在对角线BD上(点P不与点B重合),连接AP,过点P 作PE⊥AP交直线BC于点E.(1)如图1,当AB=BC时,猜想线段P A和PE的数量关系:;(2)如图2,当AB≠BC时.求证:(3)若AB=8,BC=10,以AP,PE为边作矩形APEF,连接BF,当PE=时,直接写出线段BF的长.八、(本题12分)25.(12分)如图,在平面直角坐标系中,O是坐标原点,等边三角形AOB的顶点A的坐标为(4,0),动点P从点O出发,以每秒2个单位的速度,沿O→A路线向终点A匀速运动,设运动时间为t秒,连接BP,线段BP的中点为点Q,将线段PQ绕点P顺时针旋转60°得到线段PC,连接AC.(1)求证:∠CP A=∠OBP;(2)当t=时,求点C的坐标;(3)在点P的运动过程中,△PCA能否成为直角三角形?若能,直接写出满足条件的所有t的值;若不能,说明理由;(4)在点P从起点O向终点A运动的过程中,直接写出点C所经过的路径长.2019-2020学年辽宁省沈阳市九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.(2分)方程x(x﹣2)=x﹣2的解是()A.x=0B.x=1C.x1=0,x2=2D.x1=1,x2=2【分析】根据一元二次方程的解法则即可求出答案.【解答】解:x(x﹣2)﹣(x﹣2)=0(x﹣1)(x﹣2)=0,x=1或x=2,故选:D.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.(2分)已知3x=2y,那么下列式子中一定成立的是()A.B.C.D.【分析】利用内项之积等于外项之积可对各选项进行判断.【解答】解:∵3x=2y,∴=或=.故选:B.【点评】本题考查了比例的性质:灵活运用比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)进行计算.3.(2分)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15B.(x﹣3)2=3C.(x+3)2=15D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.【解答】解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(2分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选:D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.5.(2分)两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率,故此选项符合题意;故选:D.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.6.(2分)如图,在正方形ABCD的外侧作等边三角形CDE,则∠DAE的度数为()A.20°B.15°C.12.5°D.10°【分析】根据正方形性质得出∠ADC=90°,AD=DC,根据等边三角形性质得出DE=DC,∠EDC=60°,推出∠ADE=150°,AD=ED,根据等腰三角形性质得出∠DAE=∠DEA,根据三角形的内角和定理求出即可.【解答】解:∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC,∵△CDE是等边三角形,∴DE=DC,∠EDC=60°,∴∠ADE=90°+60°=150°,AD=ED,∴∠DAE=∠DEA=(180°﹣∠ADE)=15°,故选:B.【点评】本题考查了三角形的内角和定理,正方形性质,等腰三角形性质,等边三角形的性质的应用,主要考查学生运用性质机械能推理和计算的能力,本题综合性比较强,是一道比较好的题目.7.(2分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【分析】根据题意,可以明确列出相应的一元二次方程,本题得以解决.【解答】解:由题意可得,x(x﹣1)=45,故选:A.【点评】本题考查由实际问题抽象出一元二次方程,本题是一道典型的双循环问题,解题的关键是明确题意,列出相应的方程.8.(2分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】利用△ABC中,∠ACB=135°,AC=2,BC=,然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可对各选项进行判定即可.【解答】解:在△ABC中,∠ACB=135°,AC=2,BC=,在A、C、D选项中的三角形都没有135°,而在B选项中,三角形的钝角为135°,它的两边分别为1和,因为=,所以B选项中的三角形与△ABC相似.故选:B.【点评】此题考查了相似三角形的判定.注意两组对应边的比相等且夹角对应相等的两个三角形相似.9.(2分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.10m B.9m C.8m D.7m【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故选:D.【点评】本题考查了一元二次方程的应用.学生应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.10.(2分)如图,点E,F,G,H分别是四边形ABCD中AD,BD,BC,AC的中点,当四边形ABCD满足什么条件时,四边形EFGH是菱形()A.AC⊥BD B.AB=CD C.AC=BD D.AB⊥CD【分析】根据邻边相等的平行性四边形是菱形可得当四边形ABCD满足AB=CD时,EFGH是菱形【解答】解:当四边形ABCD满足AB=CD时,EFGH是菱形,理由如下:∵E、F、G、H分别是AB,BD,BC,AC的中点.∴EF是△ABD的中位线,∴EF平行且等于AB,同理GH=AB,GH∥AB,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.∵E、F、G、H分别是AB,BD,BC,AC的中点.∴EF是△ABD的中位线,∴EF AB,同理,EH CD,∴EF=EH,∵四边形EFGH是平行四边形.∴平行四边形EFGH是菱形.故选:B.【点评】此题主要考查了三角形中位线定理,平行四边形的判定、菱形和正方形的判定,关键是掌握平行四边形的判定、菱形和正方形的判定定理.二、填空题(每小题3分,共18分)11.(3分)若一元二次方程x2+x+a=0有两个不相等的实数根,则a的取值范围为a.【分析】根据“一元二次方程x2+x+a=0有两个不相等的实数根”,结合判别式公式,得到关于a的一元一次不等式,解之即可.【解答】解:根据题意得:△=1﹣4a>0,解得:a,故答案为:a.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.12.(3分)某公司销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元.已知2月份和3月份利润的月增长率相同,设2、3月份利润的月增长率为x,根据题意列方程为10+10(1+x)+10(1+x)2=36.4.【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=36.4,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故答案为:10+10(1+x)+10(1+x)2=36.4.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.13.(3分)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为2.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.【解答】解:∵DE∥BC,∴=,∴=,∴CE=2.故答案为:2.【点评】本题考查了平行线分线段成比例定理的应用,能根据平行线分线段成比例定理得出比例式是解此题的关键.14.(3分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,则线段AC的长=9.【分析】根据相似三角形的判定得出△ABD∽△ACB,根据相似三角形的性质得出比例式,代入求出即可.