2016年无锡市查桥中学中考数学模拟试卷

合集下载

无锡市2016年中考数学试题

无锡市2016年中考数学试题

新课标第一网系列资料
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;
大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,
欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,
只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

薄雾浓云愁永昼,瑞脑消金兽。

佳节又重阳,玉枕纱厨,半夜凉初透。

东篱把酒黄昏后,有暗香盈袖。

莫道不消魂,帘卷西风,人比黄花瘦。

江苏省无锡市2016年中考数学真题试题(含参考答案)

江苏省无锡市2016年中考数学真题试题(含参考答案)

22.如图,OA=2,以点 A 为圆心,1 为半径画⊙A 与 OA 的延长线交于点 C,过点 A 画 OA 的垂线,垂线与 ⊙A 的一个交点为 B,连接 BC (1)线段 BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题: ①以点 为圆心,以线段 的长为半径画弧,与射线 BA 交于点 D,使线段 OD 的长 等于 ②连 OD,在 OD 上画出点 P,使 OP 得长等于,请写出画法,并说明理由.
(1)求经销成本 p(万元)与销售额 y(万元)之间的函数关系式; (2)分别求该公司 3 月,4 月的利润; (3)问:把 3 月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额 比同期用线下方式销售所能获得的利润总额至少多出 200 万元?(利润=销售额﹣经销成本) 26.已知二次函数 y=ax2﹣2ax+c(a>0)的图象与 x 轴的负半轴和正半轴分别交于 A、B 两点,与 y 轴交 于点 C,它的顶点为 P,直线 CP 与过点 B 且垂直于 x 轴的直线交于点 D,且 CP:PD=2:3 (1)求 A、B 两点的坐标; (2)若 tan∠PDB=,求这个二次函数的关系式.
17.如图,已知▱OABC 的顶点 A、C 分别在直线 x=1 和 x=4 上,O 是坐标原点,则对角线 OB 长的最小值为 .
18.如图,△AOB 中,∠O=90°,AO=8cm,BO=6cm,点 C 从 A 点出发,在边 AO 上以 2cm/s 的速度向 O 点运 动,与此同时,点 D 从点 B 出发,在边 BO 上以 1.5cm/s 的速度向 O 点运动,过 OC 的中点 E 作 CD 的垂线 EF,则当点 C 运动了 s 时,以 C 点为圆心,1.5cm 为半径的圆与直线 EF 相切.

