工程热力学教案
2024工程热力学课堂教学设计教案
•教学背景与目标•教学内容与方法•教学资源与工具•教学过程与实施目录•教学评价与反馈•教师角色与素质要求01教学背景与目标课程背景介绍工程热力学在能源与动力工程领域的重要性工程热力学是研究热能与机械能相互转换以及热能传递规律的学科,对于能源的高效利用和动力设备的优化设计具有重要意义。
当前工程热力学教学面临的挑战随着科技的快速发展和新能源技术的不断涌现,工程热力学的教学内容需要不断更新和完善,以适应新的教学需求。
教学目标设定知识与技能目标使学生掌握工程热力学的基本概念和基本定律,了解热能传递和转换的基本过程,能够运用所学知识分析和解决简单的工程热力学问题。
过程与方法目标通过理论讲解、案例分析、实验操作等多种教学手段,培养学生的分析、综合、创新和实践能力。
情感态度与价值观目标激发学生对工程热力学的学习兴趣和热情,培养学生的团队协作精神和创新意识,提高学生的职业素养和社会责任感。
学生需求分析学生的专业背景和先修课程01学生的学习特点和兴趣爱好02学生在未来职业发展中的需求03教学重点与难点教学重点教学难点02教学内容与方法整合知识点间的联系,构建系统的知识体系,如将热力学第一定律和第二定律结合起来讲解热机的工作原理;强调知识点的工程应用背景,引导学生将理论知识与实际问题相结合。
梳理工程热力学基本概念、定律和原理,如热力学系统、热力学第一定律、热力学第二定律等;知识点梳理与整合根据工程热力学的学科特点,选择启发式、案例式、讨论式等教学方法;针对学生的实际情况,采用分层次、分阶段的教学方式,逐步提高教学难度;利用多媒体、网络等现代化教学手段,增强教学的直观性和趣味性。
教学方法选择依据设计课堂提问环节,鼓励学生主动思考和回答问题,激发学生的学习兴趣;安排小组讨论环节,引导学生就某一问题进行深入探讨和交流,培养学生的合作精神和沟通能力;设置课堂练习环节,让学生及时巩固所学知识,提高教学效果。
课堂互动环节设计案例分析与实践应用引入工程实例,分析热力学理论在工程中的应用,如汽轮机、内燃机等热力设备的热力过程分析;安排实验课程,让学生亲自动手操作,加深对热力学理论的理解和掌握;布置课程设计任务,让学生综合运用所学知识解决实际问题,培养学生的工程实践能力和创新能力。
高等工程热力学教案
高等工程热力学教案一、教学目标1.掌握高等工程热力学的基本概念和基本原理。
2.理解热力学系统和热力学过程的基本特征。
3.掌握热力学第一定律和第二定律的表述和应用方法。
4.能够应用热力学知识解决实际工程问题。
二、教学内容1.高等工程热力学简介(1)高等工程热力学的定义和研究对象。
(2)热力学系统的基本概念和分类。
(3)热力学平衡和非平衡态。
2.热力学基本概念和基本原理(1)热力学过程和过程的分类。
(2)内能和焓的概念及其性质。
(3)热力学第一定律的表述和应用。
(4)克拉珀龙方程和基尔霍夫循环定理。
3.熵和热力学第二定律(1)熵的引入和熵增定理。
(2)热力学第二定律的表述和应用。
(3)熵的计算方法和热力学性能的描述。
4.理想气体和理想气体混合物的热力学性质(1)理想气体状态方程和气体定律。
(2)理想气体的内能、焓和熵的计算方法。
(3)理想气体混合物的理论计算方法。
5.热力学循环和工质使用(1)热力学循环的分类和性能参数。
(2)理想循环和实际循环。
(3)工质选择和工质性能参数。
三、教学方法1.理论讲授:通过课堂讲解,将高等工程热力学的基本概念、基本原理和应用方法传授给学生。
2.实例分析:提供一些实际工程问题,并引导学生应用热力学知识解决问题,加强实际应用能力的培养。
3.讨论引导:组织学生开展小组讨论,让学生在讨论中相互启发,共同思考和解决问题。
四、教学工具1.讲义和教材:准备高等工程热力学的讲义和教学参考教材,便于学生学习和复习。
2.多媒体设备:利用多媒体设备播放示意图、实验视频等,直观地展示热力学原理和实验过程。
3.计算工具:提供计算软件或计算器,方便学生进行数值计算。
五、教学过程1.导入:通过提问和讲解,引入高等工程热力学的概念和研究对象。
2.知识讲解:逐步讲解热力学的基本概念、基本原理和应用方法。
3.实例分析:提供一些实际工程问题,引导学生应用热力学知识解决问题。
4.小组讨论:组织学生进行小组讨论,让学生相互启发、共同思考和解决问题。
北京理工工程热力学电子教案