【解答】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴=,∵AB=6,AD=4,∴AC=9,故答案为:9.【点评】本题考查了相似三角形的性质和判定的应用,能求出两三角形相似是解此题的关键.15.(3分)如图,∠1=∠2,若△ABC∽△ADE,可添加的一个条件是∠D=∠B或∠C =∠AED或.(填写一个条件即可)【分析】先根据∠1=∠2求出∠BAC=∠DAE,再根据相似三角形的判定方法解答即可.【解答】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠BAC=∠DAE,所以,添加的条件为∠D=∠B或∠C=∠AED或.故答案为:∠D=∠B或∠C=∠AED或.【点评】本题考查了相似三角形的判定,先求出两三角形的一对相等的角∠BAC=∠DAE 是确定其他条件的关键.16.(3分)如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,点D在斜边AB上,将△ACD沿直线CD翻折,使得点A落在同一平面内的点A'处,当A′D平行于△ABC的直角边时,AD的长为8或12.【分析】当A′D∥BC时,根据平行线的性质得到∠A′DB=∠B,根据折叠的性质得到A′D=AD,∠A′=∠A,根据三角形的面积公式得到CE的长,由相似三角形的性质即可得到结论;当A′D∥AC时,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD=∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=12.【解答】解:Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,①如图1,当A′D∥BC时,∴∠A′DB=∠B,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴A′D=AD,∴∠A′=∠A,∴∠A′+∠A′DB=90°,∴A′C⊥AB,∴CE===,∴A′E=AC﹣C'E=12﹣=,∵A′D∥BC,∴△A′DE∽△CBE,∴=,即=,解得:A′D=8,∴AD=8;②如图2,当A′D∥AC时,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=12,综上所述:AD的长为8或12;故答案为:8或12.【点评】本题考查了翻折变换的性质、勾股定理、直角三角形的性质、平行线的性质、相似三角形的判定与性质等知识;熟练掌握翻折变换的性质和相似三角形的判定与性质的性质是解题的关键.三、解答题(第17题6分,第18、19题各8分,共22分)17.(6分)解方程:3x2+8x﹣3=0【分析】方程的左边容易分解因式,因而可以利用因式分解法求解.【解答】解:原方程变形为:(3x﹣1)(x+3)=0∴x=﹣3或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.18.(8分)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE和DE交于点E.求证:四边形OCED是矩形.【分析】如图,首先证明四边形CODE是平行四边形,然后证明∠DOC=90°,即可解决问题.【解答】证明∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是菱形∴∠DOC=90°,∴四边形OCED是矩形.【点评】本题主要考查了菱形的性质、矩形的判定与性质;解题的关键是牢固掌握菱形的性质、矩形的性质,这是灵活运用解题的基础和关键.19.(8分)桌面上三张完全相同的不透明卡片,正面分别写有数字2,3,4,把这三张卡片洗匀后背面朝上放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗的平从中随机抽取一张卡片并再次记录数字.请用列表法或画树状图法求两次抽取的卡片上的数字都是偶数的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好都是偶数的情况,再利用概率公式即可求得答案.【解答】解:根据题意画图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是偶数的有4种结果,故两次抽取的卡片上的数字都是偶数的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、(每小题8分,共16分)20.(8分)如图,在矩形ABCD中,DC=14cm,AD=6cm,动点P从点A出发,以4cm/s 的速度沿A→B方向向点B运动,动点Q从点C出发,以1cm/s的速度沿C﹣D方向向点D运动,两点同时出发,一点到达终点时另一点即停,设运动时间为t(s),求t为何值时,点P和点Q之间的距离是10cm.【分析】过点P作PE⊥CD于点E,则PE=AD=6cm,EQ=|14﹣4t﹣t|cm,利用勾股定理可得出关于t的一元二次方程,解之取其较小值即可得出结论.【解答】解:过点P作PE⊥CD于点E,则PE=AD=6cm,EQ=|14﹣4t﹣t|cm,如图所示.依题意,得:62+|14﹣4t﹣t|2=102,整理,得:25t2﹣140t+132=0,解得:t1=,t2=.当t=时,4t==17>14,不合题意,舍去.答:当t为秒时,点P和点Q之间的距离是10cm.【点评】本题考查了一元二次方程的应用以及勾股定理,找准等量关系,正确列出一元二次方程是解题的关键.21.(8分)某网店销售一款童装,每件售价60元时每周可卖300件,为避免产品积压,最大限度的减少库存,该店决定降价销售,经市场调查发现,每降价1元每周可多卖30件.已知该款童装每件成本价为40元.若总利润要达到6480元,问每件童装的售价应定为多少元.【分析】设每件童装应降价x元销售,则每周可售出(300+30x)件童装,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:设每件童装应降价x元销售,则每周可售出(300+30x)件童装,依题意,得:(60﹣40﹣x)(300+30x)=6480,整理,得:x2﹣10x+16=0,解得:x1=2,x2=8.∵为避免产品积压,最大限度的减少库存,∴x=8,∴60﹣x=52.答:每件童装的售价应定为52元.【点评】本题考查了一元二次方程的应用以及勾股定理,找准等量关系,正确列出一元二次方程是解题的关键.五、(本题10分)22.(10分)如图,平行四边形ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F,连接BD交AF于点G.(1)求证:AB=FC;(2)当AD=AB时,直接写出的值.【分析】(1)根据平行四边形的性质可得到AB∥CD,从而可得到AB∥DF,根据平行线的性质可得到两组角相等,已知点E是BC的中点,从而可根据AAS来判定△BAE≌△CFE,根据全等三角形的对应边相等可证得AB=FC.(2)证明△ADG∽EBG,得出得出AG=2GE,证明△ABG∽△FDG,得出,得出GF=2AG,则GF=4EG,可求出.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵点F为DC的延长线上的一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC的中点,∴BE=CE,在△BAE和△CFE中,,∴△BAE≌△CFE(AAS),∴AB=CF.(2)∵AD∥BE,∴△ADG∽EBG,∴,∴AG=2GE,∵AB∥DF,∴△ABG∽△FDG,∴,∴GF=2AG,∴GF=4EG,∴=.【点评】本题主要考查了平行四边形的性质,相似三角形的判定与性质以及全等三角形的判定与性质.掌握相似三角形的判定与性质是解题的关键.六、(本题10分)23.(10分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=t,BC=t+(用含t的代数式表示);②当点D是线段BC的中点时,S=2;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE为腰的等腰三角形时,直接写出点C的坐标.【分析】(1)①AB=BD=t,则点B(t+1,0),则点C(t+1,t+),则BC=t+,即可求解;②当点D是线段BC的中点时,则2t=(t+1),解得:t=2,S=CD×AB=2×2=2,即可求解;(2)点D(t+1,|t|),×(t++|t|)×t=,即可求解;(3)求出点E的坐标①当DE=CD时,CD=t+﹣t=t+=DE=,即可求解;②当DE=CE,由等腰三角形“三线合一”,即可求解.