2016年江苏省无锡市中考数学试卷

2016年江苏省无锡市中考数学试卷

2016年江苏省无锡市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•无锡)﹣2的相反数是()A.B.±2 C.2 D.﹣2.(3分)(2016•无锡)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠23.(3分)(2016•无锡)sin30°的值为()A.B.C.D.4.(3分)(2016•无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.75.(3分)(2016•无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.6.(3分)(2016•无锡)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°7.(3分)(2016•无锡)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm28.(3分)(2016•无锡)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直9.(3分)(2016•无锡)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或610.(3分)(2016•无锡)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3 D.2二、填空题:本大题共8小题,每小题2分,共16分11.(2分)(2016•无锡)分解因式:ab﹣a2=______.12.(2分)(2016•无锡)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为______.13.(2分)(2016•无锡)分式方程=的解是______.14.(2分)(2016•无锡)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m 的值为______.15.(2分)(2016•无锡)写出命题“如果a=b”,那么“3a=3b”的逆命题______.16.(2分)(2016•无锡)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是______.17.(2分)(2016•无锡)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为______.18.(2分)(2016•无锡)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了______s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.三、解答题:本大题共10小题,共84分19.(8分)(2016•无锡)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)20.(8分)(2016•无锡)(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.21.(8分)(2016•无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.22.(8分)(2016•无锡)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于______;(2)请在图中按下列要求逐一操作,并回答问题:①以点______为圆心,以线段______的长为半径画弧,与射线BA交于点D,使线段OD 的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.23.(6分)(2016•无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3 10 0.203<x≤6 a 0.246<x≤9 16 0.329<x≤12 6 0.1212<x≤15 m b15<x≤18 2 n根据以上图表信息,解答下列问题:(1)表中a=______,b=______;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?24.(8分)(2016•无锡)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)25.(10分)(2016•无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)26.(10分)(2016•无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x 轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.27.(10分)(2016•无锡)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.28.(8分)(2016•无锡)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?2016年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•无锡)﹣2的相反数是()A.B.±2 C.2 D.﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是2;故选C.2.(3分)(2016•无锡)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:依题意有:2x﹣4≥0,解得x≥2.故选:B.3.(3分)(2016•无锡)sin30°的值为()A.B.C.D.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A.4.(3分)(2016•无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.7【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.5.(3分)(2016•无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.6.(3分)(2016•无锡)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.7.(3分)(2016•无锡)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.8.(3分)(2016•无锡)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.9.(3分)(2016•无锡)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6【分析】设直线y=x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x﹣b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.【解答】解:设直线y=x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x ﹣b于点D,如图所示.∵直线y=x﹣1与x轴交点为C,与y轴交点为A,∴点A(0,﹣1),点C(,0),∴OA=1,OC=,AC==,∴cos∠ACO==.∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,∴∠BAD=∠ACO.∵AD=3,cos∠BAC==,∴AB=5.∵直线y=x﹣b与y轴的交点为B(0,﹣b),∴AB=|﹣b﹣(﹣1)|=5,解得:b=﹣4或b=6.故选D.10.(3分)(2016•无锡)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3 D.2【分析】首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.二、填空题:本大题共8小题,每小题2分,共16分11.(2分)(2016•无锡)分解因式:ab﹣a2=a(b﹣a).【分析】直接把公因式a提出来即可.【解答】解:ab﹣a2=a(b﹣a).故答案为:a(b﹣a).12.(2分)(2016•无锡)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 5.7×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107.13.(2分)(2016•无锡)分式方程=的解是x=4.【分析】首先把分式方程=的两边同时乘x(x﹣1),把化分式方程为整式方程;然后根据整式方程的求解方法,求出分式方程=的解是多少即可.【解答】解:分式方程的两边同时乘x(x﹣1),可得4(x﹣1)=3x解得x=4,经检验x=4是分式方程的解.故答案为:x=4.14.(2分)(2016•无锡)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m 的值为﹣1.【分析】由A、B点的坐标结合反比例函数图象上点的坐标特征即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:∵点A(1,﹣3),B(m,3)在同一反比例函数的图象上,∴1×(﹣3)=3m,解得:m=﹣1.故答案为:﹣1.15.(2分)(2016•无锡)写出命题“如果a=b”,那么“3a=3b”的逆命题如果3a=3b,那么a=b.【分析】先找出命题的题设和结论,再说出即可.【解答】解:命题“如果a=b”,那么“3a=3b”的逆命题是:如果3a=3b,那么a=b,故答案为:如果3a=3b,那么a=b.16.(2分)(2016•无锡)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是3.【分析】根据矩形的面积公式,可得关于AD的方程,根据解方程,可得答案.【解答】解:由边AB的长比AD的长大2,得AB=AD+2.由矩形的面积,得AD(AD+2)=15.解得AD=3,AD=﹣5(舍),故答案为:3.17.(2分)(2016•无锡)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【分析】当B在x轴上时,对角线OB长的最小,由题意得出∠ADO=∠CEB=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.【解答】解:当B在x轴上时,对角线OB长的最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5;故答案为:5.18.(2分)(2016•无锡)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s 时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:三、解答题:本大题共10小题,共84分19.(8分)(2016•无锡)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)【分析】(1)原式利用绝对值的代数意义,乘方的意义,以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=5﹣9﹣1=﹣5;(2)a2﹣2ab+b2﹣a2+2ab=b2.20.(8分)(2016•无锡)(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.【分析】(1)根据解一元一次不等式的步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;(2)用加减法消去未知数y求出x的值,再代入求出y的值即可.【解答】解:(1)2x﹣3≤(x+2)去分母得:4x﹣6≤x+2,移项,合并同类项得:3x≤8,系数化为1得:x≤;(2).由①得:2x+y=3③,③×2﹣②得:x=4,把x=4代入③得:y=﹣5,故原方程组的解为.21.(8分)(2016•无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE 和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.22.(8分)(2016•无锡)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD 的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【分析】(1)由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;(2)①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;②根据线段的三等分点的画法,结合OA=2AC,即可得出结论.【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.23.(6分)(2016•无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3 10 0.203<x≤6 a 0.246<x≤9 16 0.329<x≤12 6 0.1212<x≤15 m b15<x≤18 2 n根据以上图表信息,解答下列问题:(1)表中a=12,b=0.08;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【分析】(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b的值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.【解答】解:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b==0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=672(人),答:该校在上学期参加社区活动超过6次的学生有672人.24.(8分)(2016•无锡)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有4种情况,确保两局胜的有3种,所以,P=.25.(10分)(2016•无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)【分析】(1)设p=kx+b,(100,60),(200,110)代入即可解决问题.(2)根据利润=销售额﹣经销成本,即可解决问题.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.【解答】解:(1)设p=kx+b,(100,60),(200,110)代入得解得,∴p=x+10,.(2)∵x=150时,p=85,∴三月份利润为150﹣85=65万元.∵x=175时,p=97.5,∴四月份的利润为175﹣97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元∵5月份以后的每月利润为90万元,∴65+77.5+90(x﹣2)﹣40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元26.(10分)(2016•无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x 轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a的值,最后将A(或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.27.(10分)(2016•无锡)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.【分析】(1)如图1,易证S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,从而可得S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题.【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.28.(8分)(2016•无锡)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【分析】(1)根据d=FH2,求出EH2即可解决问题.(2)假设C n D n与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由r÷r=2+2≈4.8,求出n即可解决问题.【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.参与本试卷答题和审题的老师有:lantin;HJJ;zgm666;曹先生;ZJX;梁宝华;三界无我;神龙杉;弯弯的小河;HLing;gbl210;放飞梦想;zjx111;2300680618;sks;****************;sd2011;星期八;1160374(排名不分先后)菁优网2016年9月21日。

2016年中考数学模拟试卷(含答案解析) (12)

2016年中考数学模拟试卷(含答案解析) (12)

