CaCO3-vaterite-microparticles-for-biomedical-and-personal-care-applications
微生物生长促进剂 英语
微生物生长促进剂英语Microbial growth-promoting agents, commonly known as microbial growth promoters or MGPs, are substances that enhance the growth and development of microorganisms. These agents have gained significant importance in various fields, including agriculture, pharmaceuticals, and industrial biotechnology.In agriculture, microbial growth promoters are used to improve crop yield and enhance plant health. They can stimulate root development, increase nutrient uptake, and enhance plant resistance against diseases and pests. Examples of microbial growth promoters in agriculture include rhizobacteria, mycorrhizal fungi, and plant growth-promoting bacteria (PGPB).Rhizobacteria are beneficial bacteria that colonize the root system of plants. They have the ability to fix atmospheric nitrogen, convert insoluble nutrients into plant-available forms, and produce growth-promoting substances such as auxins, cytokinins, and gibberellins. These substances promote root growth, enhance nutrient absorption, and stimulate plant growth.Mycorrhizal fungi form mutualistic associations with plants, where they colonize the plant roots and provide increased nutrient uptake capabilities. The fungi can absorb nutrients, such as phosphorus and micronutrients, more efficiently than plant roots alone. In return, the plant provides the fungi with carbohydrates produced through photosynthesis. This symbiotic relationship improves plant growth and increases plant resistance against various stresses, such as drought and nutrient deficiencies.Plant growth-promoting bacteria (PGPB) are another type of microbial growth promoters commonly used in agriculture. PGPB have diverse mechanisms to promote plant growth, including producing plant hormones, solubilizing nutrients, and suppressing plant pathogens. Some PGPB can also enhance plant tolerance to abiotic stresses, such as drought and salinity.In the pharmaceutical industry, microbial growth promoters are used in the production of antibiotics, vaccines, and other therapeutic substances. For example, certain bacteria and fungi are used as hosts for the production of recombinant proteins or enzymes through genetic engineering. These microorganisms are genetically modified to express specific proteins that can be further purified and utilized for various pharmaceutical applications.Moreover, microbial growth promoters play a crucial role in industrial biotechnology. They are used in the production of biofuels, enzymes, and other biobased products. For instance, certain bacteria and yeasts are used to produce ethanol through fermentation. The microorganisms