【解答】解:(1)①AB=BD=t,则点B(t+1,0),则点C(t+1,t+),则BC=t+,故答案为:t,t+;②当点D是线段BC的中点时,则2t=(t+1),解得:t=2,S=CD×AB=2×2=2,故答案为:2;(2)点D(t+1,|t|),×(t++|t|)×t=,解得:t=﹣2或(不合题意的值已舍去);(3)C(t+1,t+),点D(t+1,t),∵CE⊥OC,则设直线CE的表达式为:y=﹣x+b,将点C的坐标代入上式并解得:b=(t+1),即直线CE的表达式为:y=﹣x+(t+1)…①,同理直线OD的表达式为:y=x…②,联立①②并解得:x=,故点E[,],①当DE=CD时,tan∠DOB==tanα,则cosα=,DE=(x E﹣x D)÷cosα=,CD=t+﹣t=t+=DE=,整理得:17t2+10t﹣7=0,解得:t=或﹣1(舍去﹣1),故点C(,);②当DE=CE时,由等腰三角形“三线合一”知:y E=(y C+y D),即=(t++t),化简得:t2+t﹣12=0,解得:t=3或﹣4(舍去﹣4),故点C(4,);综上,点C的坐标为:(,)或(4,).【点评】本题考查的是一次函数综合运用,涉及到等腰三角形的性质、解直角三角形、面积的计算等,其中(3),要注意分类求解,避免遗漏.七、(本题12分)24.(12分)矩形ABCD中,点P在对角线BD上(点P不与点B重合),连接AP,过点P 作PE⊥AP交直线BC于点E.(1)如图1,当AB=BC时,猜想线段P A和PE的数量关系:P A=PE;(2)如图2,当AB≠BC时.求证:(3)若AB=8,BC=10,以AP,PE为边作矩形APEF,连接BF,当PE=时,直接写出线段BF的长.【分析】(1)过点P作PM⊥AB于M,PN⊥BC于N,证明△APM≌△EPN(ASA),即可得出结论;(2)过点P作PM⊥AB于M,PN⊥BC于N,证明△APM∽△EPN,得出=,证明△BPM∽△BDA,△BPN∽△BDC,得出=,=,即可得出结论;(3)连接AE、PF交于Q,连接QB,过点A作AO⊥BD于O,①当P在O的右上方时,由(2)得==,得出P A=PE═,由勾股定理得出BD==2,由面积法求出AO==,由三角函数得出BO=,由勾股定理得OP==,得出BP=BO+OP=,由勾股定理求出PF=AE==,证明点A、P、E、B、F五点共圆,AE、PF为圆的直径,由圆周角定理得出∠PBF=90°,由勾股定理即可得出答案;②当P在O的左下方时,同理可得AO=,BO=,OP=,PF=,则BP=BO﹣OP=,同理可得点A、P、E、B、F五点共圆,AE、PF为圆的直径,由圆周角定理得出∠PBF=90°,由勾股定理即可得出答案.【解答】(1)解:线段P A和PE的数量关系为:P A=PE,理由如下:过点P作PM⊥AB于M,PN⊥BC于N,如图1所示:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,∴∠ABC=90°,BD平分∠ABC,∴PM=PN,∴四边形MBNP是正方形,∴∠MPN=90°,∵PE⊥AP,∴∠APE=90°,∴∠APM+∠MPE=90°,∠EPN+∠MPE=90°,∴∠APM=∠EPN,在△APM和△EPN中,,∴△APM≌△EPN(ASA),∴P A=PE,故答案为:P A=PE;(2)证明:过点P作PM⊥AB于M,PN⊥BC于N,如图2所示:∵四边形ABCD是矩形,∴AD=BC,CD=AB,AD⊥AB,CD⊥BC,∠ABC=90°,∴四边形MBNP是矩形,∴∠MPN=90°,∵PE⊥AP,∴∠APE=90°,∴∠APM+∠MPE=90°,∠EPN+∠MPE=90°,∴∠APM=∠EPN,∵∠AMP=∠ENP=90°,∴△APM∽△EPN,∴=,∵PM⊥AB,PN⊥BC,AD⊥AB,CD⊥BC,∴PM∥AD,PN∥CD,∴△BPM∽△BDA,△BPN∽△BDC,∴=,=,∴=,∴==,∴;(3)解:连接AE、PF交于Q,连接QB,过点A作AO⊥BD于O,①当P在O的右上方时,如图3所示:由(2)得:==,∴P A=PE=×=,∵四边形ABCD是矩形,∴AD=BC=10,∠BAD=90°,∴BD===2,∵AO⊥BD,∵△ABD的面积=BD×AO=AB×AD,∴AO===,∵tan∠ABD==,∴=,解得:BO=,由勾股定理得:OP===,∴BP=BO+OP=,∵四边形APEF是矩形,∴∠AEP=90°,AE=PE,QA=QE=QP=QF,∴PF=AE===,∵∠ABE=90°,∴QB=AE=QE,∴QA=QE=QP=QF=QB,∴点A、P、E、B、F五点共圆,AE、PF为圆的直径,∴∠PBF=90°,∴BF===;②当P在O的左下方时,如图4所示:同理可得:AO=,BO=,OP=,PF=,则BP=BO﹣OP=,同理可得:点A、P、E、B、F五点共圆,AE、PF为圆的直径,∴∠PBF=90°,∴BF===;综上所述,当PE=时,线段BF的长为或.【点评】本题是四边形综合题目,考查了矩形的性质、正方形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、解直角三角形、五点共圆、圆周角定理等知识;本题综合性强,难度较大.八、(本题12分)25.(12分)如图,在平面直角坐标系中,O是坐标原点,等边三角形AOB的顶点A的坐标为(4,0),动点P从点O出发,以每秒2个单位的速度,沿O→A路线向终点A匀速运动,设运动时间为t秒,连接BP,线段BP的中点为点Q,将线段PQ绕点P顺时针旋转60°得到线段PC,连接AC.(1)求证:∠CP A=∠OBP;(2)当t=时,求点C的坐标;(3)在点P的运动过程中,△PCA能否成为直角三角形?若能,直接写出满足条件的所有t的值;若不能,说明理由;(4)在点P从起点O向终点A运动的过程中,直接写出点C所经过的路径长.【分析】(1)利用三角形的外角的性质解决问题即可.(2)由三角形AOB是等边三角形可以得出OB=OA=AB=4,∠BOA=∠OAB=∠ABO =60°,由PD⊥OB就可以得出∠PDO=90°,再通过解直角三角形就可以用t把PD 以及DP表示出来.再过C作CE⊥OA于E,可得△PCE∽△BPD,利用三角形相似的性质就可以CE和PE的值,从而可以表示出C的坐标;(3)在P的移动过程中使△PCA为直角三角形分两种情况,当∠PCA=90°或∠P AC=90°时就可以求出相对应的t值;(4)设C点的坐标,表示出坐标的函数关系式确定C的运动轨迹的图象为线段,再根据条件就可以求出起点的坐标和终点的坐标,运用两点间的距离公式就可以求出其值.【解答】(1)证明:∵△ABC是等边三角形,∴∠BOA=60°,∵∠BPC=60°,∴∠BOA=∠BPC,∵∠PBA=∠BPC+∠CP A=∠BOA+∠OBP,∴∠CP A=∠OBP.(2)解:∵△AOB是等边三角形,∴OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°.∵PD⊥OB,∴∠PDO=90°,∴∠OPD=30°,∴OD=OP.∵OP=t,∴OD=t,∴BD=4﹣t.在Rt△OPD中,由勾股定理,得PD=t,如图1,过C作CE⊥OA于E,PD⊥OB于D,则∠PEC=∠PDB=90°,∵∠DBP=∠CPE∴△PCE∽△BPD,∴==,∴==,∴CE=t,PE=2﹣t,∴OE=OP+PE=2+t,∴C(2+t,t),当t=时,C(,).(3)解:如图3,当∠PCA=90度时,作CF⊥P A,∴△PCF∽△ACF,∴=,∴CF2=PF•AF,∵PF=2﹣t,AF=4﹣OF=2﹣t,CF=t,∴(t)2=(2﹣t)(2﹣t),解得t=2,此时P是OA的中点.如图2,当∠CAP=90°时,C的横坐标就是4,∴2+t=4,解得t=;(4)解:设C(x,y),∴x=2+t,y=t,∴y=x﹣,∴C点的运动痕迹是一条线段(0≤t≤4).当t=0时,C1(2,0),当t=4时,C2(5,),∴由两点间的距离公式得:C1C2=2.故点C运动路线的长为:2.【点评】本题属于几何变换综合题,主要考查了相似三角形的判定与性质,勾股定理的运用,等边三角形的性质,直角三角形的性质,旋转的性质,两点间的距离公式的运用.解决问题的关键是依据相似三角形对应边成比例列出比例式进行计算求解.。

北师大版九年级上册期中考试数学试卷含答案

北师大版九年级上册期中考试数学试卷含答案