2016届九年级第一次模拟考试数学试题卷 (梁溪区) 2016.4本试卷分试题和答题卷两部分,所有答案一律写在答题卷上. 考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、考试号等信息填写在答题卷的相应位置上,并仔细核对确保无误.2.答选择题必须用2B 铅笔将答题卷上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卷上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果. 一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题..卷.上相应的答案......涂黑.) 1.-3的绝对值是…………………………………………………………………………( ▲ )A .3B .-3C .13D .-132.计算(-xy 3)2的结果是…………………………………………………………………( ▲ )A .x 2y 6B .-x 2y 6C .x 2y 9D .-x 2y 93.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =40º,则∠ECD 的度数是………………( ▲ ) A .70º B .60º C .50º D .40º4.有6个相同的小正方体搭成的几何体如图所示,则它的主视图是………………( ▲ )5.下列调查中,适宜采用普查方式的是………………………………………………( ▲ ) A .了解一批圆珠笔的使用寿命 B .了解全国九年级学生身高的现状C .考察人们保护海洋的意识D .检查一枚用于发射卫星的运载火箭的各零部件6. 若⎩⎪⎨⎪⎧x =1y =2是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为………………( ▲ )A. -5B. -1C. 2D. 77.直线y =2x +2沿y 轴向下平移6个单位后与y 轴的交点坐标是…………………( ▲ )(第3题)A. B. C. D.(第4题)(第9题)A .(0,2)B .(0,8)C .(0,4)D .(0,-4)8.如图,已知菱形ABCD 的对角线AC 、BD 的长分别是6cm 、8cm ,AE ⊥BC ,垂足为点E ,则AE 的长是………………………………………………………………………( ▲ )A .532 cmB .25cmC .485cmD .245cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为……………( ▲ ) A. 92 B. 133 C. 4313 D. 2 5 10. 如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 边的中点,过D 作DE ⊥BC 于点E ,点P 是边BC 上的一个动点,AP 与CD 相交于点Q .当AP +PD 的值最小时,AQ 与PQ 之间的数量关系是………………………………………………………………( ▲ )A .AQ =5 2 PQ B .AQ =3PQ C .AQ = 83PQ D .AQ =4PQ二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题..卷.相应位置....上.) 11.函数y =x +2中自变量x 的取值范围是 ▲ . 12.因式分解ab 3-4ab = ▲ .13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为 ▲ . 14.已知扇形的圆心角为60º,半径为6cm ,则扇形的弧长为 ▲ cm.15.已知反比例函数的图象经过点(m ,4)和点(8,-2),则m 的值为 ▲ .16. 如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为 ▲ .17.如图,C 、D 是线段AB 上两点,且AC =BD =16AB =1,点P 是线段CD 上一个动点,在AB同侧分别作等边△PAE 和等边△PBF ,M 为线段EF 的中点. 在点P 从点C 移动到点D 时,点M 运动的路径长度为 ▲ .18.如图坐标系中,O (0,0) ,A (6,63),B (12,0).将△OAB 沿直线CD 折叠,使点A恰好落在线段OB 上的点E 处,若OE =245,则CE :DE 的值是 ▲ .ABC(第16题)(第17题)FEAB·M · ·(第10题)ACBDE Q(第8题)AEBC D三、解答题(本大题共10小题,共计84.)19.(8分)(1)计算:16-||-2+2×(-3);(2)化简:(1+1a )20.(8分)(1)解方程:1+3x x -2=6x -2; (2)解不等式组:⎩⎪⎨⎪⎧x -1>2x ,12x +3≤-1.21.(8分)如图,在□ABCD 中,点E 、F 在AC 上,且∠ABE =∠CDF ,求证:BE =DF .22.(8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到红球的概率.(请用“画树状图”或“列表”等方式给出分析过程)23.(8分)图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角△MON ,使点N 在格点上,且∠MON =90º;(2)在图2中以格点为顶点画出一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角△MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).24.(8分)某厂生产A 、B 两种产品,其单价随市场变化而做相应调整,营销人员根据前三次图1 图2A BCDFE单价变化的情况,绘制了如下统计表及不完整的折线图.并求得了A 产品三次单价的平均数和方差:—x A =5.9;s 2A =13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150.(1)补全图中B 产品单价变化的折线图. B 产品第三次的单价比上一次的单价降低了 %; (2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m %(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1, 求m 的值.25.(8分)某工厂接受了20天内生产1200台GH 型电子产品的总任务. 已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品. (1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置. 请问至少需要补充多少名新工人?26.(8分)已知边长为3的正方形ABCD 中,点E 在射线..BC 上,且BE =2CE ,连结AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B 1处. (1)如图1,若点E 在线段BC 上,求CF 的长; (2)求sin ∠DAB 1的值.ADAD27.(10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.28.(10分)如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止. 直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S 与t 的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t ,使得以P 、C 、F 为顶点的三角形为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t ,使得以点D 为圆心、BD 为半径的圆与直线EF相切?若存在,请求出t 的值;若不存在,请说明理由.ABCM备用图ABC MPDEl。

2016年江苏省无锡市中考数学试卷(解析版)

2016年江苏省无锡市中考数学试卷(解析版)