convert sugars into ethanol, which can be used as a renewable and sustainable fuel source.In conclusion, microbial growth promoters are substances that enhance the growth and development of microorganisms. They have diverse applications in agriculture, pharmaceuticals, and industrial biotechnology. These substances can improve crop yield, enhance plant health, produce therapeutic substances, and facilitate the production of biobased products. Microbial growth promoters are an important tool in sustainable agriculture and bio-based industries.。
Diva Decloaker 10X Pretreatment Reagent 说明书
Intended Use:For In Vitro Diagnostic UseHeat induced antigen retrieval of formalin-fixed paraffin-embedded (FFPE) tissues for immunohistochemistry (IHC) procedures. The clinical interpretation of any staining or its absence should be complimented by morphological studies using proper controls and should be evaluated within the context of the patient's clinical history and other diagnostic tests by a qualified pathologist.Summary & Explanation:Diva Decloaker is a heat retrieval solution that is compatible with virtually all antibodies and eliminates the need for multiple buffers including citrate buffer, EDTA or high pH tris buffers. Antibody titers are doubled and tripled when compared to citrate buffer, pH 6.0. Diva Decloaker incorporates Assure™ tech nology, a color-coded high temperatures pH indicator solution. The end-user is assured by visual inspection that the solution is at the correct dilution and pH. This product is specially formulated for superior pH stability at high temperatures and will help prevent the possibility of losing pH sensitive antigens. Diva Decloaker is non-toxic, non-flammable, odorless and sodium azide and thimerosal free.Known Applications:Immunohistochemistry (formalin-fixed paraffin-embedded tissues) Supplied As:100mlDiva Decloaker, 10X concentrate (DV2004LX)500mlDiva Decloaker, 10X concentrate (DV2004MX)Materials and Reagents (Needed But Not Provided): Microscope slides, positively chargedDesert Chamber* (Drying oven)Positive and negative tissue controlsXylene (Could be substituted with xylene substitute*)Ethanol or reagent alcoholDecloaking Chamber* (Pressure cooker)Deionized or distilled waterWash buffer*(TBS/PBS)Enzyme digestion*Avidin-Biotin Blocking Kit*(Labeled Streptavidin Kits Only) Peroxidase block*Protein block*Primary antibody*Negative control reagents*Detection kits*Detection components*Chromogens*Hematoxylin*Bluing reagent*Mounting medium** Biocare Medical Products: Refer to a Biocare Medical catalog for further information regarding catalog number and ordering information. Certain reagents listed above are based on specific application