2020年湖北省咸宁市中考数学试卷附详细答案解析

合集下载

2020年咸宁市中考数学试题、试卷(解析版)

2020年咸宁市中考数学试题、试卷(解析版)

2020年咸宁市中考数学试题、试卷(解析版)一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.(3分)(2020•咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.(3分)(2020•咸宁)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.(3分)(2020•咸宁)下列计算正确的是()A.3a﹣a=2B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4 4.(3分)(2020•咸宁)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.(3分)(2020•咸宁)如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A .乙的最好成绩比甲高B .乙的成绩的平均数比甲小C .乙的成绩的中位数比甲小D .乙的成绩比甲稳定6.(3分)(2020•咸宁)如图,在⊙O 中,OA =2,∠C =45°,则图中阴影部分的面积为( )A .π2−√2B .π−√2C .π2−2D .π﹣27.(3分)(2020•咸宁)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =﹣xB .y =x +2C .y =2xD .y =x 2﹣2x8.(3分)(2020•咸宁)如图,在矩形ABCD 中,AB =2,BC =2√5,E 是BC 的中点,将△ABE 沿直线AE 翻折,点B 落在点F 处,连结CF ,则cos ∠ECF 的值为( )A .23B .√104C .√53D .2√55二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.(3分)(2020•咸宁)点A 在数轴上的位置如图所示,则点A 表示的数的相反数是 .10.(3分)(2020•咸宁)因式分解:mx 2﹣2mx +m = .11.(3分)(2020•咸宁)如图,请填写一个条件,使结论成立:∵ ,∴a ∥b .12.(3分)(2020•咸宁)若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.(3分)(2020•咸宁)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.(3分)(2020•咸宁)如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,√3≈1.73)15.(3分)(2020•咸宁)按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.(3分)(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)(2020•咸宁)(1)计算:|1−√2|﹣2sin45°+(﹣2020)0;(2)解不等式组:{−(x−1)>3,2x+9>3.18.(7分)(2020•咸宁)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC 于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)(2020•咸宁)如图,已知一次函数y1=kx+b与反比例函数y2=mx的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.20.(8分)(2020•咸宁)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.(9分)(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.(10分)(2020•咸宁)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.(10分)(2020•咸宁)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)(2020•咸宁)如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠P AO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?2020年湖北省咸宁市中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.(3分)(2020•咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【解答】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.2.(3分)(2020•咸宁)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108【解答】解:305000000=3.05×108,故选:B.3.(3分)(2020•咸宁)下列计算正确的是()A.3a﹣a=2B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4【解答】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.4.(3分)(2020•咸宁)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【解答】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.5.(3分)(2020•咸宁)如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定【解答】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵x甲=15(6+7+10+8+9)=8,x乙=15(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵s 甲2=15[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,s 乙2=15[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4, 2>0.4,∴乙的成绩比甲稳定,故选项D 正确,符合题意.故选:D .6.(3分)(2020•咸宁)如图,在⊙O 中,OA =2,∠C =45°,则图中阴影部分的面积为( )A .π2−√2B .π−√2C .π2−2D .π﹣2【解答】解:∵∠C =45°,∴∠AOB =90°,∴S 阴影=S 扇形AOB ﹣S △AOB=90⋅π×22360−12×2×2 =π﹣2.故选:D .7.(3分)(2020•咸宁)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =﹣xB .y =x +2C .y =2xD .y =x 2﹣2x【解答】解:∵横、纵坐标相等的点称为“好点”,∴当x =y 时,A .x =﹣x ,解得x =0;不符合题意;B .x =x +2,此方程无解,符合题意;C .x 2=2,解得x =±√2,不符合题意;D .x =x 2﹣2x ,解得x 1=0,x 2=3,不符合题意.故选:B .8.(3分)(2020•咸宁)如图,在矩形ABCD 中,AB =2,BC =2√5,E 是BC 的中点,将△ABE 沿直线AE 翻折,点B 落在点F 处,连结CF ,则cos ∠ECF 的值为( )A .23B .√104C .√53D .2√55【解答】解:如图,∵四边形ABCD 是矩形,∴∠B =90°,∵E 是BC 的中点,BC =2√5,∴BE =CE =12BC =√5,∴AE =√AB 2+BE 2=√22+(√5)2=3,由翻折变换的性质得:△AFE ≌△ABE ,∴∠AEF =∠AEB ,EF =BE =√5,∴EF =CE ,∴∠EFC =∠ECF ,∵∠BEF =∠EFC +∠ECF ,∴∠AEB =∠ECF ,∴cos ∠ECF =cos ∠AEB =BE AE =√53.故选:C .二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.(3分)(2020•咸宁)点A 在数轴上的位置如图所示,则点A 表示的数的相反数是 ﹣3 .【解答】解:∵点A 在数轴上表示的数是3,∴点A 表示的数的相反数是﹣3.故答案为:﹣3.10.(3分)(2020•咸宁)因式分解:mx 2﹣2mx +m = m (x ﹣1)2 .【解答】解:mx 2﹣2mx +m =m (x 2﹣2x +1)=m (x ﹣1)2,11.(3分)(2020•咸宁)如图,请填写一个条件,使结论成立:∵ ∠1=∠4或∠2=∠4或∠3+∠4=180° ,∴a ∥b .【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a ∥b .故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.12.(3分)(2020•咸宁)若关于x 的一元二次方程(x +2)2=n 有实数根,则n 的取值范围是 n ≥0 .【解答】解:原方程可变形为x 2+4x +4﹣n =0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n )≥0,解得:n ≥0.故答案为:n ≥0.13.(3分)(2020•咸宁)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是 16 .【解答】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P (小聪和小慧)=16,故答案为:16. 14.(3分)(2020•咸宁)如图,海上有一灯塔P ,位于小岛A 北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是20.8nmile.(结果保留一位小数,√3≈1.73)【解答】解:过P作PD⊥AB于D.∵∠P AB=30°,∠PBD=60°,∴∠P AB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×√32=12√3≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.15.(3分)(2020•咸宁)按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是a÷b=c.【解答】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a÷b=c.故答案为:a÷b=c.16.(3分)(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)【解答】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF =135°,∵∠AEF =90°,∴∠AEB +∠FEC =90°,而∠AEB +∠BAE =90°,∴∠BAE =∠FEC ,在△AME 和△ECF 中{∠MAE =∠CEFAM =EC ∠AME =∠ECF,∴△AME ≌△ECF ,∴AE =EF ,故②正确;③∵AE =EF ,∠AEF =90°,∴∠EAF =45°,∴∠BAE +∠DAF =45°,∵∠BAE +∠CFE =∠CEF +∠CFE =45°,∴∠DAF =∠CFE ,故③正确;④设BE =x ,则BM =x ,AM =AB ﹣BM =4﹣x ,S △ECF =S △AME =12•x •(2﹣x )=−12(x ﹣1)2+12,当x =1时,S △ECF 有最大值12, 故④错误.故答案为:①②③.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)(2020•咸宁)(1)计算:|1−√2|﹣2sin45°+(﹣2020)0;(2)解不等式组:{−(x −1)>3,2x +9>3.【解答】解:(1)原式=√2−1﹣2×√22+1=√2−1−√2+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.18.(7分)(2020•咸宁)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC 于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)【解答】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:19.(8分)(2020•咸宁)如图,已知一次函数y1=kx+b与反比例函数y2=mx的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为8;(3)直接写出y1>y2时x的取值范围.【解答】解:(1)把A (6,1)代入y 2=m x 中,解得:m =6,故反比例函数的解析式为y 2=6x ;把B (a ,﹣3)代入y 2=6x ,解得a =﹣2,故B (﹣2,﹣3),把A (6,1),B (﹣2,﹣3)代入y 1=kx +b ,得{6k +b =1−2k +b =−3,解得:{k =12b =−2, 故一次函数解析式为y 1=12x ﹣2;(2)如图,设一次函数y 1=12x ﹣2与x 轴交于点C ,令y =0,得x =4.∴点C 的坐标是(4,0),∴S △AOB =S △AOC +S △BOC =12×4×1+12×4×3=8. 故答案为8;(3)由图象可知,当﹣2<x <0或x >6时,直线y 1=kx +b 落在双曲线y 2=m x 上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是﹣2<x <0或x >6.20.(8分)(2020•咸宁)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有50人,a=20,m=8;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?【解答】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%=450=8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×1650=115.2°;(3)950×50−4−850=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.21.(9分)(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【解答】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF ,OD ,如图2,设圆的半径为r ,则OD =OE =r ,∵AC =4,BC =3,CF =1,∴OC =4﹣r ,DF =BF =3﹣1=2,∵OD 2+DF 2=OF 2=OC 2+CF 2,∴r 2+22=(4﹣r )2+12,∴r =138.故圆的半径为138.22.(10分)(2020•咸宁)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【解答】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得1200 x =300x−150,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m﹣1800)×0.8=360m+360,综上所述:w={450m(m≤4)360m+360(m>4).若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.23.(10分)(2020•咸宁)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为90°或270°;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.【解答】(1)解:∵四边形ABCD是对余四边形,∴∠A+∠C=90°或∠A+∠C=360°﹣90°=270°,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.24.(12分)(2020•咸宁)如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠P AO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?【解答】解:(1)直线y =−12x +2与x 轴交于点A ,与y 轴交于点B ,则点A 、B 的坐标分别为(4,0)、(0,2),将点B 、C 的坐标代入抛物线表达式得{−23×(52)2+52b +c =34c =2,解得{b =76c =2, 故抛物线的表达式为:y =−23x 2+76x +2①;(2)如图1,作点B 关于x 轴的对称点B ′(0,﹣2),连接AB ′交抛物线于点P (P ′),则∠P AO =∠BAO ,由点A 、B ′的坐标得,直线AB ′的表达式为:y =12x ﹣2②,联立①②并解得:x =3或﹣2,故点P 的坐标为(3,−12)或(﹣2,﹣3);(3)①过点C 作CH ⊥x 轴于点H ,∵∠MNC =90°,∴∠MNO +∠CNH =90°, ∠CNH +∠NCH =90°, ∴∠MNO =∠NCH ,∴tan ∠MNO =tan ∠NCH ,即OM ON =NH CH ,即m n =52−n 34, 解得:m =−43n 2+103n ;②m =−43n 2+103n ,∵−43<0,故m 有最大值,当n =54时,m 的最大值为2512,而m >0,故0<m <2512时,符合条件的N 点的个数有2个.。