北京理工工程热力学电子教案第一章:热力学基本概念1.1 温度、热量和内能1.2 热力学第一定律1.3 热力学第二定律1.4 熵及其应用第二章:热力学性质计算与图表2.1 热力学基本性质计算2.2 状态方程的应用2.3 热力学性质图表的绘制2.4 热力学性质表和图的应用第三章:热传递过程3.1 导热过程3.2 对流换热过程3.3 辐射换热过程3.4 热传递过程的数值模拟第四章:热能利用与节能技术4.1 热机原理与性能评价4.2 热能利用技术4.3 节能技术及其应用4.4 热能利用与节能技术的未来发展第五章:热工测量与自动控制5.1 热工测量原理与方法5.2 热工测量仪表及其应用5.3 热工自动控制原理5.4 热工自动控制系统的设计与应用第六章:火箭发动机热力学6.1 火箭发动机概述6.2 火箭发动机的热力学原理6.3 火箭发动机的性能评价6.4 火箭发动机的热力学设计及优化第七章:航空发动机热力学7.1 航空发动机简介7.2 喷气发动机的热力学原理7.3 航空发动机的性能评价与优化7.4 航空发动机的热环境保护与节能第八章:内燃机热力学8.1 内燃机的基本工作原理8.2 内燃机的排放控制与环保技术8.3 内燃机的性能优化与评价8.4 内燃机的节能与减排技术研究第九章:锅炉热力学9.1 锅炉的基本原理与类型9.2 锅炉的热力学分析与设计9.3 锅炉的自动控制与监测技术9.4 锅炉的环保与节能技术第十章:空调热力学10.1 空调系统的基本原理与分类10.2 空调热力学性能评价与优化10.3 空调系统的自动控制技术10.4 空调系统的节能与环保技术第十一章:热力学在能源转换与存储中的应用11.1 能源转换的基本原理11.2 热电转换技术11.3 热泵技术及其应用11.4 能源存储技术及其热力学问题第十二章:热力学在材料科学中的应用12.1 材料的热力学性质12.2 相变与相图12.3 材料的热处理与热加工12.4 热力学在材料设计与制备中的应用第十三章:热力学在环境科学与可持续发展中的应用13.1 环境热力学基础13.2 热力学在环境保护与治理中的应用13.3 热力学在可持续发展中的作用第十四章:热力学在生物医学工程中的应用14.1 生物体的热力学特性14.2 生物医学热力学14.3 热力学在生物材料与医疗器械中的应用14.4 热力学在医学治疗与康复技术中的应用第十五章:热力学的现代发展与前沿探索15.1 热力学在高科技领域的应用15.2 热力学与量子力学的关系15.3 热力学在纳米技术中的应用15.4 热力学的未来挑战与研究方向重点和难点解析本文档涵盖了一个完整的工程热力学电子教案,共分为十五个章节。
最新精品工程热力学教案
化学化工系教案课程名称:工程热力学总学时数:72 学时讲授时数:72学时实践(实验、技能、上机等)时数:0学时授课班级:主讲教师:使用教材:大连理工大学《工程热力学》毕明树《工程热力学》课程教案说明:1、授课类型:指理论课,实验课,实践课,技能课,习题课等;2、教学方法:指讲授、讨论、示教、指导等;3、教学手段:指板书、多媒体、网络、模型、挂图音像等教学工具;4、首次开课的青年教师的教案应由导师审核;5、讲稿内容附后。
绪论(2学时)一、基本知识1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
电能一一机械能锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电冰箱一一-(耗能) 制冷2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用(1).热能:能量的一种形式(2).来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
(3).利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性过程的方向性:如:由高温传向低温能量属性:数量属性、,质量属性 (即做功能力)注意:数量守衡、质量不守衡提高热能利用率:能源消耗量与国民生产总值成正比。
6.本课程的研究对象及主要内容研究对象:与热现象有关的能量利用与转换规律的科学。
研究内容:(1).研究能量转换的客观规律,即热力学第一与第二定律。
(2).研究工质的基本热力性质。
(3).研究各种热工设备中的工作过程。
(4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。
最新精品工程热力学教案
蒸汽动力循环优化
提高蒸汽动力循环效率的 措施包括提高蒸汽初参数 、降低排汽参数、采用再 热和回热等。
内燃机循环
内燃机循环原理
内燃机循环是利用燃料在气缸内 燃烧产生的热能,通过工质(空 气和燃料混合物)的状态变化来
实现热功转换的过程。
内燃机循环类型
根据燃料燃烧方式和气缸工作原理 的不同,内燃机循环可分为奥托循 环、狄塞尔循环等。
热力循环分类
根据工质在循环过程中的 状态变化,热力循环可分 为正循环、逆循环和复合 循环。
热力循环评价指标
评价热力循环性能的指标 主要有热效率、功率、熵 产等。