2016年江苏省无锡市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.﹣2的相反数是()A.B.±2 C.2 D.﹣2.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠23.sin30°的值为()A.B.C.D.4.初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.75.下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.6.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD 的度数为()A.70°B.35°C.20°D.40°7.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm28.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直9.一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或610.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3 D.2二、填空题:本大题共8小题,每小题2分,共16分11.分解因式:ab﹣a2=.12.某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为.13.分式方程=的解是.14.若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m的值为.15.写出命题“如果a=b”,那么“3a=3b”的逆命题.16.如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是.17.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.18.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s 的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm 为半径的圆与直线EF相切.三、解答题:本大题共10小题,共84分19.(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)20.(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.21.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.22.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA 的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.23.某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3 10 0。

无锡市查桥中学中考数学模拟试卷

无锡市查桥中学中考数学模拟试卷

2016年无锡市查桥中学中考数学模拟试卷一、选择题:(本大题共10小题,每小题3分,共30分.)1.实数4的倒数是()A.4 B.C.﹣4 D.﹣2.下列各式运算中,正确的是()A.(a+b)2=a2+b2B.C.a3•a4=a12D.3.若式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x>1 C.x<1 D.x≤14.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C. D.5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm6.顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.平行四边形B.矩形 C.菱形 D.正方形7.下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数 B.中位数C.平均数D.极差9.如图,以Rt△ABC的直角边AB为直径作半圆⊙O与边BC交于点D,过D作半圆的切线与边AC交于点E,过E作EF∥AB,与BC交于点F.若AB=20,OF=7.5,则CD的长为()A .7B .8C .9D .1010.8.如图,3个正方形在⊙O 直径的同侧,顶点B 、C 、G 、H 都在⊙O 的直径上,正方形ABCD 的顶点A 在⊙O 上,顶点D 在PC 上,正方形EFGH 的顶点E 在⊙O 上、顶点F 在QG 上,正方形PCGQ 的顶点P 也在⊙O 上.若BC =1,GH =2,则CG 的长为 A .512B .6C .12D .22二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.)11.﹣5的相反数是 .12.3月无锡市商品房平均每平方价格为7500元,7500元用科学记数法表示为 元. 13.因式分解:a 3﹣4a= .14.一元二次方程x 2+x ﹣2=0的两根之积是 .15.如图,点O 是⊙O 的圆心,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB=38°,则∠OAC 的度数是 度.16.如图,在△ABC 和△BAD 中,BC=AD ,请你再补充一个条件,使△ABC ≌△BAD .你补充的条件是 (只填一个).17.如图,在平面直角坐标系中,点A (a ,b )为第一象限内一点,且a <b .连结OA ,并以点A 为旋转中心把OA 逆时针转90°后得线段BA .若点A 、B 恰好都在同一反比例函数的图象上,则的值等于 .18.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点B 逆时针旋转60°得到'BC 'A △,连接C 'A ,则C 'A 的长为 .三、解答题:(本大题共10小题,共84分.) 19.(8分)计算:(1); (2).20.(8分)(1)解方程:﹣=4. (2)解不等式组:.21.(8分)如图,平行四边形ABCD 的对角线AC 、BD ,相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,求证:AE=CF .ABCA'C'第18题22.(8分)一个不透明的布袋里装有4个乒乓球,每个球上面分别标有1,2,3,4.从布袋中随机摸取一个乒乓球,记下数字,放回,摇均,再随机摸取第二个乒乓球,记下数字.(1)请你用树状图或列表法列出所有可能的结果;(2)求“两次记下的数字之和大于3”的概率.23.(8分)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为度;(2)本次一共调查了名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.15千米的速度沿北24.(10分)如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时2偏西60°方向前进,乙船以每小时15千米的速度东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船当即快速(匀速)沿北偏东75°方向追赶,结果两船恰好在B处相遇.⑴甲船从C处追赶上乙船用了多少时间?⑵甲船追赶上乙船的速度是每小时多少千米?25.(8分)随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B 型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?26.(10分)如图,△ABC 中,∠ACB =90°,BC =6,AC =8.点E 与点B 在AC 的同侧,且AE ⊥AC .⑴ 如图1,点E 不与点A 重合,连结CE 交AB 于点P .设AE =x ,AP =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;⑵ 是否存在点E ,使△PAE 与△ABC 相似,若存在,求AE 的长;若不存在,请说明理由; ⑶ 如图2,过点B 作BD ⊥AE ,垂足为D .将以点E 为圆心,ED 为半径的圆记为⊙E .若点C 到⊙E 上点的距离的最小值为8,求⊙E 的半径.图1E图227.(10分)如图,一只杯子的上下底面分别是直径为5cm和7.5cm的圆,母线AB的长为15cm。