2020年湖北省咸宁市中考数学试卷(解析版)

2020年湖北省咸宁市中考数学试卷(解析版)

2020年湖北省咸宁市中考数学试卷一、精心选一选选择题(本大题共8小题,每小题3分,共24分再给出的四个选项中只有一项释符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作()A.7℃B.﹣7℃C.2℃D.﹣12℃2.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°3.近几年来,我市加大教育信息化投入,投资201000000元,初步完成咸宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖,将201000000用科学记数法表示为()A.20.1×107 B.2.01×108 C.2.01×109 D.0.201×10104.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.﹣=B.=﹣3 C.a•a2=a2D.(2a3)2=4a66.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A.4,5 B.4,4 C.5,4 D.5,57.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结①=;②=;③=;④=其中正确的个数有()A.1个B.2个C.3个D.4个8.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P 是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)二、细心填一填(本大题共8小题,每小题3分,共24分,请把答案填在答案卷相应题号的横线上)9.代数式在实数范围内有意义,则x的取值范围是______.10.关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:b=______.11.a,b互为倒数,代数式÷(+)的值为______.12.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是______.13.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x元,列方程为______.14.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为______.15.用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则=______.16.如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是______(把你认为正确结论的序号都填上).三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)解答题17.(1)计算:|﹣2|﹣20160+()﹣2(2)解不等式组:.18.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,______求证:______.请你补全已知和求证,并写出证明过程.19.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是______.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.21.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).22.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?23.阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是______.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4(m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.24.如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.2018年湖北省咸宁市中考数学试卷参考答案与试题解析一、精心选一选选择题(本大题共8小题,每小题3分,共24分再给出的四个选项中只有一项释符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作()A.7℃B.﹣7℃C.2℃D.﹣12℃【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵冰箱冷藏室的温度零上5℃,记作+5℃,∴保鲜室的温度零下7℃,记作﹣7℃.故选:B.2.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【考点】平行线的性质.【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD 的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.3.近几年来,我市加大教育信息化投入,投资201000000元,初步完成咸宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖,将201000000用科学记数法表示为()A.20.1×107 B.2.01×108 C.2.01×109 D.0.201×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将201000000用科学记数法表示为2.01×108.故选B.4.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.【考点】简单几何体的三视图;中心对称图形.【分析】首先得出各几何体的主视图的形状,进而结合中心对称图形的定义得出答案.【解答】解:A、立方体的主视图是正方形,是中心对称图形,故此选项错误;B、球体的主视图是圆,是中心对称图形,故此选项错误;C、圆锥的主视图是等腰三角形,不是中心对称图形,故此选项正确;D、圆柱的主视图是矩形,是中心对称图形,故此选项错误;故选:C.5.下列运算正确的是()A.﹣=B.=﹣3 C.a•a2=a2D.(2a3)2=4a6【考点】二次根式的加减法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的性质与化简.【分析】直接利用二次根式加减运算法则以及积的乘方运算法则和幂的乘方运算法则、同底数幂的乘法运算法则、二次根式的性质分别化简判断即可.【解答】解:A、﹣无法计算,故此选项错误;B、=3,故此选项错误;C、a•a2=a3,故此选项错误;D、(2a3)2=4a6,正确.故选:D.6.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A.4,5 B.4,4 C.5,4 D.5,5【考点】众数;算术平均数;中位数.【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【解答】解:∵这组数据的平均数是5,∴=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选A.7.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②=;③=;④=其中正确的个数有()A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;三角形的重心.【分析】BE、CD是△ABC的中线,即D、E是AB和AC的中点,即DE是△ABC的中位线,则DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【解答】解:∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=BC,即=,DE∥BC,∴△DOE∽△COB,∴=()2=()2=,===,故①正确,②错误,③正确;设△ABC的BC边上的高AF,则S△ABC=BC•AF,S△ACD=S△ABC=BC•AF,∵△ODE中,DE=BC,DE边上的高是×AF=AF,∴S△ODE=×BC×AF=BC•AF,∴==,故④错误.故正确的是①③.故选B.8.已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P 是对角线OB 上的一个动点,D (0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,)C .(,)D .(,)【考点】菱形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .首先说明点P 就是所求的点,再求出点B 坐标,求出直线OB 、DA ,列方程组即可解决问题. 【解答】解:如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .∵四边形OABC 是菱形,∴AC ⊥OB ,GC=AG ,OG=BG=2,A 、C 关于直线OB 对称,∴PC +PD=PA +PD=DA , ∴此时PC +PD 最短,在RT △AOG 中,AG===,∴AC=2,∵OA •BK=•AC •OB ,∴BK=4,AK==3,∴点B 坐标(8,4),∴直线OB 解析式为y=x ,直线AD 解析式为y=﹣x +1,由解得,∴点P坐标(,).故选D.二、细心填一填(本大题共8小题,每小题3分,共24分,请把答案填在答案卷相应题号的横线上)9.代数式在实数范围内有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.10.关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:b=3.【考点】根的判别式.【分析】根据题意可知判别式△=b2﹣8>0,从而求得b的取值范围,然后即可得出答案.【解答】解:∵关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,∴△=b2﹣8>0,∴b>2或b<﹣2,∴b为3,4,5等等,∴b为3(答案不唯一).故答案为3.11.a,b互为倒数,代数式÷(+)的值为1.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据a,b互为倒数得出a•b=1,代入代数式进行计算即可.【解答】解:原式=÷=(a+b)•=ab,∵a,b互为倒数,∴a•b=1,∴原式=1.故答案为:1.12.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是黄球的概率是,故答案为:.13.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x元,列方程为+3=.【考点】由实际问题抽象出分式方程.【分析】根据端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,设平时每个粽子卖x元,可以列出相应的分式方程.【解答】解:由题意可得,+3=,故答案为: +3=.14.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为122°.【考点】三角形的内切圆与内心;圆周角定理.【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.15.用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则=.【考点】规律型:图形的变化类.【分析】根据题意和图形可以得到a与m的关系式和b与m的关系式,从而可以得到b与a的比值.【解答】解:由题意可得,3+(a﹣1)×2=m,6+(b﹣1)×5=m,∴3+(a﹣1)×2=6+(b﹣1)×5,化简,得,故答案为:.16.如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是①②(把你认为正确结论的序号都填上).【考点】圆的综合题.【分析】①根据ASA可证△BOE≌△COF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到=,可以判断①;②根据SAS可证△BOG≌△COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;③通过证明△HOM≌△GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;④根据△BOG≌△COH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4﹣x,根据勾股定理得到GH==,可以求得其最小值,可以判断④.【解答】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF,在△BOE与△COF中,,∴△BOE≌△COF,∴BE=CF,∴=,①正确;②∵BE=CF,∴△BOG≌△COH;∵∠BOG=∠COH,∠COH+∠OBF=90°,∴∠GOH=90°,OG=OH,∴△OGH是等腰直角三角形,②正确.③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=4,设BG=x,则BH=4﹣x,则GH==,∴其最小值为2,D错误.故答案为:①②.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)解答题17.(1)计算:|﹣2|﹣20160+()﹣2(2)解不等式组:.【考点】解一元一次不等式组;零指数幂;负整数指数幂.【分析】(1)根据绝对值的性质、零指数幂、负整指数幂的运算法则分别计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2﹣1+4=5;(2)解不等式组,解不等式①得:x>3,解不等式②得:x<5,∴该不等式组的解集为:3<x<5.18.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB求证:PD=PE.请你补全已知和求证,并写出证明过程.【考点】角平分线的性质.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【解答】解:已知:PD⊥OA,PE⊥OB,垂足分别为D、E;求证:PD=PE.故答案为:PD=PE.∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△PDO和△PEO中,,∴△PDO≌△PEO(AAS),∴PD=PE.19.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是100.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?【考点】频数(率)分布直方图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据10~15吨部分的用户数和百分比进行计算;(2)先根据频数分布直方图中的数据,求得“15吨~20吨”部分的用户数,再画图,最后根据该部分的用户数计算圆心角的度数;(3)根据用水25吨以内的用户数的占比,求得该地区6万用户中用水全部享受基本价格的户数.【解答】解:(1)∵10÷10%=100(户)∴样本容量是100;(2)用水15~20吨的户数:100﹣10﹣36﹣24﹣8=22(户)∴补充图如下:“15吨~20吨”部分的圆心角的度数=360°×=79.2°答:扇形图中“15吨~20吨”部分的圆心角的度数为79.2°.(3)6×=4.08(万户)答:该地区6万用户中约有4.08万户的用水全部享受基本价格.20.如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;(2)先求出PM,再求出BN然后用锐角三角函数求出OB,即可.【解答】解:(1)∵点A(m,2)在直线y=2x,∴2=2m,∴m=1,∴点A(1,2),∵点A(1,2)在反比例函数y=上,∴k=2,(2)如图,设平移后的直线与y轴相交于B,过点P作PM⊥OA,BN⊥OA,AC⊥y轴由(1)知,A(1,2),∴OA=,sin∠BON=sin∠AOC==,∵S△POA=OA×PM=×PM=2,∴PM=,∵PM⊥OA,BN⊥OA,∴PM∥BN,∵PB∥OA,∴四边形BPMN是平行四边形,∴BN=PM=,∵sin∠BON===,∴OB=4,∵PB∥AO,∴B(0,﹣4),∴平移后的直线PB的函数解析式y=2x﹣421.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF 面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,==,∴S扇形AOB=×2×2﹣=2﹣.则阴影部分的面积为S△ODB﹣S扇形DOF故阴影部分的面积为2﹣.22.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【考点】二次函数的应用.【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.23.阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4(m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.【考点】相似形综合题.【分析】(1)根据平行四边形的性质得到α=60°,根据三角函数的定义即可得到结论;(2)如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,根据平行四边形和矩形的面积公式即可得到结论;(3)由已知条件得到△B1A1E1∽△D1A1B1,由相似三角形的性质得到∠A1B1E1=∠A1D1B1,根据平行线的性质得到∠A1E1B1=∠C1B1E1,求得∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,证得∠A1B1C1=30°,于是得到结论.【解答】解:(1)∵平行四边形有一个内角是120度,∴α=60°,∴==;故答案为:;(2)=,理由:如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴S1=ab,S2=ah,sinα=,∴==,∵=,∴=;(3)∵AB2=AE•AD,∴A1B12=A1E1•A1D1,即=,∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1,∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1,∴∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,由(2)知=可知==2,∴sin∠A1B1C1=,∴∠A1B1C1=30°,∴∠A1E1B1+∠A1D1B1=30°.24.如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.【考点】一次函数综合题.【分析】(1)利用尺规作出线段AB的垂直平分线,过点B作出x轴的垂线即可.(2)①分x>O或x<0两种情形利用勾股定理求出x与y的关系即可解决问题.②由题意得d1+d2=x2++|x|,列出方程即可解决问题.③求出直线y=2与抛物线y=x2+的两个交点为(﹣,2)和(,2),利用这两个特殊点,求出k的值即可解决问题.l2的交点为【解答】解;(1)线段AB的垂直平分线l1,过点B作x轴的垂线l2,直线l1与P,如图所示,(2)①当x>0时,如图2中,连接AP,作PE⊥y轴于E,∵l1垂直平分AB,∴PA=PB=y,在RT△APE中,∵EP=BO=x,AE=OE﹣OA=y﹣1,PA=y,∴y2=x2+(y﹣1)2,∴y=x2+,当x<0时,点P(x,y)同样满足y=x2+,∴曲线l就是二次函数y=x2+即曲线l是抛物线.②∵d1=x2+,d2=|x|,∴d1+d2=x2++|x|,当x=0时,d1+d2有最小值,∴d1+d2≥,∵d1+d2=8,则x2++|x|=8,当x≥0时,原方程化为x2++x﹣8=0,解得x=3或(﹣5舍弃),当x<0时,原方程化为x2+﹣x﹣8=0,解得x=﹣3或(5舍弃),∵x=±3时,y=5,∴点P坐标(3,5)或(﹣3,5).③如图3中,把y=2代入y=x2+,解得x=,∴直线y=2与抛物线y=x2+的两个交点为(﹣,2)和(,2).当直线y=kx+3经过点(﹣,2)时,2=﹣k+3∴k=,当直线y=kx+3经过点(,2)时,2=k+3,∴k=﹣,∴直线y=kx+3与这条“W”形状的曲线有四个交点时,k的取值范围是:﹣<k<.。