and detection system used. Storage and Stability:Store at room temperature. Do not use after expiration date printed on vial. If reagents are stored under conditions other than those specified in the package insert, they must be verified by the user. Diluted reagents should be used promptly; any remaining reagent should be stored at room temperature.Protocol Recommendations:1. Deparaffinize tissues and hydrate to water. If necessary, block for endogenous peroxidase and wash in DI water.2. Dilute concentrated Diva Decloaker at a ratio of 1:10 (1 ml Diva to 9 ml of deionized water).3. Place slides into 1X retrieval solution in a slide container (e.g. Coplin Jar, Tissue -Tek™ staining dish or metal slide canister).4. Retrieve sections under pressure using Biocare's Decloaking Chamber. Follow the recommendations on the antibody data sheet and Decloaking Chamber User Manual.5. Check solution for appropriate color change. (See Technical Note #1)6. Gently rinse by gradually adding DI water to the solution, then remove slides and rinse with DI water.Technical Notes:1. Concentrated Diva Decloaker is a bright yellow color. RTU or 1X solution is a pale yellow color. When the solution reaches 80-125°C, the solution turns yellow and indicates that the high temperature solution is at correct pH. Should the pH rise above 7.0, the solution turns a fuschia red color. Should the pH drop too low, thesolution turns a pink color.2. If using Biocare’s Desert Chamber Pro (a programmable turbo-action drying oven), dry sections at 25ºC overnight or at 37ºC for 30-60 minutes and then dry slides at 60ºC for 30 minutes.3. Use positive char ged slides (use Biocare’s Kling-On HIER Slides) and cut tissues at 4-5 microns. Do not use any adhesives in the water bath. Poor fixation and processing of tissues will cause tissue sections to fall off the slides, especially fatty tissues such as breast. Tissues should be fixed a minimum of 6-12 hours.4. Protocol time and temperatures for HIER can vary depending on the Decloaking Chamber model used. Please refer to the relevant Decloaking Chamber manual for appropriate protocol times and temperatures.Limitations:The protocols for a specific application can vary. These include, but are not limited to: fixation, heat-retrieval method, incubation times, tissue section thickness and detection kit used. Due to the superior sensitivity of these unique reagents, the recommended incubation times and titers listed are not applicable to other detection systems, asresults may vary. The data sheet recommendations and protocols are based on exclusive use of Biocare products. Ultimately, it is the responsibility of the investigator to determine optimal