江苏省无锡市2016届九年级数学下学期第一次模拟试题

江苏省无锡市2016届九年级数学下学期第一次模拟试题

江苏省无锡市锡北片2016届九年级数学下学期第一次模拟试题注意事项:1.本试卷满分130分,考试时间为120分钟;2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果; 3.所有的试题都必须在答题卷上作答,在试卷或草稿纸上答题无效.一、选择题:(本大题共10小题,每小题3分,共30分,请把答案直接填写在答题卷相应位置上)1.-2的倒数是( ▲ )A .2B .-2C .12D .-122.下列运算正确的是( ▲ ) A .336a a a += B .2()2ab a b +=+C .22()ab ab --=D .624a a a ÷=3.一次函数y =-3 x +2的图像一定不经过( ▲ ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.若一个多边形的内角和是1080度,则这个多边形的边数为(▲) A .6 B .7 C .8 D .105.一组数据0,1,2,3,3,5,5,10的中位数是……………………………………( ▲ ) A .2.5 B .3 C .3.5 D .56.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为 ( ▲ )7.菱形具有而矩形不一定具有的性质是( ▲ )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补8.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB 的度数为( ▲ )A .10° B.20° C.30° D.40°9.如图,已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于D 点,双曲线y =kx(x >0)经过D 点,交BC 的延长线于E 点,且OB •AC =160,有下列四个结论:①双曲线的解析式为y =40x (x >0);②E 点的坐标是(5,8);③sin ∠COA =45;④AC +OB =125.其中正确的结论有( ▲ )A .1个B .2个C .3个D .4个O xO BC E AD .第16题图10.如图,将边长为1的等边△PQR 沿着边长为1的正五边形ABCDE 外部的边连续滚动(点Q 、点R 分别与点A 、点B 重合),当△PQR 第一次回到原来的起始位置时(顶点位置与原来相同),点P 所经过的路线长为 ( ▲ ) A .163π B .323π C .8π D .16π二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卷上相应的位置处)11.因式分解:162-x = ▲ .12.函数y =1-x 中,自变量x 的取值范围是 ▲ .13.无锡梅园是全国著名的赏梅胜地之一.近年来,梅园的植梅规模不断扩大,新的品种不断出现,如今的梅园的梅树约15000株,这个数可用科学记数法表示为 ▲ .14.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为____▲___cm 2.(结果保留π)15.方程:x 2+4x -5=0 的两个根为 ▲ .16.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E = ▲ ° .17.如图,在平面直角坐标系中,A(1,4), B(3,2),点C 是直线4-=x y 上一动点,若OC 恰好平分四边形OACB 的面积,则C 点坐标为___▲______18. 在平面直角坐标系中,已知点A (3,0),B (0,4),将△BOA 绕点A 按顺时针方向旋转得△CDA ,连接OD .当∠DOA =∠OBA 时,直线CD 的解析式为▲ .三、解答题:(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:012011)21(60cos 29-+︒+- (2)化简2121()a a a a a--÷-. 20.(本题满分8分)第17题图(1)解方程:11322xx x -=--- (2)解不等式组:⎪⎩⎪⎨⎧+-≤--3118)2(3x x x x < 21.(本题满分6分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .⑴试说明:AB=CF ;⑵连接DE ,若AD=2AB ,试说明:DE ⊥AF .22.(本题8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度; (3)请将条形统计图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?23.(本题满分8分)有A,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y=-x-1上的概率.24.(本题满分8分)图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EN 位置运动到与地面垂直的EM 位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32) (1)求AB 的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M 点运动到N 点的路径弧MN 的长度(结果保留π)人数 质疑 思考 听讲 题目 项目25.(本题满分8分)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示. 设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?26.(本题满分10分)如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,4tan3ACB∠=,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)证明:△AEF∽△DCE;(3)当△EFC为等腰三角形时,求点E的坐标.27.