湖北省咸宁市2020年中考数学试题(教师版)

湖北省咸宁市2020年中考数学试题(教师版)

湖北省咸宁市2020年中考数学试题一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年,下列各式计算结果为负数的是( ) A. 3(2)+- B. 3(2)-- C. 3(2)⨯- D. (3)(2)-÷-【答案】C 【解析】 【分析】各式计算得到结果,即可作出判断.【详解】解:A 、3(2)+-=1,故选项不符合; B 、3(2)--=5,故选项不符合; C 、3(2)⨯-=-6,故选项符合; D 、(3)(2)-÷-=32,故选项不符合; 故选C.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为( ) A. 110.30510⨯ B. 83.0510⨯ C. 63.0510⨯ D. 830510⨯【答案】B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:305000000用科学记数法表示为3.05×108, 故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.下列计算正确的是( ) A. 32a a -= B. 23a a a ⋅=C. 623a a a ÷=D. ()22436a a =【答案】B 【解析】 【分析】利用合并同类项,同底数幂的乘法和除法,幂的乘方和积的乘方运算法则计算即可. 【详解】解:A 、32a a a -=,故选项不符合; B 、23a a a ⋅=,故选项符合; C 、624a a a ÷=,故选项不符合; D 、()22439a a =,故选项不符合;故选B.【点睛】本题考查了合并同类项,同底数幂的乘法和除法,幂的乘方和积的乘方运算,掌握运算法则是关键.4.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是( )A. B. C. D.【答案】A 【解析】 【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【详解】解:该几何体的左视图是:故选A.【点睛】本题考查了三视图,考验学生的思考能力和对几何体三种视图的空间想象能力.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是( )A. 乙的最好成绩比甲高B. 乙的成绩的平均数比甲小C. 乙的成绩的中位数比甲小D. 乙的成绩比甲稳定【答案】D 【解析】 【分析】根据折线统计图得出甲乙成绩的各项数据,从而判断各选项. 【详解】解:由图可知:甲运动员的成绩为:6、7、10、8、9, 乙运动员的成绩为:8、9、8、7、8,A 、甲的最好成绩为10环,乙的最好成绩为9环,故选项错误;B 、甲的成绩平均数为:(6+7+10+8+9)÷5=8, 乙的成绩平均数为:(8+9+8+7+8)÷5=8, 一样大,故选项错误;C 、甲的成绩的中位数为8,乙的成绩的中位数为8,一样大,故选项错误;D 、甲成绩的方差为()()()()()222221687888981085⎡⎤-+-+-+-+-⎣⎦=2, 乙的成绩的方差为()()()()()22222188988878885⎡⎤-+-+-+-+-⎣⎦=0.4, 0.4<2,所以乙的成绩比甲稳定,故选项正确; 故选D.【点睛】本题考查了平均数、中位数、方差,关键是根据甲乙的成绩计算出各项数据. 6.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分面积为( )A.22πB. 2πC.22π- D. 2π-【答案】D 【解析】 【分析】根据圆周角定理得出∠AOB=90°,再利用S 阴影=S 扇形OAB -S △OAB 算出结果. 【详解】解:∵∠C=45°, ∴∠AOB=90°, ∵OA=OB=2,∴S 阴影=S 扇形OAB -S △OAB =29021223602π⋅⋅-⨯⨯=2π-,故选D.【点睛】本题考查了圆周角定理,扇形面积计算,解题的关键是得到∠AOB=90°. 7.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A.y x =-B. 2y x =+C. 2y x=D. 22y x x =-【答案】B 【解析】 【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合; C 、2x x=,解得:2x =经检验2x =即“好点”为22)和(2,2),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.8.如图,在矩形ABCD 中,2AB =,25BC =,E 是BC 的中点,将ABE △沿直线AE 翻折,点B 落在点F 处,连结CF ,则cos ECF ∠的值为( )A.23B.10 C.5 D.25【答案】C 【解析】 【分析】根据折叠的性质得到∠AEB=∠AEF ,再根据点E 是BC 中点可得EF=EC ,可得∠EFC=∠ECF ,从而推出∠ECF=∠AEB ,求出cos AEB ∠即可得到结果.【详解】解:由折叠可得:AB=AF=2,BE=EF ,∠AEB=∠AEF , ∵点E 是BC 中点,5BC = ∴BE=CE=EF=5 ∴∠EFC=∠ECF ,()22253+=,∵∠BEF=∠AEB+∠AEF=∠EFC+∠ECF , ∴∠ECF=∠AEB , ∴cos ECF ∠=cos AEB ∠=53BE AE =, 故选C.【点睛】本题考查了矩形的性质和折叠的性质,以及余弦的定义,解题的关键是利用折叠的性质得到∠ECF=∠AEB.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.【答案】-3 【解析】 【分析】点A 在数轴上表示的数是3,根据相反数的含义和求法,判断出点A 表示的数的相反数是多少即可. 【详解】解:∵点A 在数轴上表示的数是3, ∴点A 表示的数的相反数是-3. 故答案为:-3.【点睛】此题主要考查了在数轴上表示数的方法,以及相反数的含义和求法,要熟练掌握. 10.因式分解:22mx mx m -+=__________. 【答案】m (x-1)2 【解析】 【分析】先提取公因式m ,再利用完全平方公式进行因式分解即可. 【详解】22mx mx m -+()221m x x =-+ ()21m x =-故答案为:()21m x -.【点睛】本题考查了因式分解的问题,掌握完全平方公式是解题的关键. 11.如图,请填写一个条件,使结论成立:∵__________,∴//a b .【答案】∠1=∠4(答案不唯一) 【解析】【分析】根据平行线的判定添加条件即可. 【详解】解:如图, 若∠1=∠4,则a ∥b ,故答案为:∠1=∠4(答案不唯一)【点睛】本题考查了平行线的判定,可围绕截线找同位角、内错角和同旁内角解答. 12.若关于x 的一元二次方程2(2)x n +=有实数根,则n 的取值范围是__________. 【答案】n≥0 【解析】 【分析】根据平方的非负性可得结果.【详解】解:∵关于x 的一元二次方程2(2)x n +=有实数根, 而2(2)0x +≥, ∴n≥0, 故答案为:n≥0.【点睛】本题考查了一元二次方程的解,掌握根的判别方法是解题的关键.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明,小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是________. 【答案】16【解析】 【分析】先画树状图展示所有6种等可能的结果数,再找出小聪和小慧被同时选中的结果数,然后根据概率公式求解.【详解】解:画树状图如下:可知:共有6种等可能的结果,其中小聪和小慧同时被选中的情况有1种,∴小聪和小慧被同时选中的概率是16,故答案为:1 6 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图展示所有等可能的结果数,再找出某事件所占有的结果数,然后根据概率公式计算这个事件的概率.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从北小岛A出发,由西向东航行24nmile 到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P 的正南方,此时轮船与灯塔P的距离是________n mile.(结果保留一位小数,3 1.73)【答案】20.8【解析】【分析】证明△ABP是等腰三角形,过P作PD⊥AB,从而求得PD的长即可.【详解】解:过P作PD⊥AB于D,∵AB=24,∵∠PAB=90°-60°=30°,∠PBD=90°-30°=60°,∴∠BPD=30°,∴∠APB=30°,即∠PAB=∠APB,∴AB=BP=24,在直角△PBD中,PD=BP•sin∠PBD=24×3=123≈20.8.故答案为:20.8.【点睛】本题主要考查了解直角三角形的应用,正确作出垂线,转化为直角三角形的计算是解决本题的关键.15.按一定规律排列的一列数:3,23,13-,33,43-,73,113-,183-,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是__________. 【答案】bc=a 【解析】 【分析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a ,b ,c 之间满足的关系式. 【详解】解:∵一列数:3,23,13-,33,43-,73,113-,183-,…, 可发现:第n 个数等于前面两个数的商, ∵a ,b ,c 表示这列数中的连续三个数, ∴bc=a , 故答案为:bc=a .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a ,b ,c 之间的关系式.16.如图,四边形ABCD 是边长为2的正方形,点E 是边BC 上一动点(不与点B ,C 重合),90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F ,交CD 于点G ,连接AF ,有下列结论: ①ABE ECG ∽; ②AE EF =; ③DAF CFE ∠=∠;④CEF △的面积的最大值为1.其中正确结论的序号是_____________.(把正确结论的序号都填上)【答案】①②③ 【解析】 【分析】证明∠BAE=∠CEG,结合∠B=∠BCD可证明△ABE∽△ECG,可判断①;在BA上截取BM=BE,证明△AME≌△ECF,可判断②;可得△AEF为等腰直角三角形,证明∠BAE+∠DAF=45°,结合∠BAE=∠CEF,∠FCH=45°=∠CFE+∠CEF,可判断③;设BE=x,则BM=x,AM=AB-BM=2-x,根据△AME≌△ECF,求出△AME面积的最大值即可判断④.【详解】解:∵四边形ABCD为正方形,∴∠B=∠BCD=90°,∵∠AEF=90°,∴∠AEB+∠CEG=90°,又∠AEB+∠BAE=90°,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;在BA上截取BM=BE,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA-BM=BC-BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°=∠AME,∵∠BAE=∠FEC,∴△AME≌△ECF(ASA),∴AE=EF,故②正确;∴△AEF为等腰直角三角形,∴∠EAF=∠EFA=45°,∴∠BAE+∠DAF=45°,而∠BAE=∠CEF,∠FCH=45°=∠CFE+∠CEF,∠=∠,故③正确;∴DAF CFE设BE=x,则BM=x,AM=AB-BM=2-x,S△AME=12•x•(2-x)=212x x-+,当x=1时,S△AME有最大值12,而△AME≌△ECF,∴S△AME=S△CEF,∴S△CEF有最大值12,所以④错误;综上:正确结论的序号是:①②③.故答案为:①②③.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定,等腰直角三角形的判定和性质,正方形的性质,二次函数的最值,解题的关键是添加辅助线,灵活运用全等三角形的知识解决线段的问题. 三、专心解一解(本大题共8小题,满分2分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(1)计算:0|122sin45(2020)︒--+-;(2)解不等式组:(1)3,29 3.xx-->⎧⎨+>⎩【答案】(1)0;(2)-3<x<-2【解析】【分析】(1)根据实数的混合运算法则计算即可;(2)分别解得两个不等式的解集,再合并即可.【详解】解:(1)原式22121-+=0;(2)(1)3293xx-->⎧⎨+>⎩①②,解不等式①得:x <-2, 解不等式②得:x >-3,∴不等式组的解集为:-3<x <-2.【点睛】本题考查了实数的混合运算与解不等式组,以及特殊角的三角函数值,解题的关键是掌握运算法则.18.如图,在ABCD 中,以点B 为圆心,BA 长为半径画弧,交BC 于点E ,在AD 上截取AF BE =,连接EF .(1)求证:四边形ABEF 是菱形;(2)请用无刻度的直尺......在ABCD 内找一点P ,使90APB ∠=︒(标出点P 的位置,保留作图痕迹,不写作法)【答案】(1)见解析;(2)见解析 【解析】 【分析】(1)根据四边形ABCD 为平行四边形,得出AF ∥BE ,由作图过程可知AF=BE ,结合AB=BE 即可证明; (2)利用菱形对角线互相垂直的性质,连接AE 和BF ,交点即为点P. 【详解】解:(1)根据作图过程可知:AB=BE ,AF=BE , ∵四边形ABCD 为平行四边形, ∴AF ∥BE , ∵AF=BE ,∴四边形ABEF 为平行四边形, ∵AB=BE ,∴平行四边形ABEF 为菱形; (2)如图,点P 即为所作图形,∵四边形ABEF 为菱形,则BF ⊥AE , ∴∠APB=90°.【点睛】本题考查了菱形的判定和性质,平行四边形的性质,解题的关键是利用相应的性质进行画图. 