蒸汽动力循环
蒸汽动力循环原理
蒸汽动力循环是利用燃料 燃烧产生的热能,通过工 质(水)的状态变化来实 现热功转换的过程。
蒸汽动力循环类型
根据蒸汽参数和工作原理 的不同,蒸汽动力循环可 分为朗肯循环、再热循环 、回热循环等。
等容过程
绝热过程
系统体积保持不变的过程。在等容过程中 ,理想气体的压强与热力学温度成正比关 系。
系统与外界没有热量交换的过程。在绝热过 程中,理想气体的压强、体积和温度之间满 足特定的关系式。
05
热力循环与热效率
热力循环概述
01
02
03
热力循环定义
热力循环是研究工质从某 一状态开始,经过一系列 状态变化又回到原来状态 的过程。
热力学性质与过程
热力学性质
描述系统状态的物理量,如温度 、压力、体积、内能等。
热力学过程
系统从一个状态变化到另一个状 态所经历的过程,包括等温过程 、等压过程、等容过程、绝热过
程等。
热力学循环
由一系列热力学过程组成的闭合 路径,如卡诺循环、布雷顿循环 等。这些循环在工程热力学中具 有重要的应用,如热机、制冷机
工程热力学课程教案完整版
工程热力学课程教案Document serial number【NL89WT・NY98YT4^g^NNUUT・Nl:T108】《工程热力学》课程教案***木课程教材及主要参考书目教材:沈维道、蒋智敬、童钧耕编,工程热力学(第三版),高等教育出版社,2001. 6 手册:严家驛、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书:华北电力大学动力系编,热力实验指导书,2001参考书:曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12王加璇等编着,工程热力学,华北电力大学,1992年。
朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,淸华大学岀版,1995年。
曾丹苓等编着,工程热力学(第一版),高教出版社,2002年全美经典学习指导系列,[美]M.C.波特尔、C.W.萨默顿着郭航、孙嗣莹等译,工程热力学,科学出版社,2002年。
何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000. 4概论(2学时)1.教学目标及基本要求从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。
2.各节教学内容及学时分配0-1热能及其利用(0.5学时)0-2热力学及其发展简史(0.5学时)0-3能量转换装置的工作过程(0.2学时)0-4工程热力学研究的对象及主要内容(0.8学时)3.重点难点工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;1:程热力学的研究方法4.教学内容的深化和拓宽热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。
5.教学方式讲授,讨论,视频片段6.教学过程中应注意的问题特别注意:本课程作为热能与动力工程专业学生进入专业学习的第一门课程(专业基础课),要引导学生的学习兴趣和热情。
北京理工工程热力学电子教案
北京理工工程热力学电子教案第一章:工程热力学简介1.1 课程背景本章主要介绍工程热力学的基本概念、研究对象和内容,使学生对工程热力学有一个整体的认识。
1.2 教学目标(1)了解工程热力学的基本概念和研究对象;(2)掌握工程热力学的基本定律和原理;(3)理解工程热力学在工程技术中的应用。
1.3 教学内容1.3.1 工程热力学的基本概念1.3.2 工程热力学的研究对象和内容1.3.3 工程热力学的基本定律和原理1.4 教学方法与手段采用讲授、互动、案例分析等教学方法,结合多媒体课件、动画等教学手段,帮助学生更好地理解和掌握工程热力学的基本概念和原理。
1.5 教学评估通过课堂问答、作业、小组讨论等方式,评估学生对工程热力学基本概念和原理的掌握情况。
第二章:热力学定律与工质性质2.1 课程背景本章主要介绍工程热力学的基本定律,如能量守恒定律、热力学第一定律、热力学第二定律等,以及工质的性质,如比热容、比焓等。
2.2 教学目标(1)掌握工程热力学的基本定律;(2)了解工质的性质及其在工程热力学中的应用;(3)能够运用热力学定律和工质性质解决实际问题。
2.3 教学内容2.3.1 能量守恒定律2.3.2 热力学第一定律2.3.3 热力学第二定律2.3.4 工质的性质2.4 教学方法与手段采用讲授、互动、案例分析等教学方法,结合多媒体课件、动画等教学手段,帮助学生理解和掌握热力学定律和工质性质。