conditions. The clinical interpretation of any positive or negative staining should be evaluated within the context of clinical presentation, morphology and other histopathological criteria by a qualified pathologist. The clinical interpretation of any positive or negative staining should be complemented by morphological studies using proper positive and negative internal and external controls as well as other diagnostic tests.Catalog Number: DV2004 LX, MX Description: 100, 500 ml, concentrateQuality Control:Refer to CLSI Quality Standards for Design and Implementation of Immunohistochemistry Assays; Approved Guideline-Second edition (I/LA28-A2). CLSI Wayne, PA, USA (). 2011 Precautions:1. This product is not classified as hazardous. The preservative used in this reagent is Proclin 300 and the concentration is less than 0.25%. Overexposure to Proclin 300 can cause skin and eye irritation and irritation to mucous membranes and upper respiratory tract. The concentration of Proclin 300 in this product does not meet the OSHA criteria for a hazardous substance. Wear disposable gloves when handling reagents.2. Specimens, before and after fixation, and all materials exposed to them should be handled as if capable of transmitting infection and disposed of with proper precautions. Never pipette reagents by mouth and avoid contacting the skin and mucous membranes with reagents and specimens. If reagents or specimens come in contact with sensitive areas, wash with copious amounts of water.3. Microbial contamination of reagents may result in an increase in nonspecific staining.4. Incubation times or temperatures other than those specified may give erroneous results. The user must validate any such change.5. Do not use reagent after the expiration date printed on the vial.6. The SDS is available upon request and is located at /.7. Consult OSHA, federal, state or local regulations for disposal of any toxic substances. Proclin is a trademark of Rohm and Haas Company, or of its subsidiaries or affiliates.Troubleshooting:Follow the antibody specific protocol recommendations according to data sheet provided. If atypical results occur, contact Biocare's Technical Support at 1-800-542-2002.。
Vaterite型碳酸钙微球的制备与表征
(2) 取下列试剂:AgNO3 0.1mol/kg,NaCl 0.1 mol/kg,K2CrO4 0.1mol/kg 参考实验(1)的方 法,进行两个沉淀反应,观察现象。计算说明沉 淀生成的原因。 5.沉淀的溶解 (1)同离子效应;(2)酸溶解;(3)氧化还原; (4)盐效应;(5)配位溶解。 6.分步沉淀 7.沉淀转化
2. 根据分压定律P(H2)= P – P(H2O)
3. 根据理想气体状态方程式计算出摩尔气体常数R
R = P(H2)V(H2)2.016
W(H2)T = 24.30 p(H2)V(H2) W(Mg)T 式中: W(Mg)—镁条的质量,g; P(H2)—氢气的 分压,Pa; V(H2)—反应前后量气管内的体积差溶液浓度的标定 2. 配制不同浓度的HAc溶液 3. 测定溶液的pH值 (1)测定各种浓度HAc溶液的pH值 (2)测定HAc-NaAc溶液的pH值 四. 设计实验 1. 测定食用果汁的pH值。 2. 测定食用白醋pH值和密度,并计算质量分数。 3. HAc-NaAc缓冲体系中加少量强酸,强碱或用少 量水稀释时pH值将有何变化?通过实验证明。