19.如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围. 【答案】(1)1122y x =-,26y x =;(2)8;(3)-2<x <0或x >6.【解析】 【分析】(1)把A 代入反比例函数,根据待定系数法即可求得m ,得到反比例函数的解析式,然后将(,3)B a -代入,求得a ,再根据待定系数法求得一次函数的解析式即可;(2)求出一次函数图像与x 轴交点坐标,再利用面积公式计算即可; (3)根据图象得到一次函数图像在反比例函数图像上方时的x 取值范围. 【详解】解:(1)把(6,1)A 代入反比例函数2my x=得: m=6,∴反比例函数的解析式为26y x =, ∵(,3)B a -点在反比例函数2my x=图像上,∴-3a=6,解得a=-2, ∴B (-2,-3),∵一次函数y 1=kx+b 的图象经过A 和B ,∴1632k b k b =+⎧⎨-=-+⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为1122y x =-; (2)∵(6,1)A ,(2,3)B --,一次函数的解析式为1122y x =-, 令y=0,解得:x=4,即一次函数图像与x 轴交点为(4,0), ∴S △AOB =()141382⨯⨯+=, 故答案为:8; (3)由图象可知:12y y >时,即一次函数图像在反比例函数图像上方,x 的取值范围是:-2<x <0或x >6.【点睛】此题是考查一次函数与反比例函数的交点问题、待定系数法求一次函数解析式,待定系数法求反比例函数解析式,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.20.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如下不完整的统计图表. 在线阅读时间频数分布表 3050t <5070t < 7090t <90110t <根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a =______,m =_____; (2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50 min ? 【答案】(1)50,20,8;(2)115.2°;(3)722 【解析】 【分析】(1)根据B 组人数和所占百分比求出被调查的学生总数,再根据C 组所占百分比求出a 值,最后根据A 组人数求出所占百分比;(2)求出D 组所占百分比,再乘以360°即可;(3)用样本中在线阅读时间不少于50 min 的总人数除以50,再乘以全校总人数即可. 【详解】解:(1)∵B 组的人数为8人,所占百分比为16%, ∴被调查的同学共有8÷16%=50人, a=50×40%=20人,4÷50×100%=8%, ∴m=8,故答案为:50,20,8;(2)(1-40%-16%-8%-4%)×360°=115.2°,则扇形统计图中扇形D 的圆心角的度数为:115.2°; (3)950×2016250++=722人,∴全校有722学生平均每天的在线阅读时间不少于50 min .【点睛】本题考查频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.如图,在Rt ABC △中,90︒∠=C ,点O 在AC 上,以OA 为半径的半圆O 交AB 于点D ,交AC 于点E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF DF =;(2)若4AC =,3BC =,1CF =,求半圆O 的半径长. 【答案】(1)见解析;(2)138【解析】 【分析】(1)连接OD ,根据切线的性质得到∠BDF+∠ADO=90°,再结合∠ADO=∠OAD ,推出∠BDF=∠B ,即可; (2)过F 作FG ⊥BD 于G ,先利用三角函数求出BG=DG ,再过点O 作OH ⊥AD 于H ,在△AOH 中,求出AO 即可.【详解】解:(1)连接OD , ∵DF 和半圆相切, ∴OD ⊥DF ,∴∠BDF+∠ADO=90°, ∵∠ADO=∠OAD ,∴∠OAD+∠BDF=90°,又∠C=90°, ∴∠OAD+∠B=90°, ∴∠BDF=∠B , ∴BF=DF ;(2)过F 作FG ⊥BD 于G ,则GF 垂直平分BD , ∵1CF =, ∴BF=DF=2,∵4AC =,3BC =,∠C=90°, ∴22345+=,∴cos ∠B=BC BG AB BF ==35, ∴325BG =,解得:BG=65=DG ,∴AD=AB-BD=135,过点O作OH⊥AD于H,∴AH=DH=12AD=1310,∵cos∠BAC=45 AC AHAB AO==,∴AO=138,即半圆O的半径长为13 8.【点睛】本题考查了切线的性质,相似三角形的判定和性质,等腰三角形的判定和性质,解直角三角形,解题的关键是正确寻找相似三角形,学会添加常用辅助线,属于中考常考题型.22.5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【答案】(1)每盒口罩和每盒水银体温计的价格各是200元,50元;(2)5m;(3)()()45043603604w m mw m m⎧=≤⎪⎨=+>⎪⎩,需要购买口罩18盒,水银体温计90盒,所需总费用为6840元.【解析】【分析】(1)设每盒水银体温计的价格是x元,根据用1200元购买口罩盒数与用300元购买水银体温计的盒数相同列出方程,求解即可;(2)先用m 表示出需要水银体温计的支数,再表示出水银体温计的盒数;(3)分当m≤4时,当m >4时,分别得出关系式,再合并,根据若该校九年级有900名学生求出口罩的盒数m ,从而得到体温计的盒数以及总费用.【详解】解:(1)设每盒水银体温计的价格是x 元,则每盒口罩的价格是x+150元, 根据题意可得:1200300150x x=+,解得:x=50,经检验:x=50是原方程的解, 50+150=200元,∴每盒口罩和每盒水银体温计的价格各是200元,50元; (2)∵购买口罩m 盒, ∴共有口罩100m 个,∵给每位学生发放2只口罩和1支水银体温计,∴需要发放1002m支水银体温计, ∴需要购买1001052mm ÷=盒水银体温计;(3)由题意可得: 令200m+5m×50=1800, 解得:m=4,若未超过1800元,即当m≤4时, 则w=200m+5m×50=450m , 若超过1800元,即当m >4时,w=(200m+5m×50-1800)×0.8+1800=360m+360, ∴w 关于m 的函数关系式为()()45043603604w m m w m m ⎧=≤⎪⎨=+>⎪⎩,若该校九年级有900名学生,即1002m=900, 解得:m=18,则360360w m =+=6840,答:需要购买口罩18盒,水银体温计90盒,所需总费用为6840元.【点睛】本题考查了分式方程的实际应用,一次函数的实际应用,解题的关键是理解题意,弄清口罩盒数与体温计盒数的配套关系.23.定义:有一组对角互余的四边形叫做对余四边形. 理解:(1)若四边形ABCD 是对余四边形,则A ∠与C ∠的度数之和为______; 证明:(2)如图1,MN 是O 的直径,点,,A B C 在O 上,AM ,CN 相交于点D .求证:四边形ABCD 是对余四边形;探究:(3)如图2,在对余四边形ABCD 中,AB BC =,60ABC ︒∠=,探究线段AD ,CD 和BD 之间有怎样的数量关系?写出猜想,并说明理由.【答案】(1)90°或270°;(2)见解析;(3)222CD AD BD +=,理由见解析 【解析】 【分析】(1)分当∠A 和∠C 互余时,当∠B 和∠D 互余时,两种情况求解;(2)连接BO ,得到∠BON+∠BOM=180°,再利用圆周角定理证明∠C+∠A=90°即可;(3)作△ABD 的外接圆O ,分别延长AC ,BC ,DC ,交圆O 于E ,F ,G ,连接DF ,DE ,EF ,先证明GF 是圆O 的直径,得到222GE EF GF +=,再证明△ABC ∽△FEC ,△ACD ∽△GCE ,△BCD ∽△GCF ,可得22222222AB CF AD GC AC EF AC GE +=+,BC BD CDk GC GF CF===,从而得出222222AB CD AD BC AC BD +=,根据△ABC 为等边三角形可得AB=AC=BC ,从而得到222CD AD BD +=.【详解】解:(1)∵四边形ABCD 是对余四边形, 当∠A 和∠C 互余时,∠A+∠C=90°, 当∠B 与∠D 互余时, ∠B+∠D=90°,则∠A+∠C=360°-90°=270°, 故答案为:90°或270°; (2)如图,连接BO ,可得:∠BON=2∠C ,∠BOM=2∠A , 而∠BON+∠BOM=180°, ∴2∠C+2∠A=180°, ∴∠C+∠A=90°,∴四边形ABCD 是对余四边形;(3)∵四边形ABCD 为对于四边形,∠ABC=60°, ∴∠ADC=30°,如图,作△ABD 的外接圆O ,分别延长AC ,BC ,DC ,交圆O 于E ,F ,G ,连接DF ,DE ,EF , 则∠AEF=∠ABC=60°,∠AEG=∠ADG=30°, ∴∠AEF+∠AEG=90°,即∠FEG=90°, ∴GF 是圆O 的直径, ∵AB=BC ,∴△ABC 为等边三角形,∵∠ABC=∠AEF ,∠ACB=∠ECF ,∴△ABC ∽△FEC ,得:AB AC BCEF FC EC==,则2222AB CF AC EF =, 同理,△ACD ∽△GCE ,得:AC AD CDGC GE CE ==,则2222AC GE AD GC =, △BCD ∽△GCF ,得:BC BD CDk GC GF CF===, 可得:22222222AB CF AD GC AC EF AC GE +=+,而222GE EF GF +=,∴222222AB CF AD GC AC GF +=, ∴222222222CD BC BD AB AD AC k k k +=, ∴222222AB CD AD BC AC BD +=,∵AB=BC=AC ,∴222CD AD BD +=.【点睛】本题考查了相似三角形的判定和性质,四边形的新定义问题,圆周角定理,等边三角形的判定和性质,多边形内角和,解题的关键是理解对余四边形的概念,结合所学知识求证.24.如图,平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫ ⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标;(3)点5(,0)02N n n ⎛⎫<< ⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=.①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个?【答案】(1)227236y x x =-++;(2)53,24⎛⎫ ⎪⎝⎭或(3,12-)或(-2,-3);(3)①241033m n n =-+;②0<m <2512【解析】【分析】 (1)利用一次函数求出A 和B 的坐标,结合点C 坐标,求出二次函数表达式;(2)当点P 在x 轴上方时,点P 与点C 重合,当点P 在x 轴下方时,AP 与y 轴交于点Q ,求出AQ 表达式,联立二次函数,可得交点坐标,即为点P ;(3)①过点C 作CD ⊥x 轴于点D ,证明△MNO ∽△NCD ,可得MO NO ND CD=,整理可得结果; ②作以MC 为直径的圆E ,根据圆E 与线段OD 的交点个数来判断M 的位置,即可得到m 的取值范围.【详解】解:(1)∵直线122y x =-+与x 轴交于点A ,与y 轴交于点B , 令x=0,则y=2,令y=0,则x=4,∴A (4,0),B (0,2),∵抛物线223y x bx c =-++经过B (0,2),53,24C ⎛⎫ ⎪⎝⎭, ∴2322554342c b c =⎧⎪⎨=-⨯++⎪⎩,解得:762b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:227236y x x =-++; (2)当点P 在x 轴上方时,点P 与点C 重合,满足PAO BAO ∠=∠, ∵53,24C ⎛⎫ ⎪⎝⎭, ∴53,24P ⎛⎫⎪⎝⎭,当点P在x轴下方时,如图,AP与y轴交于点Q,∵PAO BAO∠=∠,∴B,Q关于x轴对称,∴Q(0,-2),又A(4,0),设直线AQ的表达式为y=px+q,代入,2 04q p q-=⎧⎨=+⎩,解得:122pq⎧=⎪⎨⎪=-⎩,∴直线AQ的表达式为:122y x=-,联立得:212227236y xy x x⎧=-⎪⎪⎨⎪=-++⎪⎩,解得:x=3或-2,∴点P的坐标为(3,12-)或(-2,-3),综上,当PAO BAO∠=∠时,点P的坐标为:53,24⎛⎫⎪⎝⎭或(3,12-)或(-2,-3);(3)①如图,∠MNC=90°,过点C作CD⊥x轴于点D,∴∠MNO+∠CND=90°,∵∠OMN+∠MNO=90°,∴∠CND=∠OMN,又∠MON=∠CDN=90°,∴△MNO∽△NCD,∴MO NOND CD=,即5324m nn=-,整理得:241033m n n=-+;②如图,∵∠MNC=90°,以MC为直径画圆E,∵5 (,0)02N n n⎛⎫<<⎪⎝⎭,∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),∵点M在y轴正半轴,当圆E与线段OD相切时,有NE=12MC,即NE2=14MC2,∵M(0,m),53,24C⎛⎫ ⎪⎝⎭,∴E(54,382m+),∴2382m⎛⎫+⎪⎝⎭=22153424m⎡⎤⎛⎫⎛⎫+-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得:m=25 12,当点M与点O重合时,如图,此时圆E与线段OD(不含O和D)有一个交点,∴当0<m<2512时,圆E与线段OD有两个交点,故m的取值范围是:0<m<25 12.【点睛】本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.。