2.5 教学评估通过课堂问答、作业、小组讨论等方式,评估学生对热力学定律和工质性质的掌握情况。
第三章:热力学系统与状态参数3.1 课程背景本章主要介绍热力学系统的分类、状态参数及其定义和表示方法,如压力、温度、比容等。
3.2 教学目标(1)了解热力学系统的分类及特点;(2)掌握状态参数的定义和表示方法;(3)能够运用状态参数描述热力学系统。
3.3 教学内容3.3.1 热力学系统的分类及特点3.3.2 状态参数的定义和表示方法3.3.3 状态参数在工程热力学中的应用3.4 教学方法与手段采用讲授、互动、案例分析等教学方法,结合多媒体课件、动画等教学手段,帮助学生理解和掌握热力学系统的分类、状态参数及其应用。
工程热力学课程设计参考
工程热力学课程设计参考一、教学目标本课程旨在让学生掌握工程热力学的基本概念、理论和方法,能够运用工程热力学的知识解决实际问题。
通过本课程的学习,学生应达到以下目标:1.理解热力学系统的基本概念,如孤立系统、闭系统和开放系统。
2.掌握能量守恒定律和熵增原理,理解热力学第一定律和第二定律。
3.熟悉热力学状态量,如温度、压力、体积和熵等,并掌握状态方程的推导和应用。
4.学习热力学过程,如等压过程、等温过程和绝热过程等,并了解其特点和应用。
5.掌握热力机的原理和工作过程,如卡诺循环和朗肯循环等。
6.能够运用热力学的知识和方法分析实际工程问题,如热能转换和热能利用等。
7.能够运用热力学公式和图表进行计算和分析,如热力学状态方程的求解和热力图的绘制等。
8.能够运用热力学的原理和模型进行工程设计和优化,如热机效率的计算和热交换器的 design 等。
情感态度价值观目标:1.培养学生的科学思维和逻辑思维能力,提高学生分析和解决问题的能力。
2.培养学生对工程热力学的兴趣和热情,激发学生对工程热力学研究的热情。
3.培养学生对工程热力学应用的实际意义和价值的认识,提高学生对工程热力学的社会责任感和使命感。
二、教学内容本课程的教学内容主要包括以下几个部分:1.热力学基本概念:热力学系统、能量守恒定律、熵增原理等。
2.热力学状态量:温度、压力、体积、熵等,状态方程的推导和应用。
3.热力学过程:等压过程、等温过程、绝热过程等,特点和应用。
4.热力机:卡诺循环、朗肯循环等,原理和工作过程。
5.热力学应用:热能转换、热能利用等实际工程问题的分析和解决。
6.热力学基本概念:第一周,2 课时。
7.热力学状态量:第二周,3 课时。
8.热力学过程:第三周,4 课时。
9.热力机:第四周,4 课时。
10.热力学应用:第五周,3 课时。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。
北京理工工程热力学电子教案
北京理工工程热力学电子教案第一章:工程热力学简介1.1 热力学的定义与发展历程1.2 工程热力学的研究对象与内容1.3 工程热力学的基本假设与局限性1.4 工程热力学在工程技术领域的应用第二章:热力学基本概念2.1 系统与surroundings2.2 状态与状态参数2.3 过程与途径2.4 热力学平衡2.5 熵与无序度第三章:热力学第一定律3.1 能量守恒定律3.2 内能3.3 热量与功3.4 等压过程、等体过程与绝热过程3.5 焓与比焓第四章:热力学第二定律4.1 热力学第二定律的表述4.2 可逆与不可逆过程4.3 卡诺循环与热效率4.4 熵增原理4.5 熵的计算与熵变第五章:热力学第三定律5.1 热力学第三定律的表述5.2 绝对零度与熵的极限5.3 熵与温度的关系5.4 热力学函数的性质与变化5.5 热力学方程的运用与分析第六章:工程应用中的热力学问题6.1 热力学在热机中的运用6.2 热力学在热传导中的运用6.3 热力学在热力学循环中的运用6.4 热力学在相变与沸腾中的运用6.5 热力学在热力学流体动力学中的运用第七章:热力学势与状态方程7.1 热力学势的定义与分类7.2 自由能与吉布斯自由能7.3 状态方程与物性参数7.4 理想气体状态方程与物态图7.5 热力学势的计算与分析第八章:热力学相变与相图8.1 相与相变的基本概念8.2 晶体的点阵结构与相变类型8.3 相图的基本原理与表示方法8.4 铁磁相变与顺磁相变8.5 相变与材料性能的关系第九章:热力学在现代工程中的应用9.1 热力学在能源工程中的应用9.2 热力学在环境工程中的应用9.3 热力学在电子工程中的应用9.4 热力学在航空航天工程中的应用9.5 热力学在生物医学工程中的应用第十章:热力学的未来发展及其挑战10.1 清洁能源与热力学10.2 热力学在可持续发展中的作用10.3 热力学在高性能材料研究中的应用10.4 热力学在低温与高温环境中的应用10.5 热力学在纳米尺度研究中的挑战与机遇重点和难点解析重点环节:1. 热力学第一定律与第二定律:这是热力学的两大基础定律,对于理解能量守恒与转化、热力学过程的不可逆性至关重要。