(本题满分10分)已知抛物线y=x2+bx+c与x轴交与A、B两点(A点在B点左侧),与y轴交与点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交与点D.(1)求抛物线的函数关系式.(2)若平行于x轴的直线与抛物线交于点M、N(M点在N点左侧),①MN 为直径的圆与x 轴相切,求该圆的半径.②若点M 在第三象限,记MN 与y 轴的交点为点F ,点C 关于点F 的对称点为点E .当线段MN =34AB 时,求tan∠CED 的值;当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点M 的坐标.28.(本题满分10分)如图①,将□ABCD 置于直角坐标系中,其中BC 边在x 轴上(B 在C 的左边),点D 坐标为(0,4),直线MN :643-=x y 沿着x 轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被□ABCD 截得的线段长度为m ,平移时间为t ,m 与t 的函数图像如图②所示.(1)填空:点C 的坐标为 ▲ ;在平移过程中,该直线先经过B 、D 中的哪一点? ▲ ;(填“B ”或“D ”)(2)点B 的坐标为 ▲ ,n = ▲ ,a = ▲ ;(3)在平移过程中,求该直线扫过□ABCD 的面积y 与t 的函数关系式.2016年3月初三数学试卷参考答案及评分标准一、选择题:(本大题10个小题,每小题3分,共30分)4105.1⨯11. (x+4)(x-4) 12. 1≤x 13. 14. 18π15. 1,-5 16. 50º 17.⎪⎪⎭⎫⎝⎛11601140,18.三,解答题19.(8分)(1) 计算(4分):原式=3+1+2-1 ……3分 =5 ……4分(2)化简:原式= ……………… 2分= ……………… 3分= ……………………………… 4分 20、(8分)(1)解:去分母得:1=x-1-3(x-2) …… 1分 1=x-1-3x+6 …… 2分 2x=4x=2 ………………………………… 3分 检验:x=2为增根,舍去∴原方程无解 …………………………… 4分(2)解不等式(1)得:; ....................................1分 解不等式(2)得 : x<2 ................................. 3分 所以不等式组的解集为 (4)21.(本题满分6分)又∵∠AEB=∠FEC ∴△ABE≌△FCE ∴AB=CF22. (本题8分)(1)560 ……………………(2分) (2)54º ……………………(4分) (3)图正确 …………………(6分) (4)1800 ……………………(8分)23、(本题8分)…4分…2分 …5分…6分…3分CEBE BC E BCF B CD AB CD AB ABCD =∴∠=∠∴=∴的中点是是平行四边形四边形)( ,//1…3分…1分.22,2AF DE FE AE DFCD AD AB AD AB CF CD CFAB CD AB ⊥∴===∴===∴== 又)((备注:若(2)证到CE=CF=CD ,直接得结论DE ⊥AF ,则扣1分.)共有6种等可能情况,符合条件的有2种,P(在直线上)=62=31………4分24.(本题8分)(1)作AE⊥BC 于F,则FC=AD=0.24 ∴BE=BC -FC=0.64-0.24=0.40 1分 在RT△ABE 中,∠AEB=90°,29.131.04.0sin ,sin ≈==∴=ααBF AB AB BF ··4分 (2)∠AEM=α+90°=108° ∴ππ48.01808.0108=⨯=MN l ·············8分25(本题8分)(1)由题意,每天生产B 种品牌的酒(600-x )瓶……………………(1分) ∴y =20x +15(600-x )=9000+5x ………………………………………………(3分)(2)由600-x ≥600×55%,得x ≤270………………………………………………(4分)另成本50x +35(600-x )≥25000,得x ≥26623…………………………………(5分)∴26623≤x ≤270,且x 为整数,故x =267、268、269、270,该酒厂共有4种生产方案:生产A 种品牌的酒可以是267、268、269或270瓶……………………(7分)注意到每天获利y =9000+5x 中,y 是关于x 的一次函数,且随x 的增大而增大, ∴当x =267时,y 有最小值,y 最小=9000+5×267=10335元………………(8分) 26(本题10分).解:(1)由题意4tan 3ACB ∠=,∴53cos =∠ACB∵四边形ABCO 为矩形,AB =16 ∴12tan =∠=ACB AB BC ,20cos =∠=ACBBCAC ................(1分)∴A (-12,0)∵点D 与点A 关于y 轴对称∴D (12,0) ...................(2分) (2) ∵点D 与点A 关于y 轴对称 ∴CAO CDE ∠=∠∵∠CEF =∠ACB ,CAO ACB ∠=∠ ∴CEF CDE ∠=∠又∵DCE CDE CEF AEF AEC ∠+∠=∠+∠=∠ ∴DCE AEF ∠=∠∴△AEF∽△DCE............(5分)(3) 当△EFC 为等腰三角形时,有以下三种情况: ①当EF CE =时,∵△AEF∽△DCE ∴△AEF≌△DCE ∴20==CD AE∴OA AE OE -==20-12=8∴)0,8(E ..............(7分)②当FC EF =时,过点F 作CE FM ⊥于M ,则点ME 为CE 中点 ∴EF ACB EF CEF EF ME CE 56cos 2cos 22=∠⋅=∠⋅== ∵△AEF∽△DCE∴CD AE CE EF =,即2056AEEF EF =∴350=AE∴31412350=-=-=OA AE DE ∴)0,314(E .......................................(9分)③当CF CE =时,则有CEF CFE ∠=∠ ∵CAO ACB CEF ∠=∠=∠∴CAO CFE =∠,即此时点E 与点D 重合,这与已知条件矛盾综上所述,)0,8(E 或)0,314(E ......................(10分)27.(本题满分10分) (1)322--=x x y。