北师大版九年级上册数学期中测试卷(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是( )A.2 B.-2 C.3 D.-32.一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.如果2是方程x2-3x+c=0的一个根,那么c的值是( )A.4 B.-4 C.2 D.-24.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1 B.2 C.3 D.45.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( ) A.14 B.12C.12或14 D.以上都不对6.下列命题正确的是( )A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x-11)=180 B.2x+2(x-11)=180C.x(x+11)=180 D.2x+2(x+11)=1808.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.359.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3 B.m<3C.m<3且m≠2 D.m≤3且m≠210.如图,矩形ABCD的对角线A C、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4 B.6 C.8 D.1011.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( )A .掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B .同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C .掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D .在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8 000元,则售价应定为( )A .60元B .80元C .60元或80元D .70元13.如图,正△AEF 的边长与菱形ABCD 的边长相等,点E 、F 分别在BC 、CD 上,则∠B 的度数是( )A .70°B .75°C .80°D .95°14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使平行四边形ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④15.如图,E ,F ,G ,H 分别是BD ,BC ,AC ,AD 的中点,且AB =CD ,下列结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG =12(BC -AD);⑤四边形EFGH 是菱形,其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共5小题,每小题5分,共25分)16.一元二次方程x 2+x =0的解是________________.17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =10,则AB =________.18.若x 1、x 2是方程2x 2-3x -4=0的两个根,则x 1x 2+x 1+x 2的值为________.19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)用适当的方法解方程:(1)x2-4x+3=0; (2)(x-2)(3x-5)=1.22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.25.(12分)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F.求证:AM =EF.26.(14分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x 元.(1)填表(不需化简):月(2)如果批发商希望通过销售这批T 恤获利9 000元,那么第二个月的单价应是多少元?27.(16分)已知:ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,那么ABCD 的周长是多少?参考答案1.C 2.D 3.C 4.C 5.B 6.D 7.C 8.C 9.D 10.C 11.B 12.C 13.C 14.B 15.C 16.x 1=0,x 2=-1 17.5 18.-12 19.23 20.2 221.(1)x 1=1,x 2=3.(2)x 1=11+136,x 2=11-136.22.证明:∵四边形ABCD 为矩形,∴∠A =∠B =90°,AD =BC. ∵∠AOC =∠BOD ,∴∠AOC -∠DOC =∠BOD -∠DOC ,即∠AOD =∠BOC. ∴△AOD ≌△BOC(AAS). ∴AO =OB.23.设这个增长率为x.依题意得20(1+x )2-20(1+x)=4.8. 解得x 1=0.2,x 2=-1.2(不合题意,舍去).0.2=20%. 答:这个增长率是20%. 24.(1)14(2)画树状图:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种, 所以他恰好买到雪碧和奶汁的概率为212=16. 25.证明:连接MC.∵在正方形ABCD 中,AD =CD ,∠ADM =∠CDM , 又∵DM =DM , ∴△ADM ≌△CDM. ∴AM =CM.∵ME ∥CD ,MF ∥BC ,∴四边形CEMF 是平行四边形. 又∵∠ECF =90°, ∴CEMF 是矩形. ∴EF =MC. 又∵AM =CM , ∴AM =EF.26.(1)80-x 200+10x 800-200-(200+10x)(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9 000,整理,得x 2-20x +100=0.解得x 1=x 2=10.当x =10时,80-x =70>50.所以第二个月的单价应是70元. 27.(1)∵四边形ABCD 是菱形,∴AB =AD.又∵Δ=m 2-4(m 2-14)=m 2-2m +1=(m -1)2,当(m -1)2=0时,即m =1时,四边形ABCD 是菱形.把m =1代入x 2-mx +m 2-14=0,得x 2-x +14=0.解得x 1=x 2=12.∴菱形ABCD 的边长是12.(2)把AB =2代入x 2-mx +m 2-14=0,得4-2m +m 2-14=0.解得m =52.把m =52代入x 2-mx +m 2-14=0,得x 2-52x +1=0.解得x 1=2,x 2=12.∴AD =12.∵四边形ABCD 是平行四边形, ∴ABCD 的周长是2(2+12)=5.。

北师大版九年级上册数学期中考试试卷及答案

北师大版九年级上册数学期中考试试卷及答案

北师大版九年级上册数学期中考试试题一、单选题1.用配方法将x 2﹣8x +5=0化成(x +a )2=b 的形式,则变形正确的是()A .(x ﹣4)2=11B .(x ﹣4)2=21C .(x ﹣8)2=11D .(x +4)2=112.如图,直线123l l l ,直线AC 分别交1l ,2l ,3l 于点A ,B ,C ,直线DF 分别交1l ,2l ,3l 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为()A .23B .35C .25D .523.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片,不放回,再另外抽取一张,抽取的两张卡片上数字之积为0的概率是()A .14B .716C .12D .344.已知关于x 的一元二次方程ax 2﹣4x ﹣2=0有实数根,则a 的取值范围是()A .a≥﹣2B .a >﹣2C .a≥﹣2且a≠0D .a >﹣2且a≠05.已知平行四边形ABCD 中,添加下列条件,其中能说明平行四边形ABCD 是矩形的是()A .AB BC=B .AC BD⊥C .AC BD=D .AC 平分BAD∠6.九年级(5)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了132本图书,如果设全组共有x 名同学,依题意,可列出的方程是()A .