2024版《工程热力学》课程教学大纲
目录•课程简介与目标•热力学基本概念与定律•热力学性质与过程分析•热力学在能源转换中的应用•热力学在环境保护中的应用•实验课程安排与要求课程简介与目标工程热力学的研究对象和任务研究热能与机械能相互转换的规律,以及提高能量转换效率的途径。
工程热力学在能源领域的应用涉及动力、制冷、空调、化工、环保等多个领域,为能源的高效利用提供理论指导。
工程热力学与相关学科的关系与传热学、流体力学、燃烧学等学科密切相关,共同构成能源科学与工程学科体系。
工程热力学概述030201知识目标掌握工程热力学的基本概念、基本原理和基本方法,了解工程热力学在能源领域的应用。
能力目标能够运用工程热力学知识分析实际工程问题,提出解决方案,并具备初步的工程设计和创新能力。
素质目标培养学生的工程素养、创新意识和团队协作精神,提高学生的综合素质。
课程目标与要求教材及参考书目01教材《工程热力学》(第X版),XXX主编,XXX出版社。
02参考书目《热力学基础》、《传热学》、《流体力学》等相关教材,以及工程热力学领域的学术论文和专著。
热力学基本概念与定律温度、热量与内能温度温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。
热量热量是指当系统与外界存在温差时,通过热交换,系统从外界吸收或向外界放出的能量。
内能内能是物体内部所有分子做无规则运动所具有的动能和分子势能的总和。
热力学系统与过程热力学系统热力学系统是指某一由大量粒子组成的宏观物质系统。
粒子间的相互作用力可以忽略,但又大量到足以符合统计规律,从而能确定其宏观性质。
热力学过程热力学过程是指热力学系统从某一始态出发,经过某一特定路径转变为另一终态的整个过程。
热力学第一定律热力学第一定律的表述热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
热力学第一定律的数学表达式ΔU=W+Q,其中ΔU为内能的变化量,W为外界对系统做的功,Q为系统从外界吸收的热量。
工程热力学课程设计
工程热力学课程设计一、课程设计简介本课程设计是对工程热力学课程的实践性学习,通过实际应用热力学原理求解问题,提高学生对于热力学知识的理解和掌握。
本课程设计将结合实际工程问题,学生需要采集现场数据、运用热力学原理进行分析,并通过编程求解问题,最终输出解决方案。
二、课程设计背景工程热力学是机械、能源等工程领域中的重要学科,主要研究热力学基本定律及其应用。
在实际工程中,热力学理论与实际生产、生活密切相关。
课程设计将结合工程实际情况,让学生对于热力学的应用更加深入,将理论与实际结合起来,提高学生对于热力学知识的掌握,培养学生解决实际问题的能力。
三、课程设计内容1. 数据采集学生需到现场采集相关数据,记录温度、压力、流量等实际参数,作为后续分析的基础。
2. 基本热力学定律学生需要掌握热力学的基本定律,包括能量守恒定律、熵增定律、热力学第一定律和第二定律等。
3. 热力学循环模拟学生需要通过编程模拟热力学循环过程,例如理想气体循环模拟、蒸汽动力循环模拟等。
4. 热力学分析学生需要运用热力学原理对采集到的数据进行分析,如计算热效率、功率等参数,同时结合实际情况分析,提出改进建议。
5. 解决方案输出学生需要将热力学分析结果进行整合,并给出详细的解决方案。
在方案输出中,需要包括数据分析结果、程序代码、图表等内容。
四、课程设计目标通过本课程设计,学生将达到以下目标:1.掌握热力学基本定律及其应用。
2.运用计算机编程解决实际问题,提高解决问题的能力。
3.锻炼数据采集、处理和分析的实际能力。
4.学习整合各种工具,输出具有可行性的解决方案。
五、课程设计评估课程设计的评估将会按照以下两个方面进行:1. 理论评分评估学生对于热力学原理的掌握程度,包括基本热力学定律、热力学循环模拟等方面,并以作业、考试等形式进行答辩。
2. 实践评分评估学生在实践中的能力表现,包括数据采集、编程实现、分析结果等,并以课程设计报告等形式进行答辩。
六、课程设计总结本课程设计通过实际案例,让学生深入理解热力学知识在工程中的应用,提高学生对于工程热力学的理论理解和实践能力。
工程热力学教案