2020年湖北省咸宁市中考数学试卷(含解析)

2020年湖北省咸宁市中考数学试卷(含解析)

2020年湖北省咸宁市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共24分)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.二、填空题(每小题3分,共24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.因式分解:mx2﹣2mx+m=.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile 到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P 的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3﹣1,33,34,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、解答题(共72分)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t 人数A 10≤t<30 4B 30≤t<50 8C 50≤t<70 aD 70≤t<90 16E 90≤t<110 2根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC =90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?参考答案与试题解析一、1.【解答】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.2.【解答】解:305000000=3.05×108,故选:B.3.【解答】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.4.【解答】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.5.【解答】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.6.【解答】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.7.【解答】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.8.【解答】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.二、9.【解答】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.10.【解答】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,11.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.12.【解答】解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.13.【解答】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.14.【解答】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.15.【解答】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a﹣b=c.故答案为:a﹣b=c.16.【解答】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.三、17.【解答】解:(1)原式=﹣1﹣2×+1 =﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:19.【解答】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是﹣2<x<0或x>6.20.【解答】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.21.【解答】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.22.【解答】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m﹣1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.23.【解答】(1)解:∵四边形ABCD是对余四边形,∴∠A+∠C=90°或∠A+∠C=360°﹣90°=270°,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.24.【解答】解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x﹣2②,联立①②并解得:x=3或﹣2,故点P的坐标为(3,﹣)或(﹣2,﹣3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即,即,解得:m=﹣n2+n;②m=﹣n2+n,∵<0,故m有最大值,当n=时,m的最大值为,而m>0,故0<m<时,符合条件的N点的个数有2个。