大学化学实验
北京理工大学
目录
实验1 实验2 实验3 实验4 实验5 实验6 实验7 实验8 摩尔气体常数的测定 醋酸解离常数的测定 弱电解质的解离平衡与沉淀反应 配位化合物的生成和性质 氧化还原与电化学 钛、铬、锰的性质 无机化合物的性质 硫酸亚铁铵的制备及质量检测
实验1
摩尔气体常数的测定
一. 实验目的 1.了解测定摩尔气体常数的方法。 2.巩固理想气体状态方程式和分压定律的相关概念。 3.练习气压计、量筒、长颈漏斗等仪器的使用。 二. 实验原理 1. 一定量的镁与过量的稀硫酸反应,收集反应所 产生氢气的体积 Mg+H2SO4 → MgSO4+ H2(g)
用蛋壳制备柠檬酸钙百替生物
用蛋壳制备柠檬酸钙闵阗YIN(武汉大学化学与分子科学学院03应化教改班)摘要:钙是人体内的重要元素,它对人类的健康,少年儿童身体发育和各种生理活动,均具有极其重要的作用,也是人体内较易缺乏的无机元素之一。
柠檬酸钙具安全性,可靠性,作为新一代钙源。
蛋壳中含CaCO 393℅,是一种天然的优质钙源。
关键词:蛋壳,柠檬酸钙研究背景钙是人体内的重要元素,它对人类的健康,少年儿童身体发育和各种生理活动,均具有极其重要的作用,也是人体内较易缺乏的无机元素之一。
柠檬酸钙具安全性,可靠性,作为新一代钙源。
蛋壳中含CaCO 393℅,是一种天然的优质钙源。
研究意义了解钙与人体健康的关系;学会用蛋壳制备柠檬酸钙的方法;树立变费为宝,资源综合利用的意识。
实验部分1.仪器和试剂:仪器马弗炉,分析天平,酸式滴定管,锥形瓶,100cm 3烧杯等。
试剂柠檬酸(分析纯),盐酸(0.2104mol/L),蔗糖(分析纯),酚酞。
2.实验原理:CaCO 3(蛋壳)———→CaO +CO 2↑CaO +H 2O ——→Ca(OH)22C 6H 8O 7•H 2O +3Ca(OH)2—→Ca 3(C 6H 8O 7)•4H 2O(柠檬酸钙)+4H 2OCaO +2HCl ===CaCl 2+H 2O3.实验内容:(1)氧化钙的制取称取蛋壳10g 于蒸发皿中,稍加压碎后,送入马弗炉中,于900~10000C 下,锻烧分解。
此过程我们将蛋壳分为两份:一份煅烧1小时,另一份煅烧2小时。
煅烧后蛋壳即转变为白色的蛋壳粉(氧化钙),分别观察两份煅烧产物的颜色,质地,称重并记录。
结果如下:两分产物均变为白色的粉末,颜色及质地都相差无几。
(2)定煅烧后粉末中的CaO 含量。
准确称取两份研细的式样:Ⅰ(煅烧1小时的产物)质量:0.1966g Ⅱ(煅烧2小时的产物)质量:0.2123g置于锥形瓶中,加蒸馏水不能溶解,再加入蔗糖后则溶解。
估计氧化钙与蔗糖生成络合物,故溶解。
钙检测试剂盒(甲基麝香草酚蓝微板法)
钙检测试剂盒(甲基麝香草酚蓝微板法) 简介:钙(Calcium)是一种金属元素,常温下呈银白色晶体,动物的骨骼、蛤壳、蛋壳都含有碳酸钙。
检测生命体钙含量,主要通过检测钙离子浓度实现的。
用分光度法检测钙较为常见,该法需要合适的金属指示剂或选择性结合钙离子后引起变色的染料化合物,目前较为常用的染料有邻-甲酚酞络合铜(OCPC)、偶氮砷Ⅲ、甲基麝香草酚蓝等。
Leagene 钙检测试剂盒(甲基麝香草酚蓝微板法)是利用溶液中钙离子在碱性条件下能与甲基麝香草酚蓝(MTB)结合,生成蓝紫色的复合物,加入镁离子螯合剂,去除镁离子背景干扰,通过酶标仪检测610nm 处吸光度,根据公式计算出总钙含量。
本试剂盒仅用于科研领域,不宜用于临床诊断或其他用途。
组成:自备材料:1、 96孔板2、 酶标仪操作步骤(仅供参考):1、 制备样品:①血浆、血清样品:血浆、血清按照常规方法制备,可以直接用于本试剂盒的测定,-20℃冻存,用于Ca 的检测。
②细胞或组织样品:取恰当细胞或组织进行匀浆,低速离心取上清,-20℃冻存,用于Ca 的检测。
③高浓度样品:如果样品中含有较高浓度的Ca ,可以使用ddH 2O 稀释,不宜使用普通蒸馏水稀释。
2、 配制Ca 显色工作液:临用前,取Ca Assay buffer 和MTB 显色液等量混合,即配即用,4℃避光保存,不宜久置。
编号 名称 TC1021 100T Storage 试剂(A): 钙标准(2.5mmol/L) 1ml 4℃ 试剂(B): Ca Assay buffer 10ml RT 试剂(C): MTB 显色液 10ml 4℃ 避光 使用说明书 1份计算:血清、血浆中钙(mmol/L)=(A测定/A标准)×2.5组织中钙(mmol/mg)=(A测定/A标准)×2.5/待测样品蛋白浓度(mg/L)式中:A测定=测定孔的吸光度A标准=标准孔的吸光度单位换算:mg/dl=mmol/L/0.411参考区间:健康成年人血清钙浓度:2.08-2.6mmol/L(8.3-10.4mg/dl)儿童血清钙浓度:2.23-2.8mmol/L(8.9-11.2mg/dl)注意事项:1、溶血样本对检测有干扰,尽量避免采用溶血样本。
关于碳酸钙的中英文词汇对照
石灰石
Mn content
锰含量
纳米(水性) 碳酸钙 油墨纳米(活 性)碳酸钙 涂料纳米(活 性)碳酸钙 塑料纳米(活 性)碳酸钙 橡胶纳米(活 性)碳酸钙 胶黏剂纳米 (活性)碳酸 钙 轻质碳酸钙
screen tailings
筛余物
screen
筛网
oil obsorption
吸油值
coatedrate
calcium carbonate
碳酸钙
PH value
ph值
calcite ore
方解石矿HCLBiblioteka insoluble盐酸不溶物
limestone mine
石灰石矿
partical size
平均粒径
(big)calcite
(大)方解石
Fe content
铁含量
limestone nano (water) calcium carbonate ink nano (coated) calcium carbonate coating nano (coated) calcium carbonate plastics nano (coated) calcium carbonate rubber nano (coated) calcium carbonate adhesive nano (coated) calcium carbonate light/precipitated calcium carbonate heavy/ground calcium carbonate light(superfine) calcium carbonate light(coated) calcium carbonate