《工程热力学》教案能源与动力工程学院邓巧林2010年2月一、课程基本描述课程名称:工程热力学英文译名:Engineering Thermodynamics总学时数:40 讲课学时:40 实验学时:0授课对象:热能与动力工程专业、建筑环境与设备工程专业本科生课程要求:必修分类:专业(学科)基础课开课时间:第四学期先修课:高等数学、大学物理、理论力学、材料力学、工程流体力学二、课程教学定位1. 本课程在专业课程体系中的定位工程热力学是研究物质的热力性质、热能与其它能量之间相互转换的一门工程基础理论学科,其内涵丰富、概念抽象、公式数量多、联系工程实际范围广,是热能与动力工程和建筑环境与设备工程专业四年制本科的一门重要的专业基础课。
热能与动力工程专业所研究的问题:如燃料燃烧、能量转换、火力发电、内燃机动力装置、燃气轮机装置等,建筑环境与设备工程专业所研究解决的问题:如采暖、空调,热源、冷源,以及建筑物的温度、湿度等问题的调节与控制,都要以热力学物理模型研究为基础。
因此学生掌握工程热力学课程基本理论,直接影响其专业水平,对今后从事科学研究、工程应用及管理工作都非常重要。
工程热力学作为有百年历史的老学科,早已自成体系,目前全国约有30多个专业开设该课程,同型专业开设工程热力学课程的目的是一致的:即应用热力学的基本概念、基本定律和工质的热力性质,对各种类型热工设备或热力系统的热工过程进行分析计算,以寻求提高热能利用率和节能的有效途径。
所不同的是,能源动力类专业的研究对象主要是热能与机械能的转换,它是后续汽轮机原理、热力发电厂、锅炉原理、燃气轮机原理、燃气蒸汽联合循环发电技术、燃烧理论与技术、火电厂节能原理与技术、核能发电技术等课程的基础;而建筑环境与设备专业,其研究对象主要是热能的直接利用,一方面集中供热、供暖的热源,常取自热电联产,空调的冷源来自制冷装置,这些要涉及热与功的转换;而另一方面湿空气、燃气、制冷剂、溶液等的热力性质,是后续供热、供燃气、通风与空调工程课程必须要用到的。
工程热力学 教案
工程热力学教案教案标题:工程热力学教学目标:1. 理解工程热力学的基本概念和原理。
2. 掌握工程热力学中的常用计算方法。
3. 能够应用工程热力学知识解决实际问题。
教学重点:1. 工程热力学的基本概念和原理。
2. 热力学系统的性质和特点。
3. 热力学过程的描述和分析。
4. 热力学循环的计算和优化。
教学难点:1. 热力学系统的性质和特点的理解。
2. 热力学过程的描述和分析方法的掌握。
3. 热力学循环的计算和优化方法的应用。
教学准备:1. 教学PPT或投影仪。
2. 教学实例和案例分析材料。
3. 实验室设备和实验材料(可选)。
教学过程:一、导入(5分钟)1. 引入工程热力学的基本概念和应用领域。
2. 激发学生的学习兴趣,提出与实际生活和工程实践相关的问题。
二、理论讲解(30分钟)1. 介绍热力学系统的性质和特点,如封闭系统、开放系统等。
2. 解释热力学过程的描述方法,如等温过程、绝热过程等。
3. 讲解热力学循环的基本原理和常见循环类型。
三、计算方法与案例分析(40分钟)1. 介绍工程热力学中常用的计算方法,如热力学方程、热力学图表等。
2. 分析实际案例,应用计算方法解决工程热力学问题。
3. 引导学生进行讨论和思考,加深对工程热力学知识的理解。
四、实验演示(可选,30分钟)1. 进行与工程热力学相关的实验演示,如热力学循环实验等。
2. 引导学生观察实验现象,分析实验数据,并与理论知识进行对比和验证。
五、总结与拓展(10分钟)1. 总结工程热力学的基本概念和计算方法。
2. 引导学生思考工程热力学在实际工程中的应用和发展前景。
3. 提供相关学习资源和拓展阅读推荐。
教学评估:1. 课堂练习:布置与工程热力学相关的计算题目,检验学生对知识的掌握程度。
2. 实验报告:要求学生撰写实验报告,包括实验过程、数据分析和结论。
3. 课堂讨论:鼓励学生积极参与课堂讨论,分享自己的思考和观点。
教学延伸:1. 建议学生参加相关实习或实践活动,加深对工程热力学知识的理解和应用。
工程热力学课程教案
讲授和多媒体课件相结合
思考题
作业题
思考题:2-6,2-11, 2-12,2-13
作业题:2-8,2-13,2-16
备注
工程热力学课程教案
周 次
第 3 周
日 期
年 月 日
星期
教学内容
第三章 气体和蒸汽的性质
§3-1 理想气体的概念
一.理想气体模型
二.理想气体状态方程式
三.摩尔质量和摩尔体积
难点:热力过程计算公式,应用 p-v、T-s 图分析多变过程
主要英文
词汇
Thermodynamic process,Polytrophic process,Constant volume process, Constantpressureprocess
教学方法与手段
讲授和多媒体课件相结合
思考题
作业题
难点:初终态参数关系中变比热容的处理方法。
主要英文
词汇
Constanttemperatureprocess,Adiabatic process
教学方法与手段
讲授和多媒体课件相结合
思考题
作业题