(1)132x x +=B .(1)132x x -=C .2(1)132x x +=D .1(1)1322x x +=7.如图,四边形ABCD 为菱形,对角线AC =6,BD =8,且AE 垂直于CD ,垂足为点E ,则AE 的长度为()A .485B .245C .185D .1258.如图,在矩形ABCD 中,,E F 分别是,BC AE 的中点,若 23,4CD AD ==,则DF 的长是()A .23B .3C .22D 69.若1x ,2x 是一元二次方程210x x +-=的两根,则211220202021x x x --的值为()A .2023B .2022C .2021D .202010.如图,在矩形ABCD 中,O 为AC 中点,EF AC ⊥交AB 于E ,点G 是AE 中点且∠AOG =30°,下列结论:(1)DC =3OG ;(2)OG =12BC ;(3) OGE 等边三角形;(4)S △AOE =16S 矩形ABCD ,正确的有()A .1个B .2个C .3个D .4个二、填空题11.在一个不透明的口袋中有若干个白球和3个黑球,小颖进行如下试验:随机摸出1个球,记录下颜色后放回,多次重复这个试验.通过大量重复试验后发现,摸到黑球的频率稳定在0.25,则原来口袋中有白球___个.12.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,AE ∥BD ,DE ∥AC .若5AC =,则四边形AODE 的周长为_______.13.AOB 的三个顶点坐标()5,0A ,()0,0O ,()3,6B ,以原点O 为位似中心,将AOB 缩小为'''AO B △,相似比为23,则点B 的对应点'B 的坐标是_______.14.如图,平面直角坐标系中,矩形AOCB 中,AB =A 的坐标为()1,2-,则点C 的坐标为________.15.如图,将直角三角形ABC 沿着AB 方向平移得到三角形DEF ,若6cm AB =,4cm BC =,1cm CH =,图中阴影部分的面积为221cm 4,则三角形ABC 沿着AB 方向平移的距离为__________cm .16.如图,AD 是ABC 的中线,点E 是线段AD 上的一点,且13AE AD =,CE 交AB 于点F .若6AF =cm ,则AB =_____cm .17.方程26x x =的根是________.三、解答题18.解方程:()2362x x -=-.19.如图,在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 边上一点,E 为AC 边上一点,且30ADE ∠=︒,求证:ABD DCE ∽△△.20.如图,某测量人员的眼睛A 与标杆顶端F 、电视塔顶端E 在同一条直线上,已知此人的眼睛到地面的距离AB=1.6m ,标杆FC=2.2m ,且BC=1m ,CD=5m ,标杆FC 、ED 垂直于地面.求电视塔的高ED .21.有四张正面分别标有数字-1,0,1,2的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机抽取一张不放回,将卡片上的数字记为m ,再随机地抽取一张,将卡片上的数字记为n .(1)请用画树状图或列表法写出(),m n 所有的可能情况;(2)求所选的(),m n 能在一次函数y x =-的图像上的概率.22.苏州某工厂生产一批小家电,2019年的出厂价是144元,2020年、2021年连续两年改进技术降低成本,2021年出厂价调整为100元.(1)这两年出厂价下降的百分比相同,求平均下降的百分率(精确到0.01%).(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,销售单价应为多少元?23.如图,矩形ABCD 中,16AB =,12BC =,P 为AD 上一点,将ABP △沿BP 翻折至EBP △,PE 与CD 相交于点O ,且OE OD =,BE 与CD 交于点G .(1)求证:AP DG =;(2)求线段AP 的长.24.如图,菱形ABCD 的对角线AC ,BD 交于点O ,BE ∥AC ,AE ∥BD ,EO 与AB 交于点F .(1)求证:四边形AEBO 是矩形;(2)若CD =3,求EO 的长.25.如图,平面直角坐标系中,四边形OABC 为矩形,点A ,B 的坐标分别为()8,0,()8,6,动点M ,N 分别从O ,B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动.过点M 作MP ⊥OA ,交AC 于P ,连接NP ,设M 、N 运动的时间为t 秒()04t <<.(1)P 点的坐标为(),PC =(用含t 的代数式表示);(2)求当t 为何值时,以C 、P 、N 为顶点的三角形与△ABC 相似;(3)在平面内是否存在一个点E ,使以C 、P 、N 、E 为顶点的四边形是菱形,若存在,请直接写出t 的值;若不存在,说明理由.参考答案1.A 【详解】x 2﹣8x +5=02816516x x -+=-+即()2411x -=故选A 2.C【分析】利用平行线分线段成比例可得答案.【详解】解:因为:123l l l ,所以:23AB DE BC EF ==,所以:25DE DF =.故选C .【点睛】本题考查的是平行线分线段成比例定理,掌握定理的实际含义是解题的关键.3.C 【解析】【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由图知,共有12种等可能结果,其中抽取的两张卡片上数字之积为0的有6种结果,∴抽取的两张卡片上数字之积为0的概率为61122=,故选:C .【点睛】本题考查了列表法与树状图法,解题的关键是利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.4.C【分析】根据一元二次方程的定义和判别式的意义得到0a ≠且()()24420a ∆=--⨯-≥,然后求出两不等式的公共部分即可.【详解】解:根据题意得0a ≠且()()24420a ∆=--⨯-≥,解得2a ≥-且0a ≠.故答案为:C .【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.5.C 【解析】【分析】根据矩形的判定定理和菱形的判定定理分别对各个选项进行判断即可.【详解】解:A 、∵四边形ABCD 是平行四边形,AB=BC ,∴平行四边形ABCD 是菱形,故本选项不符合题意;B 、∵四边形ABCD 是平行四边形,AC ⊥BD ,∴平行四边形ABCD 是菱形,故本选项不符合题意;C 、∵四边形ABCD 是平行四边形,AC=BD ,∴四边形ABCD 是矩形,故本选项符合题意;D 、∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC=∠ACB ,∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴∠ACB=∠BAC ,∴平行四边形ABCD是菱形,故本选项不符合题意;故选:C.【点睛】本题考查了矩形的判定定理、菱形的判定定理、平行四边形的性质、等腰三角形的判定等知识,掌握矩形的判定和菱形的判定是解题的关键.6.B【解析】【分析】如果设全组共有x名同学,那么每名同学要赠送(x﹣1)本,有x名学生,那么总互共送x (x﹣1)本,根据全组共互赠了132本图书即可得出方程.【详解】x-本;解:设全组共有x名同学,那么每名同学送出的图书是(1)x x-;则总共送出的图书为(1)又知实际互赠了132本图书,x-=.则x(1)132故选:B.【点睛】考查的是列一元二次方程,本题要读清题意,弄清每名同学送出的图书是(x﹣1)本是解决本题的关键.7.B【解析】【分析】根据菱形的性质得出CO、DO的长,在Rt△COD中求出CD,利用菱形面积等于对角线乘积的一半,也等于CD×AE,可得出AE的长度.【详解】解:如图,∵四边形ABCD 是菱形,114,3,,22DO BD CO AC AC BD ∴====⊥5CD ∴==116824.22ABCD S AC BD ∴=⋅=⨯⨯=ABCD S CD AE=⨯ ∴CD×AE=24,∴AE=245.故选:B .【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.8.A 【解析】【分析】结合矩形的性质,勾股定理,利用SAS 证明DAF AEB ∆≅∆,进而可求解.