2020年湖北省咸宁市中考数学试卷(解析版)

2020年湖北省咸宁市中考数学试卷(解析版)

探究:
(3)如图 2,在对余四边形 ABCD 中, AB BC , ABC 60 ,探究线段 AD , CD 和 BD 之间有怎
样的数量关系?写出猜想,并说明理由.
24.如图,在平面直角坐标系中,直线 y 1 x 2 与 x 轴交于点 A,与 y 轴交于点 B,抛物线 2
y
2 3
x2
bx
c
在点 F 处,连结 CF ,则 cosECF 的值为( )
2
A.
3
B. 10 4
C. 5 3
D. 2 5 5
二、细心填一填(本大题共 8 小题,每小题 3 分,满分 24 分.请把答案填在答题卷相应题号
的横线上)
9.点 A 在数轴上的位置如图所示,则点 A 表示的数的相反数是________.
10.因式分解: mx2 2mx m __________.
14.如图,海上有一灯塔 P,位于小岛 A 北偏东 60°方向上,一艘轮船从北小岛 A 出发,由西向东航行 24nmile
到达 B 处,这时测得灯塔 P 在北偏东 30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔 P
的正南方,此时轮船与灯塔 P 的距离是________ n mile .(结果保留一位小数, 3 1.73 )
(1)这次被调查的同学共有______人, a ______, m _____;
(2)求扇形统计图中扇形 D 的圆心角的度数;
(3)若该校有 950 名学生,请估计全校有多少学生平均每天的在线阅读时间不少于 50 min ? 21.如图,在 Rt△ABC 中, C 90 ,点 O 在 AC 上,以 OA 为半径的半圆 O 交 AB 于点 D,交 AC 于 点 E,过点 D 作半圆 O 的切线 DF ,交 BC 于点 F.

2020年湖北咸宁中考数学试题及答案

2020年湖北咸宁中考数学试题及答案

2020年湖北咸宁中考数学试题及答案北省咸宁市2020年初中毕业生学业考试数学试卷考生注意:I.本试卷分道跑卷和答题卷:全卷24小题,满分120分:考试时间120分钟.2 .考生写题前,请将自己的学校、桂名、推考证号埴写在试题卷和各题卷指定的位置. 同时认再阅读答题卷上的注意事项.3 .考生答爰时.请在答超卷上对应麴号的客邈区境内作答,答案写在试题卷上无效.试题卷一、精心选一选(本大邈共8小超,每小超3分.满分24分.在母小旭给出的四个选项中只有一项是符合题目要求的,请在答理卷上把正确答案的代号除黑)1 .早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式H尊结果为负数的是()(A) 3 + (-2)(B) 3-(-2)(C) 3x(-2)(D)(-3)+(-2)2•中国U联网络信息中心数据显示,陆者二胎政策全面开放,升学就业竞争压力的不断增大,滴足用户碎片化学习需求的在线教育用户规模持续增长.预il 2020年中国在线教白用户规模将达到305 000 00。

人.将305 000 00()用科学记数法表示为()(A)0.305X10“ (B) 3.05X|0H(C) 3.05XI06<D) 3O5XIO H3 .下列计算正确的是()(A) 3。

-。

= 2 (B)a-a2 =a}(C)(D)(3a:)2 =6«44 .如图是山5个完全相同的小正方体组成的几何体.则该几何体的左视图是()5.6.7. ,主视力向土(A)(C)如图是甲、乙两冬射击运动员某节训练课的5次射击成绩的折线统计图.下列判断正确的是()(A)(B)(C)(D)乙的坡好成绩比甲高乙的成绩的平均数比甲小乙的成绩的中位数比中小乙的成绩比甲稔定□B成纣1/环甲乙2 3 4 5次数(第5四)如图.在。

中.OA=2. NC=45。

.则图中阴影部分的面枳为((B) n-y/2在平面直角坐标系工牲,中,对于横■纵坐标相等的点称为“好点”.下(D) K-2(第6(C) y-2列函数的图象中不存在“好点”的是(• • •2(A) p = -x (B) v = x + 2 (C)(D) j = /-2x8.如图.在矩形9CO中.止2, BC=2旧.£是8c的中点,将△48E沿直线4E翻折,点4落在点尸处,连结CF,则cos/EC/的值为()(A) - (B)—(C)—(D)—3 4 3 5(第8题)二、细心填一填(本大题共8小题,每小题3分. 满分24分. 请把备案埴在冬期卷相应题号的横线上)9•点/在数轴上的位置如图所示,则点4农示的数的相反数是—.3对6:二10 .闵式分解:nix2 -2mx + w = __________ . (第9题)11 .如图,请填写一个条件,使结论成立:: __________ ,••“〃〃・R12 .若关于工的一元二次方程()+ 2「=〃有实数根,则〃的取值范围是・, 战13 .某校开展以“我和我的祖国”为行题的“大合唱”活动,匕年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各附机选出一名男生和(第"&一名女生担任领唱,则小聪和小慈被同时选中的概率是.14 .如图,海上有一灯塔P,位于小岛*北偏东60。

2020年湖北省咸宁市中考数学试卷和答案解析

2020年湖北省咸宁市中考数学试卷和答案解析

2020年湖北省咸宁市中考数学试卷和答案解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.(3分)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)解析:分别按照有理数的加减法、有理数的乘除法法则计算即可.参考答案:解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.点拨:本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.(3分)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:305000000=3.05×108,故选:B.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算正确的是()A.3a﹣a=2B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4解析:分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.参考答案:解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.点拨:本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.(3分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.解析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.参考答案:解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.点拨:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定解析:利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.参考答案:解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.点拨:本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.(3分)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2D.π﹣2解析:由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.参考答案:解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.点拨:本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.(3分)在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2C.y=D.y=x2﹣2x 解析:根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.参考答案:解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.点拨:本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.(3分)如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.解析:由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.参考答案:解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.点拨:本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF是解决问题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣3.解析:A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.参考答案:解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.点拨:此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.(3分)因式分解:mx2﹣2mx+m=m(x﹣1)2.解析:先提公因式,再利用完全平方公式进行因式分解即可.参考答案:解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,点拨:本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.(3分)如图,请填写一个条件,使结论成立:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.解析:要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.参考答案:解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.点拨:考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.(3分)若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是n≥0.解析:将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).参考答案:解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.点拨:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.(3分)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.解析:用列表法表示所有可能出现的结果,进而求出相应的概率.参考答案:解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.点拨:本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.(3分)如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是20.8nmile.(结果保留一位小数,≈1.73)解析:过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP =AB=24nmile.然后在直角△PBD中,利用三角函数的定义求得PD的长即可.参考答案:解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.点拨:本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.(3分)按一定规律排列的一列数:3,32,3﹣1,33,34,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是a﹣b=c.解析:首项判断出这列数中,3的指数各项依次为1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a﹣b=c,据此解答即可.参考答案:解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a﹣b=c.故答案为:a﹣b=c.点拨:此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)解析:①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE =∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,利用三角形面积公式得到S△AME=•x•(2﹣x),则根据二次函数的性质可得S△AME 的最大值,便可对④进行判断.参考答案:解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.点拨:本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:解析:(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.点拨:本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)解析:(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.参考答案:(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:点拨:本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为8;(3)直接写出y1>y2时x的取值范围.解析:(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,﹣3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.参考答案:解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是﹣2<x<0或x>6.点拨:此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间人数tA10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有50人,a=20,m=8;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?解析:(1)根据B组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C组所占百分比得到a的值,用A组人数除以被调查的同学总数,即可得到m;(2)用360°乘以D组所占百分比得到D组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min的人数所占的百分比即可.参考答案:解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min 的有722人.点拨:本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA 为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O 的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.解析:(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.参考答案:解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.点拨:本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?解析:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m 的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m﹣1800)×0.8=360m+360,进而可得w关于m的函数关系式.参考答案:解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m﹣1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.点拨:本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.23.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为90°或270°;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.解析:(1)对余四边形的定义即可得出结果;(2)由圆周角定理得出∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,即可得出结论;(3)对余四边形的定义得出∠ADC=30°,将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,则△BCD≌△BAF,∠FBD=60°,得出BF=BD,AF=CD,∠BDC=∠BFA,则△BFD是等边三角形,得出BF=BD=DF,易证∠BFA+∠ADB=30°,由∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,得出∠AFD+∠ADF=90°,则∠FAD=90°,由勾股定理即可得出结果.参考答案:(1)解:∵四边形ABCD是对余四边形,∴∠A+∠C=90°或∠A+∠C=360°﹣90°=270°,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.点拨:本题是圆的综合题,主要考查了对余四边形的定义、圆周角定理、旋转的性质、等边三角形的判定与性质、三角形内角和定理、勾股定理等知识;熟练掌握对余四边形的定义和旋转的性质是解题的关键.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?解析:(1)用待定系数法即可求解;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,即可求解;(3)①证明tan∠MNO=tan∠NCH,即,即,即可求解;②m=﹣n2+n,当n=时,m的最大值为,即可求解.参考答案:解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x﹣2②,联立①②并解得:x=3或﹣2,故点P的坐标为(3,﹣)或(﹣2,﹣3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH ,即,即,解得:m =﹣n2+n;②m =﹣n2+n,∵<0,故m有最大值,当n =时,m 的最大值为,而m>0,故0<m <时,符合条件的N点的个数有2个.点拨:本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形等,综合性强,难度适中.第31页(共31页)。

2020年湖北省咸宁市中考数学试题及参考答案(word解析版)

2020年湖北省咸宁市中考数学试题及参考答案(word解析版)