思考题:4-6,4-7,,4-8,4-9,4-12
作业题:4-4,4-10,4-12,4-17
备注
高考是我们人生中重要的阶段,我们要学会给高三的自己加油打气
思考题:4-2,4-3
作业题:4-1,4-2,4-9
备注
工程热力学课程教案
周 次
第 5 周
日 期
年 月 日
星期
教学内容
学生自学
重点与难点
主要英文
词汇
教学方法与手段
思考题
作业题
工程热力学课程设计
工程热力学课程设计一、课程目标知识目标:1. 理解并掌握工程热力学基本概念,如系统、状态、过程、能量等;2. 掌握热力学第一定律和第二定律的基本原理及其应用;3. 掌握理想气体、实际气体及其状态方程,了解不同类型的热力学过程;4. 了解热力学循环的基本原理,掌握卡诺循环、布雷顿循环等典型循环的分析方法。
技能目标:1. 能够运用热力学基本原理分析和解决实际问题,如热机效率计算、热力学过程分析等;2. 能够正确绘制和应用P-V图、T-S图等热力学图解,提高问题解决能力;3. 能够运用所学知识,对实际热力学系统进行简单设计和优化。
情感态度价值观目标:1. 培养学生对工程热力学的兴趣和热情,激发学习积极性;2. 培养学生的科学思维和创新意识,敢于提出问题、解决问题;3. 培养学生的团队合作精神,提高沟通与协作能力;4. 增强学生的环保意识,认识到热力学在节能减排中的重要作用。
本课程针对高中年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。
课程注重理论联系实际,提高学生的知识水平和实践能力,培养学生的科学素养和工程意识。
通过本课程的学习,使学生能够掌握热力学基本原理,具备分析和解决实际问题的能力,为后续相关课程学习和工程实践打下坚实基础。
二、教学内容1. 热力学基本概念:系统、状态、过程、能量等;教材章节:第一章第一节进度安排:2课时2. 热力学第一定律和第二定律:能量守恒、熵增原理;教材章节:第一章第二节、第三节进度安排:4课时3. 理想气体和实际气体:状态方程、压缩因子;教材章节:第二章第一节、第二节进度安排:4课时4. 热力学过程:等温过程、等压过程、绝热过程、等熵过程;教材章节:第三章进度安排:6课时5. 热力学循环:卡诺循环、布雷顿循环、郎肯循环;教材章节:第四章进度安排:6课时6. 热力学图解:P-V图、T-S图的应用;教材章节:第五章进度安排:4课时7. 热力学案例分析:热机效率计算、热力学过程分析;教材章节:第六章进度安排:4课时本教学内容根据课程目标进行选择和组织,确保科学性和系统性。
工程热力学第5版教案及课后答案
1.定容热效应和定压热效应 反应在定温定容或定温定压下不可逆地进行,且没有作出
有用功,则其反应热称为反应的热效应。
QU2U1Wu,V 0
QH2H1W u,p
QV U2 U1 Qp H2 H1
定容热效应QV 定压热效应 Qp
反应焓(H):定温定压反应的热效应,等于反应前后物系焓差。
反应热是过程量,与反应过程有关; 热效应是定温反应过程中不作有用功时的反应热,是状态量
(standard
enthalpy
of
formation)
—标准状态下的生成热 。
稳定单质或元素的标准生成焓规定为零。
标准燃烧焓 H c(0 standard enthalpy of combustion) —标准状态下的燃烧热。
16
3. 理想气体工质任意温度 T 的摩尔焓
HmΔHf0ΔH
H
标准生成焓
… 生命 环保
? 化学反应
热力学基本概念和基本原理是否适用
一. 化学反应系统与物理反应系统
1. 包含化学反应过程的能量转换系统:
闭口系
开口系
3
2. 独立的状态参数 简单可压缩系的物理变化过程,确定系统平衡状态的独立状态 参数数:两个;
? 发生化学反应的物系: 两个以上的独立参数。
除作功和传热,参与反应的物质的成分或浓度也可变化。
能够使物系和外界完全恢复到原来状
.2
态,不留下任何变化的理想过程。
一切含有化学反应的实际过程都
是不可逆的, 少数特殊条件下的化学
反应接近可逆。 例如? 蓄电池的放电和充电——接近可逆; 燃烧反应——强烈不可逆。
正向反应 +
系统 有用功数值相等 外界
2024版工程热力学教案
17
热力循环基本概念
2024/1/25
01
热力循环定义:热力系统经历一系列状态变化后, 回到初始状态的过程。
02
热力循环分类:根据工质状态变化特点,可分为开 式循环和闭式循环。
03
热力循环评价指标:热效率、㶲效率等。
18
卡诺循环及其热效率
2024/1/25
卡诺循环定义
由两个可逆定温过程和两个可逆绝热过程组成的理想热力循环。
物体内部所有分子热运动的动能 和分子势能的总和,单位是焦耳 (J)。
2024/1/25
温度 压力 体积 内能