2016年中考数学模拟试卷(含答案解析) (7)

2016年中考数学模拟试卷(含答案解析) (7)

2016年无锡市 中学初三调研考试 2016.5数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.13的相反数是 ( ▲ ) A .-13 B .13C .3D .-32.下列计算正确的是 ( ▲ ) A .a 2+a 2=a 4 B .(a 2)3=a 5 C .a +2=2a D .(ab )3=a 3b 3 3.已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示这个数为 ( ▲ ) A .8.9×103 B .8.9×10-4C .8.9×10-3D .89×10-24.已知一次函数y =kx -2k +3的图像与x 轴交于点A (3,0),则该图像与y 轴的交点的坐标为 ( ▲ ) A .(0,-3) B .(0,1) C .(0,3) D .(0,9)5.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 4 5 人 数25896则这30名同学每天使用的零花钱的众数和中位数分别是 ( ▲ ) A .4,3 B .4,3.5 C .9,3.5 D .9,8.56.下列命题中,是真命题的为 ( ▲ )A .四个角相等的四边形是矩形B .四边相等的四边形是正方形C .对角线相等的四边形是菱形D .对角线互相垂直的四边形是平行四边形7.十边形的内角和为 ( ▲ ) A .360° B .1440° C .1800° D .2160°8.如图是一个由多个相同小正方体堆积而成的几何体的俯视图.图中所示数字为该位置 小正方体的个数,则这个几何体的左视图是 ( ▲ )9.如图,已知⊙O 为△ABC 的外接圆,且AB 为⊙O 的直径,若OC =5,AC =6,则BC 长为 ( ▲ ) A .10 B .9 C .8 D .无法确定 10.如图,A 在O 的正北方向,B 在O 的正东方向,且OA =OB .某一时刻,甲车从A 出发,以60km/h 的速度朝正东方向行驶,与此同时,乙车从B 出发,以40km/h 的速度朝正北方向行驶.1小时后,位于点O 处的观察员发现甲、乙两车之间的夹角为45°,即∠COD =45°,此时,甲、乙两人相距的距离为 ( ▲ ) A .90km B .502km C .2013 km D .100 km二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应.....位置..上.) 11.若分式x -1x -3的值为0,则x = ▲ .12.分解因式:2x 2-8= ▲ .13.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x ,则根据题意可得方程为 ▲ .14.已知△ABC 中,AC =BC ,∠A =80°,则∠B = ▲ °.15.如图,已知A (4,0),B (3,3),以OA 、AB 为边作□OABC ,则若一个反比例函数的图像经过C 点,则这个反比例函数的表达式为 ▲ .16.如图,1 2 3 1 1(第6题)A .B .C .D .(第10题)OBA(第9题)(第15题)(第16题)(第17题)△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小为原来的一半,则线段AC 的中点P 变换后在第一象限对应点的坐标为 ▲ .17.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y (米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度之差为100米.正确的有 ▲ .(在横线上填写正确的序号)18.在平面直角坐标系中,点O 为坐标原点,A 、B 、C 三点的坐标为(3,0)、(33,0)、(0,5),点D 在第一象限,且∠ADB =60º,则线段CD 的长的最小值为 ▲ . 三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本题共有2小题,每小题4分,共8分)(1)计算:(13)0+27 -||-3+tan45°; (2)计算:(x +2)2-2(x -1).20.(本题满分8分)(1)解方程组:⎩⎪⎨⎪⎧3x -y =1,2x +3y =8; (2)解不等式:2x -13<x .21.(本题满分8分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:AB =CF ;(2)连接DE ,若AD =2AB ,求证:DE ⊥AF .22.(本题满分7分) 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 ▲ 名; (2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?23. (本题满分8分)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B 1、B 2、B 3表示)中抽取一个,再在三个上机题(题签分别用代码J 1、J 2、J 3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签. (1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B 1”的下标为“1”)为一个奇数一个偶数的概率.24.(本题满分8分)如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,过点A 作⊙O 的切线AE 交CD 的延长线于点E ,DA 平分∠BDE . (1)求证:AE ⊥CD ;(2)已知AE =4cm ,CD =6cm ,求⊙O 的半径.25. (本题满分9分)旅行社为某旅游团包飞机去旅游,其中旅游社的包机费为15000元,旅游团中每人的飞机票按以下方式与旅行社结算;若旅游团的人数在30人或30人以下,飞机票每张收费900元;若旅游团的人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有75人.设旅游团的人数为x 人,每张飞机票价为y 元,旅行社可获得的利润为W 元. (1)写出y 与x 之间的函数关系式; (2)写出W 与x 之间的函数关系式;(3)当旅游团的人数为多少时,旅行社可获得的利润最大?最大利润为多少元?OBCDE26. (本题满分8分)【问题】如图1是底面半径都为1cm,母线长都为2cm的圆柱体和圆锥体模型.现要用如图2所示的长为2πcm,宽为4cm的长方形彩纸装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些长方形彩纸最多能装饰多少套模型呢?【对话】教师:“长方形彩纸可以怎样裁剪呢?”学生甲:“可按图3方式裁剪出2张长方形.”学生乙:“可按图4方式裁剪出6个小圆.”学生丙:“可按图5方式裁剪出1个大圆和2个小圆.”教师:“尽管还有其他裁剪方式,但为裁剪方便,我们就仅用这三位同学说的裁剪方法.”【解决】(1)计算:圆柱的侧面积是▲cm2,圆锥的侧面积是▲cm2;(2)1张长方形彩纸剪拼后最多能装饰▲个圆锥模型;5张长方形彩纸剪拼后最多能装饰▲个圆柱模型;(3)求用122张彩纸最多能装饰的圆锥、圆柱模型的套数.27. (本题满分10分)如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP =2cm .将∠O 沿PQ 折叠,点O 落在平面内点C 处. (1)①当PC ∥QB 时,OQ = ▲ ;②当PC ⊥QB 时,求OQ 的长.(2)当折叠后重叠部分为等腰三角形时,求OQ 的长.28. (本题满分10分)如图,经过原点的抛物线y =﹣x 2+2mx 与x 轴的另一个交点为A .点P在一次函数y =2x -2m 的图像上,PH ⊥x 轴,垂足为点H ,直线AP 交y 轴于点C ,点P 的横坐标为1.(1)如图①,当m =﹣1时,求点P 的坐标; (2)如图②,当0<m <12时,问m 为何值时CPAP=2?(3)是否存在x ,使CPAP=2?若存在,求出所有满足要求的m 的值,并求出相对应的点P坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年无锡市查桥中学中考数学模拟试卷
2016年无锡市查桥中学中考数学模拟试卷
一、选择题:(本大题共10小题,每小题3分,共30分.)
1.实数4的倒数是()
A.4 B.C.﹣4 D.﹣
2.下列各式运算中,正确的是()
A.(a+b)2=a2+b2B.C.a3•a4=a12D.
3.若式子在实数范围内有意义,则x的取值范围是()
A.x≥1B.x>1 C.x<1 D.x≤1
4.下列图形中,既是轴对称图形又是中心对称图形的是()
A.B. C. D.
5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()
A.5cm B.10cm C.12cm D.13cm
6.顺次连接对角线相等的四边形的各边中点,所得图形一定是()
A.平行四边形B.矩形 C.菱形 D.正方形
7.下列说法中,你认为正确的是()
A.四边形具有稳定性
B.等边三角形是中心对称图形
C.等腰梯形的对角线一定互相垂直
D.任意多边形的外角和是360°
8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()
A.众数 B.中位数C.平均数D.极差
9.如图,以Rt △ABC 的直角边AB 为直径作半圆⊙O 与边BC 交于点D ,过D 作半圆的切线与边AC 交于点E ,过E 作EF ∥AB ,与BC 交于点F .若AB=20,OF=7.5,则CD 的长为( )
A .7
B .8
C .9
D .10
10.8.如图,3个正方形在⊙O 直径的同侧,顶点B 、C 、G 、H 都在⊙O 的直径上,正方形ABCD 的顶点A 在⊙O 上,顶点D 在PC 上,正方形EFGH 的顶点E 在⊙O 上、顶点F 在QG 上,正方形PCGQ 的顶点P 也在⊙O 上.若BC =1,GH =2,则CG 的长为 A .
5
12
B .6
C .12
D .22
二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.)
11.﹣5的相反数是 .
12.3月无锡市商品房平均每平方价格为7500元,7500元用科学记数法表示为 元. 13.因式分解:a 3﹣4a= .
14.一元二次方程x 2+x ﹣2=0的两根之积是 .
15.如图,点O 是⊙O 的圆心,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB=38°,则∠OAC 的度数是 度.
16.如图,在△ABC 和△BAD 中,BC=AD ,请你再补充一个条件,使△ABC ≌△BAD .你补充的条件是 (只填一个).
17.如图,在平面直角坐标系中,点A (a ,b )为第一象限内一点,且a <b .连结OA ,并以点A 为旋转中心把OA 逆时针转90°后得线段BA .若点A 、B 恰好都在同一反比例函数的图象上,则的值等于 .
18.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点B 逆时针旋转60°得到'BC 'A △,连
接C 'A ,则C 'A 的长为 . 三、解答题:(本大题共10小题,共84分.) 19.(8分)计算:(1); (2)