湖北省咸宁市2020年初中毕业生学业考试数学试卷(满分120分,考试时间120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.因式分解:mx2﹣2mx+m=.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y 1=kx+b 与反比例函数y 2=的图象在第一、三象限分别交于A (6,1),B (a ,﹣3)两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式;(2)△AOB 的面积为 ;(3)直接写出y 1>y 2时x 的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ;(2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ?21.(9分)如图,在Rt △ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的半圆O 交AB 于点D ,交AC 于点E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF =DF ;(2)若AC =4,BC =3,CF =1,求半圆O 的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E 90≤t <110 223.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案与解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【知识考点】有理数的混合运算.【思路分析】分别按照有理数的加减法、有理数的乘除法法则计算即可.【解答过程】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.【总结归纳】本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:305000000=3.05×108,故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.【解答过程】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.【总结归纳】本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答过程】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.【总结归纳】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定【知识考点】折线统计图;加权平均数;中位数;方差.【思路分析】利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.【解答过程】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.【总结归纳】本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣2【知识考点】扇形面积的计算.【思路分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.【解答过程】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.【总结归纳】本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.【思路分析】根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.【解答过程】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.【总结归纳】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE 沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE ≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC =∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.【解答过程】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.【总结归纳】本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF是解决问题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.【知识考点】数轴;相反数.【思路分析】A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答过程】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.【总结归纳】此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.因式分解:mx2﹣2mx+m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提公因式,再利用完全平方公式进行因式分解即可.【解答过程】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,【总结归纳】本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.【知识考点】平行线的判定.【思路分析】要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答过程】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.【总结归纳】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.【知识考点】根的判别式.【思路分析】将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n 的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).【解答过程】解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.【总结归纳】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.【知识考点】列表法与树状图法.【思路分析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答过程】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.【总结归纳】本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD中,利用三角函数的定义求得PD的长即可.【解答过程】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.【知识考点】规律型:数字的变化类.【思路分析】首项判断出这列数中,3的指数各项依次为1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a÷b=c,据此解答即可.【解答过程】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a÷b=c.故答案为:a÷b=c.【总结归纳】此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)【知识考点】二次函数的最值;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【思路分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,利用三角形面积公式得到S△AME=•x•(2﹣x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.【解答过程】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.【总结归纳】本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:【知识考点】实数的运算;零指数幂;解一元一次不等式组;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.【总结归纳】本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)【知识考点】平行四边形的性质;菱形的判定与性质;圆周角定理;作图—复杂作图.【思路分析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【总结归纳】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A (6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,﹣3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.【解答过程】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y =0,得x =4. ∴点C 的坐标是(4,0), ∴S △AOB =S △AOC +S △BOC =×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x <0或x >6时,直线y 1=kx+b 落在双曲线y 2=上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是﹣2<x <0或x >6.【总结归纳】此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ; (2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ? 【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)根据B 组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C 组所占百分比得到a 的值,用A 组人数除以被调查的同学总数,即可得到m ; (2)用360°乘以D 组所占百分比得到D 组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min 的人组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E90≤t <1102数所占的百分比即可.【解答过程】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.【总结归纳】本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【知识考点】圆周角定理;切线的性质;相似三角形的判定与性质.(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,【思路分析】得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答过程】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.【总结归纳】本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m﹣1800)×0.8=360m+360,进而可得w关于m的函数关系式.【解答过程】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;。

2020年湖北省咸宁市中考数学试卷(有详细解析)

2020年湖北省咸宁市中考数学试卷(有详细解析)

2020年湖北省咸宁市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共24.0分)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A. 3+(−2)B. 3−(−2)C. 3×(−2)D. (−3)÷(−2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A. 0.305×1011B. 3.05×108C. 3.05×106D. 305×1083.下列计算正确的是()A. 3a−a=2B. a⋅a2=a3C. a6÷a2=a3D. (3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A. 乙的最好成绩比甲高B. 乙的成绩的平均数比甲小C. 乙的成绩的中位数比甲小D. 乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A. π2−√2B. π−√2C. π2−2D. π−27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A. y=−xB. y=x+2C. y=2xD. y=x2−2x8.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A. 23B. √104C. √53D. 2√55二、填空题(本大题共8小题,共24.0分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.10.因式分解:mx2−2mx+m=______.11.如图,请填写一个条件,使结论成立:∵______,∴a//b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是______.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是______.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是______nmile.(结果保留一位小数,√3≈1.73)15.按一定规律排列的一列数:3,32,3−1,33,3−4,37,3−11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是______.(把正确结论的序号都填上)三、解答题(本大题共8小题,共72.0分)17.(1)计算:|1−√2|−2sin45°+(−2020)0;(2)解不等式组:{−(x−1)>3,2x+9>3.18.如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.如图,已知一次函数y1=kx+b与反比例函数y2=m的图象在第一、三象限分别交x于A(6,1),B(a,−3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为______;(3)直接写出y1>y2时x的取值范围.20.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a=______,m=______;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为______;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案和解析1. C解:A.3+(−2)=1,故A 不符合题意; B .3−(−2)=3+2=5,故B 不符合题意; C .3×(−2)=−6,故C 符合题意;D .(−3)÷(−2)=1.5,故D 不符合题意. 综上,只有C 计算结果为负. 2. B解:305000000=3.05×108, 3. B解:3a −a =a ,因此选项A 计算错误,不符合题意; a ⋅a 2=a 3,因此选项B 计算正确,符合题意; a 6÷a 2=a 4,因此选项C 计算错误,不符合题意;(3a 2)2=9a 4≠6a 4,因此选项D 计算错误,不符合题意. 4. A解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.5. D解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8, ∵10>9,∴甲的最好成绩比乙高,故选项A 错误,不符合题意;∵x 甲−=15(6+7+10+8+9)=8,x 乙−=15(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B 错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8, 乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8, ∴乙的成绩的中位数与甲相等,故选项C 错误,不符合题意;∵s 甲2=15[(6−8)2+(7−8)2+(8−8)2+(9−8)2+(10−8)2]=2,s 乙2=15[(7−8)2+3×(8−8)2+(9−8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D 正确,符合题意. 6. D解:∵∠C =45°, ∴∠AOB =90°,∴S阴影=S扇形AOB−S△AOB=90⋅π×22360−12×2×2=π−2.7.B解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=−x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±√2,不符合题意;D.x=x2−2x,解得x1=0,x2=3,不符合题意.8.C解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2√5,∴BE=CE=12BC=√5,∴AE=√AB2+BE2=√22+(√5)2=3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=√5,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB=BEAE =√53.9.−3解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是−3.10.m(x−1)2解:mx2−2mx+m=m(x2−2x+1)=m(x−1)2,11.∠1=∠4或∠2=∠4或∠3+∠4=180°解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a//b.12.n≥0解:原方程可变形为x2+4x+4−n=0.∵该方程有实数根,∴△=42−4×1×(4−n)≥0,解得:n≥0.13.16解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=16,14.20.8解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP⋅sin∠PBD=24×√32=12√3≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.15.a−b=c解:∵3,32,3−1,33,3−4,37,3−11,318,…,1−2=−1,2−(−1)=3,−1−3=−4,3−(−4)=7,−4−7=−11,7−(−11)=18,…,∴a,b,c满足的关系式是a−b=c.16.①②③解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA−BM=BC−BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中{∠MAE=∠CEF AM=EC∠AME=∠ECF,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB−BM=4−x,S△ECF=S△AME=12⋅x⋅(2−x)=−12(x−1)2+12,当x=1时,S△ECF有最大值12,故④错误.17.解:(1)原式=√2−1−2×√22+1=√2−1−√2+1=0;(2)解不等式−(x−1)>3,得:x<−2,解不等式2x+9>3,得:x>−3,则不等式组的解集为−3<x <−2.18. (1)证明:∵四边形ABCD 是平行四边形, ∴AF//BE , ∵AF =BE ,∴四边形ABEF 是平行四边形, ∵BA =BE ,∴四边形ABEF 是菱形;(2)如图所示:点P 即为所求:19. 8解:(1)把A(6,1)代入y 2=mx 中, 解得:m =6,故反比例函数的解析式为y 2=6x ; 把B(a,−3)代入y 2=6x ,解得a =−2, 故B (−2,−3),把A(6,1),B(−2,−3)代入y 1=kx +b , 得{6k +b =1−2k +b =−3,解得:{k =12b =−2, 故一次函数解析式为y 1=12x −2;(2)如图,设一次函数y 1=12x −2与x 轴交于点C , 令y =0,得x =4. ∴点C 的坐标是(4,0),∴S △AOB =S △AOC +S △BOC =12×4×1+12×4×3=8.故答案为8;(3)由图象可知,当−2<x <0或x >6时,直线y 1=kx +b 落在双曲线y 2=mx 上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是−2<x <0或x >6.20. 50 20 8解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,=8%,∵m%=450∴m=8.故答案为:50,20,8;=115.2°;(2)扇形统计图中扇形D的圆心角的度数为:360°×1650(3)950×50−4−8=722(人),50答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.21.解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4−r,DF=BF=3−1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4−r)2+12,∴r =138.故圆的半径为138.22. 解:(1)设每盒口罩和每盒水银体温计的价格各是x 元,(x −150)元,根据题意,得1200x =300x−150,解得x =200,经检验,x =200是原方程的解,∴x −150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y 盒能和口罩刚好配套,根据题意,得100m =2×10y ,则y =5m ,答:购买水银体温计5m 盒能和口罩刚好配套;(3)若200m +50×5m ≤1800,∴450m ≤1800,∴m ≤4,即m ≤4时,w =450m ;若m >4,则w =1800+(450m −1800)×0.8=360m +360,综上所述:w ={450m(m ≤4)360m +360(m >4). 若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m =1800÷100=18(盒),y =5×18=90(盒),则w =360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.23. 90°或270°(1)解:∵四边形ABCD 是对余四边形,∴∠A +∠C =90°或∠A +∠C =360°−90°=270°,故答案为:90°或270°;(2)证明:∵MN 是⊙O 的直径,点A ,B ,C 在⊙O 上,∴∠BAM +∠BCN =90°,即∠BAD +∠BCD =90°,∴四边形ABCD 是对余四边形;(3)解:线段AD ,CD 和BD 之间数量关系为:AD 2+CD 2=BD 2,理由如下:∵对余四边形ABCD 中,∠ABC =60°,∴∠ADC =30°,∵AB =BC ,∴将△BCD 绕点B 逆时针旋转60°,得到△BAF ,连接FD ,如图3所示:∴△BCD≌△BAF ,∠FBD =60°∴BF =BD ,AF =CD ,∠BDC =∠BFA ,∴△BFD 是等边三角形,∴BF =BD =DF ,∵∠ADC =30°,∴∠ADB +∠BDC =30°,∴∠BFA +∠ADB =30°,∵∠FBD +∠BFA +∠ADB +∠AFD +∠ADF =180°,∴60°+30°+∠AFD +∠ADF =180°,∴∠AFD +∠ADF =90°,∴∠FAD =90°,∴AD 2+AF 2=DF 2,∴AD 2+CD 2=BD 2.24. 解:(1)直线y =−12x +2与x 轴交于点A ,与y 轴交于点B ,则点A 、B 的坐标分别为(4,0)、(0,2),将点B 、C 的坐标代入抛物线表达式得{−23×(52)2+52b +c =34c =2,解得{b =76c =2, 故抛物线的表达式为:y =−23x 2+76x +2①;(2)如图1,作点B 关于x 轴的对称点B′(0,−2),连接AB′交抛物线于点P(P′),则∠PAO =∠BAO ,由点A 、B′的坐标得,直线AB′的表达式为:y =12x −2②,联立①②并解得:x =3或−2,故点P 的坐标为(3,−12)或(−2,−3);(3)①过点C 作CH ⊥x 轴于点H ,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即OMON =NHCH,即mn=52−n34,解得:m=−43n2+103n;②m=−43n2+103n,∵−43<0,故m有最大值,当n=54时,m的最大值为2512,而m>0,故0<m<2512时,符合条件的N点的个数有2个.。