【详解】解: 四边形ABCD 为矩形,CD =,4=AD ,//AD BC ,90B ∴∠=︒,4BC AD ==,AB CD ==,DAF AEB ∠=∠,E 为BC 的中点,2BE ∴=,4AE ∴=,AD AE ∴=,F 点为AE 的中点,2AF ∴=,AF BE ∴=,()DAF AEB SAS ∴∆≅∆,DF AB ∴==.故选:A .【点睛】本题主要考查勾股定理,矩形的性质,全等三角形的性质与判定,证明DAF AEB ∆≅∆是解题的关键.9.B【解析】【分析】利用一元二次方程根的定义以及根与系数的关系计算即可求出值.【详解】解:∵x 1,x 2是一元二次方程x 2+x-1=0的两根,∴x 1+x 2=-1,且x 12+x 1-1=0,即x 12+x 1=1,则原式=x 12+x 1-2021(x 1+x 2)=1+2021=2022.故选:B .【点睛】本题考查了根与系数的关系,以及方程的根,熟练掌握根与系数的关系是解本题的关键.10.C【解析】【分析】根据矩形的性质、等边三角形的判定、勾股定理逐一判断即可;【详解】∵点G 是AE 中点,EF AC ⊥,∴12OG AG GE AE ===,∵∠AOG =30°,∴30OAG AOG ∠=∠=︒,90903060GOE AOG ∠=︒-∠=︒-︒=︒,∴ OGE 等边三角形,故(3)正确;设2AE a =,则OE OG a ==,由勾股定理得,AO ===,∵O 为AC 中点,∴2AC AO ==,在Rt ABC 中,30CAB ∠=︒,∴12BC AC ==,由勾股定理得,3AB a =,∵四边形ABCD 是矩形,∴3CD AB a ==,∴DC =3OG ,故(1)正确;∵OG a =,12BC =,∴12OG BC ≠,故(2)错误;∵2122AOE S a a ==△,2=3ABCD S a =矩形,∴16AOE ABCD S S = 矩形,故(4)正确;综上所述,正确的结论有(1)(3)(4);故答案选C .【点睛】本题主要考查了矩形的性质、等边三角形的判定与性质、勾股定理,准确计算是解题的关键.11.9.【解析】【分析】设口袋中白球的个数为x ,根据摸到黑球的频率稳定在0.25及摸到黑球的概率为0.25,据此列出关于x 的方程,解之可得答案.【详解】解:设口袋中白球的个数为x ,根据题意,得:33x+=0.25,解得x=9,检验:当x=9时,3+x=12≠0,∴x=9是分式方程的解,且符合题意,∴原来口袋中有白球9个,故答案为:9.12.10【分析】根据AE∥BD,DE∥AC,可得到四边形AODE是平行四边形,再由四边形ABCD是矩形,可证得四边形AODE是菱形,即可求解.【详解】解:∵AE∥BD,DE∥AC,∴四边形AODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∴AO=DO,∴四边形AODE是菱形,∴AO=DO=DE=AE,∵5AC=,∴52 AO=,∴四边形AODE的周长为54102⨯=.故答案为:1013.(2,4)或(-2,-4)【解析】【分析】根据位似变换的性质解答即可.【详解】解:∵△AOB顶点B的坐标为(3,6),以原点O为位似中心,相似比为23,将△AOB缩小,∴点B 的对应点B′的坐标为22(3,6)33⨯⨯或22(3(),6())33⨯-⨯-,即(2,4)或(-2,-4),故答案为:(2,4)或(-2,-4).14.(4,2)【分析】过点A 作AD x ⊥轴于D ,过点C 作CE x ⊥轴于E ,这样易得AOD OCE ∽△△,再根据已知条件求得线段OE ,CE 的长,即可求得点C 坐标.【详解】解:过点A 作AD x ⊥轴于D ,过点C 作CE x ⊥轴于E ,在矩形AOCB 中,OC AB ==90AOC ∠=︒,∵点A 的坐标为()1,2-,∴1OD =,2AD =,∴在Rt AOD 中,AO ===易知DAO AOD AOD COE ∠+∠=∠+∠,∴DAO COE ∠=∠,又∵90ADO OEC ∠=∠=︒,∴AOD OCE ∽△△,∴AD OD AO OE CE OC ==,∵12AO OC =,∴12AD OD OE CE ==,∴24OE AD ==,22CE OD ==,∴点C 的坐标为(4,2),故答案为:(4,2).15.32【分析】根据题意,计算得HB ;再根据阴影部分的面积ABC DBH S S =-△△,通过求解一元一次方程得DB ,从而得AD ,即可得到答案.【详解】解:根据题意,得413HB BC CH cm =-=-=,∵90ABC ∠=︒,∴三角形DBH 为直角三角形,∴21122ABC S AB BC cm =⨯= ,1322DBH S DB HB DB =⨯=△,根据题意得:阴影部分的面积ABC DBH S S =-△△,且阴影部分的面积为221cm 4,∴3211224DB -=,∴92DB cm =,∴93622AD AB DB cm =-=-=,即三角形ABC 沿着AB 方向平移的距离为32cm ,故答案为:32.16.30【解析】过A 作AG ∥BC ,交CF 的延长线于G ,依据相似三角形的对应边成比例,即可得到12AG AE DC DE ==,进而得出BF=4AF=24cm ,可得AB 的长度.【详解】解:如图所示,过A 作AG ∥BC ,交CF 的延长线于G ,∵AE=13AD ,AG ∥BC ,∴△AEG ∽△DEC ,∴12AG AE DC DE ==,又∵AD 是△ABC 的中线,∴BC=2CD ,∴14AGBC =,∵AG ∥BC ,∴△AFG ∽△BFC ,∴14AFAGBF BC ==,∴BF=4AF=24(cm),∴AB=AF+BF=30(cm),故答案为:30.17.0x =或6x =【解析】用因式分解法解方程即可.【详解】移项,得260,x x -=提公因式,得x(x−6)=0,∴x=0或x−6=0,解得x=0或x=6.故答案为0x =或6x =.18.x1=3,x2=1.【解析】先移项整理,再根据因式分解法即可求解.【详解】解:移项,得(x−3)2+2(x−3)=0,因式分解得(x−3)(x−3+2)=0,∴x-3=0或x-1=0,∴x1=3,x2=1.19.见解析【分析】利用三角形的外角性质证明∠EDC=∠DAB,即可证明△ABD∽△DCE.【详解】证明:∵AB=AC,且∠BAC=120°,∴∠ABD=∠ACB=30°,∵∠ADE=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE.20.5.2米【详解】试题分析:作AH⊥ED交FC于点G,根据题意得出AH=BD,AG=BC,然后根据平行线截线段成比例得出答案.试题解析:作AH⊥ED交FC于点G;如图所示:∵FC⊥BD,ED⊥BD,AH⊥ED交FC于点G,∴FG∥EH,∵AH⊥ED,BD⊥ED,AB⊥BC,ED⊥BC,∴AH=BD,AG=BC,∵AB=1.6,FC=2.2,BC=1,CD=5,∴FG=2.2﹣1.6=0.6,BD=6,∵FG∥EH,∴,解得:EH=3.6,∴ED=3.6+1.6=5.2(m)答:电视塔的高ED 是5.2米.考点:平行线截线段成比例21.(1)(-1,0),(-1,1),(-1,2),(0,-1),(0,1)(0,2),(1,-1),(1,0),(1,2),(2,-1),(2,0),(2,1);(2)16【解析】(1)根据题意画出树状图,即可求出(m ,n )所有的可能情况;(2)求出所选的m ,n 能在一次函数y x =-的图像上的情况数,再根据概率公式列式计算即可.【详解】解:(1)画树状图如下:则(m ,n )所有的可能情况是(-1,0),(-1,1),(-1,2),(0,-1),(0,1)(0,2),(1,-1),(1,0),(1,2),(2,-1),(2,0),(2,1).(2)所选的(m ,n )能在一次函数y x =-的图像上的情况有:(-1,1),(1,-1)共2种所以,所选的(),m n 能在一次函数y x =-的图像上的概率:21126=22.(1)16.67%;(2)125元【分析】(1)设平均下降的百分率为x ,根据2021年的出厂价=2019年的出厂价×(1-下降率)2,即可得出关于x 的一元二次方程,解之取其合适的值即可得出结论;(2)设销售单价应为y 元,则每台的销售利润为(y-100)元,每天的销售量为(300-2y )台,根据每天盈利=每台的利润×每天的销售量,即可得出关于y 的一元二次方程,解之即可得出结论.【详解】解:(1)设平均下降的百分率为x ,依题意得:144(1-x )2=100,解得:x 1=16≈16.67%,x 2=116(不合题意,舍去).