重质(超细) 碳酸钙 超微细冰晶石 粉
考研复试——天然药物化学常用英文词汇
强心甾caபைடு நூலகம்denolide
缩合鞣质phlobaphene
海葱甾scillanolide
鞣酐ellagitannin
双苄基异喹啉生物碱imidazole alkaloid
鞣花鞣质gallotannin
双吲哚生物碱indole alkaloid
没食子鞣质alkaloid
呫吨酮苷xanthonoid glycoside
吡喃糖pyranose
蒽醌anthraquinone
寡糖oligosaccharide
蒽醌苷anthraquinone glycoside
黄酮类flavonoid
蒽酚anthranol
黄酮苷flavonoid glycoside
氧化蒽酚oxanthranol
树胶树脂balsamic acid
异喹啉生物碱morphinane alkaloid
香树脂glycosidal resin
大环生物碱oxindole alkaloid
香脂酸bitter principle
吗啡烷生物碱phenanthridine alkaloid
苷树脂pigment
羟吲哚生物碱phenylalkylamine alkaloid
嘌呤生物碱pyrrolidine alkaloid
阿朴啡类生物碱bisbenzylisoquinoline alkaloid
吡啶生物碱pyrrolizidine alkaloid
苄基异喹啉生物碱bisindole alkaloid
吡咯生物碱quinazoline alkaloid
碘化铋钾试剂Wagner's reagent
纳米活性碳酸钙
演讲结束 谢谢
一般较大,主要作为体积填料,降低应用产品的制造成本。轻钙产品相
对应用领域较广泛,主要以体积填充为主,而纳米碳酸钙产品在应用过
程中往往作为改性或补强等功能性填料使用,填充量一般较少。轻质碳
酸钙产品主要的应用领域为塑料、橡胶、涂料、胶黏剂和油墨等。
普通碳酸钙制法及工艺流程
碳化法:石灰石在高温下煅烧之后,先用水消化,再经筛滤、 碳化、表面处理、干燥粉碎后,即得胶体碳酸钙成品 CaCO3==高温==CaO+CO2↑(在高温的情况下) CaO+H2O===Ca(OH)2 Ca(OH)2+ CO2===CaCO3+H2O 包装:内用双层塑料袋,外用麻袋包装。每袋净重20公斤 或50公斤。 储运注意事项:储存于干燥的库房中。避免与酸类物质接 触。注意防潮。
纳米活性碳酸钙的工业制备方法:
步骤: (1)在Ca(OH)2的悬浮液,通入含有CO2的气体,碳化
至碳化率达5~40%,加入晶型调节剂,继续碳化至pH为 8.0~9.0,加入表面电荷及空间位阻调节剂,继续碳化至pH 为6~7.5,生成纳米级的立方形碳酸钙;所说的晶型调节剂 为磷酸盐、硫酸盐、醋酸盐、柠檬酸盐、单糖或多糖中的一 种及其混合物,其加入量为浆料重量的0.05~3.0%;所说的 表面电荷及空间位阻调节剂为磷酸盐、硫酸盐、氯化物、三 乙醇胺、十二烷基苯磺酸钠中的一种或一种以上;表面电荷 及空间位阻调节剂的加入量为CaCO3重量的0.1~4.0%。 (2)将脂肪酸或水溶性钛酸酯偶联剂中的一种或两种配制成水 溶液包覆剂;所说的脂肪酸为C12~C18的脂肪酸;(3)将纳 米碳酸钙浆料加热至45~95℃,然后加入包覆剂,包覆剂的 加入量以碳酸钙的重量计为0.5~3.5%,包覆处理时间为 0.5~3.5小时间,将浆料过滤,干燥,即获得纳米活性碳酸 钙
针状碳酸钙制备中氯化镁晶型导向剂的套用研究
针状碳酸钙制备中氯化镁晶型导向剂的套用研究马俊;刘华彦;陈银飞【摘要】MgCl2 was used as crystal controlling agent for the synthesis of regular needle-like calcium carbonate with diameter of 2.5-5μm and aspect ratio of 10-20. Complexometric titrating method was employed to determine the contents of Ca2+ and Mg2+ in filtrated solution after carbonization and the fresh MgCl2 was added to balance the Mg2+ content as same as the raw solution. The morphology, particle size and polymorphs of calcium carbonate were characterized by SEM and XRD. The results show that the content of aragonite phase CaCO3 decreases with the recycle time increasing. When the content of aragonite phase CaCO3 is lower than 80%, the aspect ratio of need-like calcium carbonate decreases significantly companied with the production of calcite cubic CaCO3 particles, thus the filtrated MgCl2 solution is unsuitable to recycled anymore. The direct recycle filtrate can be used for only once while the reused time by the MgCl2 filtrate can reach 12 by optimizing the recycle process through the addition of Mg2+ and the justification of Ph of the filtrate.