2020年湖北省咸宁市中考数学试卷

2020年湖北省咸宁市中考数学试卷

2020年湖北省咸宁市中考数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A. 3+(-2)B. 3-(-2)C. 3×(-2)D. (-3)÷(-2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A. 0.305×1011B. 3.05×108C. 3.05×106D. 305×1083.下列计算正确的是()A. 3a-a=2B. a•a2=a3C. a6÷a2=a3D. (3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A. 乙的最好成绩比甲高B. 乙的成绩的平均数比甲小C. 乙的成绩的中位数比甲小D. 乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A. -B. π-C. -2D. π-27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A. y=-xB. y=x+2C. y=D. y=x2-2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.10.因式分解:mx2-2mx+m=______.11.如图,请填写一个条件,使结论成立:∵______,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是______.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是______.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是______nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3-1,33,34,37,3-11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是______.(把正确结论的序号都填上)三、解答题(本大题共8小题,共72.0分)17.(1)计算:|1-|-2sin45°+(-2020)0;(2)解不等式组:18.如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,-3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为______;(3)直接写出y1>y2时x的取值范围.20.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a=______,m=______;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为______;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.如图,在平面直角坐标系中,直线y=-x+2与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案和解析1.【答案】C【解析】解:A.3+(-2)=1,故A不符合题意;B.3-(-2)=3+2=5,故B不符合题意;C.3×(-2)=-6,故C符合题意;D.(-3)÷(-2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.分别按照有理数的加减法、有理数的乘除法法则计算即可.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:305000000=3.05×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:3a-a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.【答案】A【解析】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.【答案】D【解析】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6-8)2+(7-8)2+(8-8)2+(9-8)2+(10-8)2]=2,=[(7-8)2+3×(8-8)2+(9-8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.【答案】D【解析】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB-S△AOB=-=π-2.故选:D.由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB-S△AOB可得出结论.本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.【答案】B【解析】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=-x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2-2x,解得x1=0,x2=3,不符合题意.故选:B.根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.【答案】C【解析】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF 是解决问题的关键.9.【答案】-3【解析】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是-3.故答案为:-3.A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.【答案】m(x-1)2【解析】解:mx2-2mx+m=m(x2-2x+1)=m(x-1)2,先提公因式,再利用完全平方公式进行因式分解即可.本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.【答案】∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.【答案】n≥0【解析】解:原方程可变形为x2+4x+4-n=0.∵该方程有实数根,∴△=42-4×1×(4-n)≥0,解得:n≥0.故答案为:n≥0.将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.【答案】【解析】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.用列表法表示所有可能出现的结果,进而求出相应的概率.本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.【答案】20.8【解析】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD 中,利用三角函数的定义求得PD的长即可.本题考查了解直角三角形的应用-方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.【答案】a-b=c【解析】解:∵3,32,3-1,33,3-4,37,3-11,318,…,1-2=-1,2-(-1)=3,-1-3=-4,3-(-4)=7,-4-7=-11,7-(-11)=18,…,∴a,b,c满足的关系式是a-b=c.故答案为:a-b=c.首项判断出这列数中,3的指数各项依次为1,2,-1,3,-4,7,-11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a-b=c,据此解答即可.此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.【答案】①②③【解析】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA-BM=BC-BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB-BM=4-x,S△ECF=S△AME=•x•(2-x)=-(x-1)2+,故④错误.故答案为:①②③.①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB-BM=4-x,利用三角形面积公式得到S△AME=•x•(2-x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.17.【答案】解:(1)原式=-1-2×+1=-1-+1=0;(2)解不等式-(x-1)>3,得:x<-2,解不等式2x+9>3,得:x>-3,则不等式组的解集为-3<x<-2.【解析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【解析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.本题考查菱形的判定和性质、平行四边形的性质、作图-基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.【答案】8【解析】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,-3)代入y2=,解得a=-2,故B(-2,-3),把A(6,1),B(-2,-3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x-2;(2)如图,设一次函数y1=x-2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当-2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是-2<x<0或x>6.(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,-3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.【答案】50 20 8【解析】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.(1)根据B组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C组所占百分比得到a的值,用A组人数除以被调查的同学总数,即可得到m;(2)用360°乘以D组所占百分比得到D组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min的人数所占的百分比即可.本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.【答案】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4-r,DF=BF=3-1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4-r)2+12,∴.故圆的半径为.【解析】(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4-r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.【答案】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x-150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x-150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m-1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.【解析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x-150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m-1800)×0.8=360m+360,进而可得w关于m的函数关系式.本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.23.【答案】90°或270°【解析】(1)解:∵四边形ABCD是对余四边形,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.(1)对余四边形的定义即可得出结果;(2)由圆周角定理得出∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,即可得出结论;(3)对余四边形的定义得出∠ADC=30°,将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,则△BCD≌△BAF,∠FBD=60°,得出BF=BD,AF=CD,∠BDC=∠BFA,则△BFD 是等边三角形,得出BF=BD=DF,易证∠BFA+∠ADB=30°,由∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,得出∠AFD+∠ADF=90°,则∠FAD=90°,由勾股定理即可得出结果.本题是圆的综合题,主要考查了对余四边形的定义、圆周角定理、旋转的性质、等边三角形的判定与性质、三角形内角和定理、勾股定理等知识;熟练掌握对余四边形的定义和旋转的性质是解题的关键.24.【答案】解:(1)直线y=-x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=-x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,-2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x-2②,联立①②并解得:x=3或-2,故点P的坐标为(3,-)或(-2,-3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即,即,解得:m=-n2+n;②m=-n2+n,∵<0,故m有最大值,当n=时,m的最大值为,而m>0,故0<m<时,符合条件的N点的个数有2个.【解析】(1)用待定系数法即可求解;则∠PAO=∠BAO,即可求解;(3)①证明tan∠MNO=tan∠NCH,即,即,即可求解;②m=-n2+n,当n=时,m的最大值为,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形等,综合性强,难度适中.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园 B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2020年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3 C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.π B.C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷= .11.(3分)分解因式:2a2﹣4a+2= .12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步)1.1 1.2 1.3 1.4 1.5天数 3 7 5 12 3在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE 的长为.15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2020时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20200;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的 2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.x …﹣1 0 1 2 3 …y … b 1 0 1 2 …其中,b= ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y 轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.2020年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2020•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园 B.陆水湖C.隐水洞D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2020•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2020年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105C.1.21×105D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2020•咸宁)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3 C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B 进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D 进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2020•咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2020•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2020•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2020•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.π B.C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.(3分)(2020•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A 的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2020•咸宁)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2020•咸宁)化简:÷= x﹣1 .【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2020•咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2020•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c 交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c 解集是x<﹣1或x>4 .的【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n 在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2020•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万1.1 1.2 1.3 1.4 1.5步)天数 3 7 5 12 3在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35 .【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2020•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为 6 .【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.(3分)(2020•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2020时,顶点A的坐标为(2,2).【分析】将正六边形ABCDEF绕原点O顺时针旋转2020次时,点A所在的位置就是原F点所在的位置.【解答】解:2020×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2020后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(3分)(2020•咸宁)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②(把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠A CB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(2020•咸宁)(1)计算:|﹣|﹣+20200;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20200=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)(2020•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB ∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.19.(8分)(2020•咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72 度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700 人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的 2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2020•咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.x …﹣1 0 1 2 3 …y … b 1 0 1 2 …其中,b= 2 ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)(2020•咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.22.(10分)(2020•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330 件,日销售利润是660 元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的 y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的 y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的 y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次不等式,解题的关键是:(1)根据数量关系,列式计算;(2)利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式;(3)分0≤x≤18和18<x≤30,找出关于x 的一元一次不等式.23.(10分)(2020•咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).【点评】本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.24.(12分)(2020•咸宁)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐。

相关文档
最新文档