答:平均下降的百分率约为16.67%.(2)设销售单价应为y 元,则每台的销售利润为(y-100)元,每天的销售量为20+()101405y -=(300-2y )台,依题意得:(y-100)(300-2y )=1250,整理得:y 2-250y+15625=0,解得:y 1=y 2=125.答:销售单价应为125元.23.(1)见解析;(2)9.6【分析】(1)由折叠的性质得出EP AP =,90E A ∠=∠=︒,16BE AB ==,由ASA 证明ODP OEG ∆≅∆,得出OP OG =,PD GE =,即可得出结论;(2)由折叠的性质得出EP AP =,90E A ∠=∠=︒,16BE AB ==,由(1)得出AP EP DG ==,设AP EP x ==,则12PD GE x ==-,DG x =,求出CG 、BG ,根据勾股定理得出方程,解方程即可.【详解】证明:(1) 四边形ABCD 是矩形,90D A C ∴∠=∠=∠=︒,12AD BC ==,16CD AB ==,根据题意得:ABP EBP ∆≅∆,EP AP ∴=,90E A ∠=∠=︒,16BE AB ==,在ODP ∆和OEG ∆中,D E OD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ODP OEG ASA ∴∆≅∆,OP OG ∴=,PD GE =,DG EP ∴=,AP DG ∴=;(2)如图所示, 四边形ABCD 是矩形,90D A C ∴∠=∠=∠=︒,12AD BC ==,16CD AB ==,根据题意得:ABP EBP ∆≅∆,EP AP ∴=,90E A ∠=∠=︒,16BE AB ==,由(1)知AP DG =,又AP EP = ,AP EP DG ∴==,设AP EP x ==,则12PD GE x ==-,DG x =,16CG x ∴=-,16(12)4BG x x =--=+,根据勾股定理得:222BC CG BG +=,即222(16)(412)x x +-=+,解得:9.6x =,9.6AP ∴=.24.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∵BE ∥AC ,AE ∥BD ,∴四边形AEBO 是平行四边形.∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠AOB =90°.∴四边形AEBO 是矩形.(2)解:∵四边形AEBO 是矩形,∴EO =AB ,在菱形ABCD 中,AB =CD ,∴EO =CD =3.25.(1)3,64t t ⎛⎫- ⎪⎝⎭;54t ;(2)t=12841;(3)329t =或83.【解析】(1)根据题意表示出OM 的长度,即求出P 点的横坐标,然后根据△APM ∽△ACO 即可表示出PM 和AP 的长度,即求出点P 的纵坐标和PC 的长度;(2)当CNP CBA △∽△时,PN BA ∥,可得点P 和点N 的横坐标相等,然后列方程求解即可,当CPN CBA △∽△时,分别表示出CN ,CP 的长度,根据相似三角形对应边成比例列方程求解即可;(3)当四边形CPEN 是菱形时,可得CP=CN ,分别表示出CP 和CN 的长度列方程求解即可;当四边形CPNE 是菱形时,根据菱形的性质可得N 点的横坐标是P 点横坐标的两倍,列方程求解即可;当四边形CEPN 是菱形时,根据菱形的性质得到CN=PN ,列方程求解即可.【详解】解:(1)∵点A ,B 的坐标分别为()8,0,()8,6,∴CO=6,AO=8,∴10AC ===,∵点M 以每秒1个单位的速度运动,运动的时间为t 秒,∴OM=t ,AM=AO-OM=8-t ,∴P 点的横坐标为t ,∵MP ⊥OA ,∴CO PM ∥,∴COA PMA ∠=∠,又∵CAO PAM ∠=∠,∴APM ACO △∽△,∴=PM AM AP CO AO AC =,即86810PM t AP -==,解得:364tPM =-,5104tAP =-,∴点P 的坐标为364t t ⎛⎫- ⎪⎝⎭,,∴55101044t tPC AC AP ⎛⎫=-=--= ⎪⎝⎭;(2)由(1)可知点P 的坐标为364t t ⎛⎫- ⎪⎝⎭,,由题意可知,BN=t ,∴CN=8-t ,∴点N 的坐标为()86t -,,当CNP CBA △∽△时,由题意可得PN BA ∥,∴点P 和点N 的横坐标相等,∴8t t -=,解得:t=4,∵04t <<,∴应舍去.当CPN CBA △∽△时,∴CP CNBC AC =,即584810tt-=,解得:12841t =.(3)如图所示,当四边形CPEN是菱形时,∴CP=CN ,∵CP=54t,CN=8-t ,∴584t t =-,解得:329t =;如图所示,当四边形CPNE 是菱形时,根据菱形的性质可得,PE 垂直平分CN ,∴N 点的横坐标是P 点横坐标的两倍,∴8-t=2t ,解得:83t =;如图所示,当四边形CEPN 是菱形时,根据菱形的性质可得CN=PN ,∴8t -=,整理得:2572560t t -=,解得:10t =(舍去),2256457t =>,应舍去;综上所述,329t =或83.【点睛】此题考查了矩形的性质和动点问题,相似三角形的判定和性质,解题的关键是根据题意表示出点P和点N的坐标.。

2019-2020学年北师大版九年级数学上册期中测试题及答案

2019-2020学年北师大版九年级数学上册期中测试题及答案

2019-2020学年九年级数学第一学期期中考试题本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分,考试时间为120分钟。

答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置。

考试结束后,只交答题卡。

第Ⅰ卷 (选择题 共60分)一、选择题(本题共15个小题,每题只有一个正确答案,每小题4分,共60分) 1.下列各点在反比例函数y=x6图像上的是( ) A(2,-3) B(2,4) C(-2,3) D(2,3) 2.右图所示的几何体的俯视图是( )A B C D3.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )4.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是 ( ) A.61 B.41 C. D. 5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .21B .41 C . 61D .1216.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12B .9C .4D .313127.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为( )A.1 B .2 C.3 D. 4第7题 图 第8题 图 第9题图 第10题图8.如图,下列条件不能..判定△ADB ∽△ABC 的是( ) A .∠ABD =∠ACB B .∠ADB =∠ABC B .AB 2=AD •AC D .AD ABAB BC=9.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:110.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( ) A .(2,1)B .(2,0)C .(3,3)D .(3,1)11.已知点A (-2,y 1),B (-3,y 2)是反比例函y=x6-图象上的两点,则有( ) A .y 1>y 2 B .y 1<y 2 C .y 1= y 2 D.不能确定 12.函数xay =(0≠a )与a ax y -=(0≠a )在同一平面直角坐标系中的大致图象是( )ACBD13.某村耕地总面积为 50 公顷,且该村人均耕地面积 y (单位:公顷/人)与总人口x (单位:人)的函数图象如图 所示,则下列说法正确的是( ) A .该村人均耕地面积随总人口的增多而增多 B .该村人均耕地面积 y 与总人口 x 成正比例 C .若该村人均耕地面积为 2 公顷,则总人口有 100 人 D .当该村总人口为 50 人时,人均耕地面积为 1 公顷14.如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF=x (0.2≤x≤0.8),EC=y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )A B C D15.