20.(8分)(1)解方程:﹣
=4. (2)解不等式组:

21.(8分)如图,平行四边形ABCD 的对角线AC 、BD ,相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,求证:AE=CF .
A
B
C
A'
C'
第18题
22.(8分)一个不透明的布袋里装有4个乒乓球,每个球上面分别标有1,2,3,4.从布袋中随机摸取一个乒乓球,记下数字,放回,摇均,再随机摸取第二个乒乓球,记下数字.
(1)请你用树状图或列表法列出所有可能的结果;
(2)求“两次记下的数字之和大于3”的概率.
23.(8分)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答以下问题:
(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为
度;
(2)本次一共调查了名学生;
(3)将条形统计图补充完整;
(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
15千米的速度沿北24.(10分)如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时2偏西60°方向前进,乙船以每小时15千米的速度东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船当即快速(匀速)沿北偏东75°方向追赶,结果两船恰好在B处相遇.
⑴甲船从C处追赶上乙船用了多少时间?
⑵甲船追赶上乙船的速度是每小时多少千米?
25.(8分)随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B 型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价
定为多少元?
26.(10分)如图,△ABC 中,∠ACB =90°,BC =6,AC =8.点E 与点B 在AC 的同侧,且AE
⊥AC .
⑴ 如图1,点E 不与点A 重合,连结CE 交AB 于点P .设AE =x ,AP =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;
⑵ 是否存在点E ,使△P AE 与△ABC 相似,若存在,求AE 的长;若不存在,请说明理由; ⑶ 如图2,过点B 作BD ⊥AE ,垂足为D .将以点E 为圆心,ED 为半径的圆记为⊙E .若点C 到⊙E 上点的距离的最小值为8,求⊙E 的半径.
图1
E

2
27.(10分)如图,一只杯子的上下底面分别是直径为5cm和7.5cm的圆,母线AB的长为15cm。

(1)求杯子的侧面积。

(2)从点B出发,绕着杯子两圈画一条装饰线,终点为A,求装饰线的最短长度。

28、(10分)如图,在平面直角坐标系xOy中,直线y=kx-7与y轴交于点C,与x轴交于点B.抛
物线y=a2x+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2∶7.
⑴求抛物线的解析式;
⑵点D在线段BC上,点P在对称轴右侧的抛物线上,PD=PB.当tan∠PDB=2时,求点P
的坐标;
⑶在⑵的条件下,点Q(7,n)在第四象限内,点R在对称轴右侧的抛物线上,若以点P、D、
Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.。

相关文档
最新文档