表示物体冷热程度的物理量,单 位是摄氏度(°C)或开尔文 (K)。
物体所占空间的大小,单位是立 方米(m³)或立方厘米(cm³)。
9
热力学第一定律
2024/1/25
内容
热量可以从一个物体传递到另一个物体,也可以与机械能或其他 能量互相转换,但是在转换过程中,能量的总值保持不变。
同样需要考虑分子间的相互作用力,计算更 为复杂。
2024/1/25
实际气体的液化与汽化
在一定的温度和压力下,实际气体可以发生 相变。
14
湿空气性质及过程
湿空气的状态参数
包括干球温度、湿球温度、相 对湿度等。
湿空气的热力过程
如加热、冷却、加湿、去湿等, 需要考虑水蒸气的变化。
湿空气的焓湿图
表示湿空气状态参数之间的关 系,用于分析空调、制冷等过 程。
热电转换
利用热电效应将热能直接转换为 电能的技术,如温差发电、热离 子发电等。
2024/1/25
24
热力学在节能技术中的应用
2024/1/25
节能原理
01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程热力学》教案
课程名称:工程热力学
学分:2或3 学时:32或48
课程教材:李永,宋健. 工程热力学[M]. 北京:机械工业出版社,2017
专业年级:工科类相关专业本科生
一、目的与任务
工程热力学基本定律反映了自然界的客观规律,以这些定律为基础进行演绎、逻辑推理而得到的工程热力学方法、关系与结论,具有高度的普遍性、可行性、可靠性与实用性,可以应用于力学、宇航工程、机械与车辆工程等各个领域。
工程热力学目的是研究和讲授热力学系统、热能动力装置中工作介质的基本热力学性质、热力学定律、热力学各种装置的工作过程以及提高能量转化效率的途径等,使学生熟练掌握解决工程热力学问题的基本方法,培养学生灵活应用热力学定律合理分析热力学系统的基本能力。
工程热力学任务是研究和传授热力系统能量、能量转换以及与能量转换有关的物性间相互关系和基本研究方法,培养学生对热力学的基本概念、基本理论的熟练掌握,分析求解热力学基本问题的能力。
工程热力学起源于对热机和工质等的研究,热力学定律条理清楚,推理严格。
工程热力学的内容多、概念多、公式多与方法多,工程热力学广泛联系热力工程和能源工程等领域。
二、主要教学内容与学时分配
绪论(2 学时)
第一节热力学的发展意义
第二节热力学的历史沿革
第三节热力学的基本定律
第四节熵与能源
第一章基本概念(2学时)
第一节热能、热力系统、状态及状态参数
第二节热力过程、功量及热量
第三节热力循环
第二章热力学第一定律及其应用(2学时)
第一节热力学第一定律及其表达
第二节热力学能和总储存能
第三节热力学第一定律的实质(2学时)
第四节能量方程式
第五节稳定流动系统的能量方程(2学时)
第六节能量方程的应用
第七节循环过程
第三章理想气体的性质(2学时)
理想气体及其状态方程
理想气体的比热容、比热力学能、比焓及比熵
理想气体的混合物
第四章理想气体的热力过程(2学时)
第一节热力过程的方法概述
热力过程的基本分析方法
第二节理想气体的基本热力过程(2学时)
第三节理想气体的多变过程(2学时)
第四节压气机的理论压缩功(2学时)
第五章热力学第二定律(2学时)
第一节热力过程的方向性
热力学第二定律的表述
第二节卡诺热机(2学时)
卡诺循环和卡诺定理
状态参数熵
第三节熵增原理(2学时)
克劳修斯不等式和不可逆过程的熵变
熵的物理意义
第四节㶲参数和热量㶲(2学时)
㶲参数、能量的品质与能量贬值原理
热量㶲、热量有效能及有效能损失
第六章水蒸气的热力性质和热力过程(2学时)
定压下水蒸气的发生过程
蒸气热力性质图表
蒸气的热力过程
第七章实际空气的性质和过程(2学时)
实际空气的状态参数及焓湿图
实际空气的基本热力过程及工程应用
三、考核与成绩评定
考核:采用统一命题,闭卷考试。
成绩评定:以百分制评定总评成绩。
总评成绩包括期末考试成绩和平时成绩,其中期末考试成绩占70%,平时成绩占30%。
四、说明
1.根据普通高等教育工科类本科工程热力学课程教学基本要求,考虑工程热力学专业特色
与教学改革要求,同时反映热力学领域的新进展,进行补充、修改而制定的。
2.在保证基本教学要求的前提下,教师可根据实际情况,对内容进行适当的调整与删节。
3.适合力学、宇航、机械、能源、机电、车辆、交通及运载等专业的工程热力学课程。
五、教材与参考书
选用教材:李永,宋健. 工程热力学[M]. 北京:机械工业出版社,2017
选用参考书:
李永,宋健. 电动车辆能量转换与回收技术,第二版[M]. 北京:机械工业出版社,2021
六、课程学时的主要内容分布、讲授课件与板书等进度表
七、课程教学目标实现与效果评价表
八、课程教学目标与所支承的毕业要求对应关系
编写教师:。