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N 。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版2019-2020学年数学精品资料江西省赣州市信丰县九年级(上)期中数学试卷一.选择题(每小题3分,共18分)1.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x≤2 C.x>2 D.x≥22.方程x2﹣8x=0的解是()A.x1=0 x2=8 B.x=8 C.x=0 D.无解3.下列图形中,对称轴条数最多的是()A.B.C.D.4.将二次三项式x2﹣4x+1配方后得()A.(x﹣2)2+3 B.(x﹣2)2﹣3 C.(x+2)2+3 D.(x+2)2﹣35.下列式子中,不能与合并的是()A.B.﹣C.D.6.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2013为止,则AP2013等于()A.2011+671B.2012+671C.2013+671D.2014+671二.填空题(每题3分,共24分)7.点A(﹣2,﹣3)关于原点的对称点为A′,则A′点的坐标为_________.8.化简的结果是_________.9.如图,AC经过⊙O的圆心O,AB与⊙O相切于点B,若∠A=50°,则∠C=_________度.10.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=_________度.11.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为_________.12.已知⊙O1与⊙O2的半径分别是2cm和5cm,圆心距是O1O2=3cm,则两圆的位置关系是_________.13.已知xy=3,则x=_________.14.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为_________cm.三.(本大题共两小题,每题5分,共10分)15.(5分)解方程:(x+2)2﹣5(x+2)=0.16.(5分)先化简,再求值:÷+1,在0,,2三个数中选一个合适的,代入求值.四.(本大题共两小题,每题6分,共12分)17.(6分)(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.18.(6分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果=6,求x的值.五.(本大题共两小题,每题8分,共16分)19.(8分)(2005•长沙)己知一元二次方程x2﹣3x+m﹣1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.20.(8分)已知:一个三角形两边长分别是6和8,第三边长x2﹣16x+60=0的一个实数根,试求第三边的长及该三角形的面积.六.(本大题共两小题,每题9分,共18分)21.(9分)(2010•天津)已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.(9分)如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,求PA+PB的最小值.七.(本大题共两小题,第23题10分,第24题12分,共22分)23.(10分)某市大力建设廉租房,2010年投资了24.5亿元人民币建了廉租房100万平方米.之后廉租房的总面积每年递增,且增长率相等,第三年共建廉租房121万平方米.(1)用科学记数法表示:24.5亿=_________万;(2)求廉租房建筑面积的年增长率;(3)若其中后两年的建房成本按每年10.7%的增长率上涨,该市后两年建廉租房共需投入约多少亿元人民币?(精确到0.1亿元)24.(12分)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A1A0B1=α(α<∠A1A0B1),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;θ6=_________,(2)图1中,连接A0H时,在不添加其他辅助线的情况下,直线A0H是否垂直平分线段A2B1?答:_________;请说明你的理由;归纳与猜想设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α().(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数.参考答案一.选择题(每小题3分,共18分)1.D2.A3.B4.B5.D6.C二.填空题(每题3分,共24分)7.(2,3).8.2.9.20度.10.90度.11.8.12.内切.13.±.14.cm.三.(本大题共两小题,每题5分,共10分)15.解:方程分解因式得:(x+2)(x+2﹣5)=0,可得x+2=0或x﹣3=0,解得:x1=﹣2,x2=3.16.解:原式=÷=•=,当x=时,原式=.四.(本大题共两小题,每题6分,共12分)17.解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.18.解:根据例题可得=(x+1)2﹣(1﹣x)(x﹣1)=6,整理得:2x2=4,两边直接开平方得:x=±.五.(本大题共两小题,每题8分,共16分)19.解:(1)∵方程有两个不相等的实数根,∴△>0,解得m<.(2)∵方程有两个相的等的实数根,∴△=0,即9﹣4(m﹣1)=0解得m=∴方程的根是:x1=x2=.20.解:∵x2﹣16x+60=0,∴x1=10,x2=6,∴三角形的第三边是6或10.当第三边是10时,三角形是直角三角形,∴三角形的面积为:=24;当第三边是6时,三角形是等腰三角形,由勾股定理可以求出地边上的高为:2.∴三角形的面积为:=8答:三角形的第三边长为10或6,面积为24或8.六.(本大题共两小题,每题9分,共18分)21.解:(1)∵AB是⊙O的直径,AP是切线,∴∠BAP=90°.在Rt△PAB中,AB=2,∠P=30°,∴BP=2AB=2×2=4.由勾股定理,得.(5分)(2)如图,连接OC、AC.∵AB是⊙O的直径,∴∠BCA=90°,又∵∠ACP=180°﹣∠BCA=90°.在Rt△APC中,D为AP的中点,∴.∴∠4=∠3.又∵OC=OA,∴∠1=∠2.∵∠2+∠4=∠PAB=90°,∴∠1+∠3=∠2+∠4=90°.即OC⊥CD.∴直线CD是⊙O的切线.(8分)22.解:∵MN=20,∴⊙O的半径=10,连接OA、OB,在Rt△OBD中,OB=10,BD=6,∴OD==8,同理,在Rt△AOC中,OA=10,AC=8,∴OC==6,∴CD=8+6=14,作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,在Rt△AB′E中,∵AE=AC+CE=8+6=14,B′E=CD=14,∴AB′=14,∴PA+PB的最小值是14.七.(本大题共两小题,第23题10分,第24题12分,共22分)23.解:(1)∵24.5亿=2450000000,∴2450000000÷10000=245000万.故答案为:245000;(2)设廉租房建筑面积的年增长率为x,由题意,得100(1+x)2=121,解得:x1=0.1,x2=﹣2.1(舍去),∴x=0.1=10%.答:廉租房建筑面积的年增长率10%;(3)由题意,得第二年的投入为:24.5×(1+10.7%)=27.1亿元;第三年的投入为:27.1215×(1+10.7%)=30.0亿元;∴后两年建廉租房共需投入:27.1+30=57.1亿元.24.解:(1)60°﹣α,α,36°﹣α.α;(2)是图1中直线A0H垂直平分A2B1,证明如下:证明:∵△A0A1A2与△B0B1B2是全等的等边三角形,∴A0A2=A0B1,∴∠A0A2B1=∠A0B1A2.又∵△A0A1A2与△A0B1B2是等边三角形,∴∠A0A2H=∠A0B1H=60°.∴∠HA2B1=∠HB1A2.∴A2H=B1H.∴点H在线段A2B1的垂直平分线上.又∵A0A2=A0B1,∴点A0在线段A2B1的垂直平分线上.∴直线A0H垂直平分A2B1.(3)当n为奇数时,;当n为偶数时,θn=α.。

相关文档
最新文档