%以MgCl2为晶型导向剂制备了形貌规整的文石相针状碳酸钙,其粒径为2.5~5.0μm,长径比为10~20.采用EDTA络合滴定碳化后回收滤液中Ca2+、Mg2+含量以确定需补加MgCl2量,并在相同的碳化工艺条件下逐步改进套用回收液的方法制备针状碳酸钙.产品用SEM、XRD进行形貌观察和晶型组成分析.结果表明,随着套用次数的增加,碳酸钙产品中文石相的含量逐渐降低,当文石相的含量低于80%时,针状碳酸钙的长径比也大幅下降,同时生成大量微细立方状方解石相碳酸钙,将不适合继续套用.直接套用回收液时只能循环使用1次,而将套用的回收液经补加Mg2+、加酸调节pH等优化处理后可使套用次数延长至12次,这将大幅降低针状碳酸钙的生产成本.【期刊名称】《无机材料学报》【年(卷),期】2011(026)011【总页数】6页(P1199-1204)【关键词】针状碳酸钙;氯化镁;络合滴定;套用【作者】马俊;刘华彦;陈银飞【作者单位】浙江工业大学化学工程与材料学院,绿色化学合成技术省部共建国家重点实验室培育基地,杭州310014;浙江工业大学化学工程与材料学院,绿色化学合成技术省部共建国家重点实验室培育基地,杭州310014;浙江工业大学化学工程与材料学院,绿色化学合成技术省部共建国家重点实验室培育基地,杭州310014【正文语种】中文【中图分类】TQ132晶须材料[1]是指在一定条件下人工培植而成的纤细单晶体, 没有通常材料中普遍存在的缺陷(晶界、位错、空穴等), 其原子排列高度有序、机械强度近似于邻接原子间力, 接近于完整晶体的理论值.晶须的强度远高于其它短切纤维, 主要用于制造高强度复合材料, 从60年代初至今已开发了近百种晶须材料[2], 主要分为金属、氧化物、碳化物、卤化物、氮化物、石墨和高分子化合物等.针状碳酸钙是近年来开发出的新型晶须材料,作为新型复合材料的增韧补强剂[3],具有优良的耐高温、绝缘、阻燃等功能, 以及良好的机械强度、高弹性模量、高硬度等优点, 广泛应用于塑料、尼龙、涂料、造纸等领域. 针状碳酸钙生产工艺简单,价格低廉, 有望替代昂贵的SiC[4]、K2TiO3[5]、ZnO[6]晶须成为改进和提高复合材料力学性能的主要填料,在市场上具有很强的竞争力.合成针状碳酸钙的方法有以下几种: Ca(OH)2-Na2CO3溶液法[7-8]、Ca(HCO3)2转化法[9]、尿素水解法[10]、Ca(OH)2-CO2[11-12]碳化法, 其中碳化法具有反应体系简单, 制备条件容易控制等优点,更适合工业化生产. 制备针状碳酸钙的晶型导向剂主要有以下几类: 可溶性二价金属盐、可溶性磷酸盐及磷酸. 本课题组前期的研究发现[13], 以氯化镁为晶型导向剂制备的针状碳酸钙的长径比、尺寸均匀性、文石纯度都优于其它晶型控制剂. 同时也发现, 该工艺氯化镁用量较大, 导致生产成本变高,不利于实现工业化生产.为此, 本工作仍采用以氯化镁为晶型控制剂的碳化法工艺, 在不影响碳酸钙产品的晶型和形貌的前提下, 重点研究了碳化结束后含氯化镁的滤液回收重复套用. 这种重复套用次数越多, 将越有利于降低生产成本, 同时还能减少废料的排放, 有利于环境保护.1 实验部分1.1 碳化过程称取MgCl2·6H2O(AR, 太仓美达试剂有限公司)溶解于适量去离子水中, 加入一定量的 Ca(OH)2 (AR, 莲花化工有限公司), 经3h机械搅拌预反应后,置于带搅拌的自制鼓泡碳化釜中, 通入一定流量和浓度比例的 CO2(杭州今工特种气体有限公司)与空气的混合气, 控制碳化温度、搅拌速度进行碳化反应, 同时用pH计(PHS-3C, 上海精科仪器有限公司)检测碳化过程中pH的变化情况, 当反应液pH值降到6.5时停止反应, 过滤并回收滤液, 对所得固体产品进行洗涤、干燥和粉碎, 即得到CaCO3产品.1.2 MgCl2套用加热蒸发回收滤液(~500mL), 将其浓缩至250mL, 取10mL浓缩液加去离子水稀释到1000 mL,使用EDTA分步络合滴定50mL稀释液, 确定其中Ca2+、Mg2+含量. 对照原反应液中 Mg2+含量, 在回收液中补加因碳化反应、过滤和EDTA滴定实验损失的Mg2+, 之后使用该回收液在与1.1节相同的工艺条件下多次进行碳化反应.1.2.1 EDTA络合滴定原理[14]EDTA与1~4价的金属离子都能形成络合比为1:1的络合物, 且与无色的金属离子形成无色的络合物, 与有色的金属离子形成颜色更深的络合物. EDTA在pH值为10时, 主要与Ca2+、Mg2+作用; 在pH为12时, Mg2+与OH-生成Mg(OH)2沉淀, 因此EDTA主要与Ca2+作用.1.2.2 钙与镁总含量的测定以铬黑T(亭新化工试剂厂)为指示剂, 用EDTA标准溶液(0.02mol/L)滴定经过稀释处理的回收液中Ca2+、Mg2+总量. 滴定方法: 取50mL稀释液, 加入2滴HCl(20%), 使其中的钙镁元素充分离子化, 接着加入适量氨-氯化铵缓冲溶液, 控制溶液pH值为~10, 再加入3滴铬黑T指示剂.此时铬黑T在溶液中的主要形态为HIn2-, 呈蓝色. 在滴定前溶液中加入的铬黑T先与Ca2+、Mg2+生成酒红色络合物(式1), 其中M2+表示Ca2+或Mg2+.滴定开始后, 滴入的EDTA首先与溶液中的Ca2+、Mg2+反应生成无色的络合物(式 2). 由于 CaY2-、MgY2-比CaIn-、MgIn-稳定, 溶液中将会发生铬离子的转移, 此络合平衡极端向右, 当游离的金属离子全被EDTA络合之后, 继续滴入的EDTA将夺取已与铬黑 T结合的 Ca2+、Mg2+, 当滴入的 EDTA把CaIn-、MgIn-中的Ca2+、Mg2+全部夺走后, 液色由酒红色转变为 HIn2-的蓝色时即为滴定终点(式3), 此时消耗的EDTA标准溶液的体积记为V1.1.2.3 钙离子的测定另取50mL稀释液, 同理加入 2滴 HCl(20%),接着滴加适量NaOH溶液(4mol/L), 调节溶液pH值在~12, 再加入少量钙−羟酸指示剂(三爱思试剂有限公司), 此时钙指示剂在溶液中的主要形态为HInd2-, 呈蓝紫色, 其中 Mg2+已经在 OH-的作用下转化成 Mg(OH)2沉淀, 不再参与络合反应. 在滴定前溶液中加入的钙指示剂先与Ca2+生成紫红色络合物(式4). 滴定开始后, 滴入的EDTA首先与溶液中的Ca2+反应生成络合物(同式2). 同理由于CaY2-比CaInd-稳定, 过量滴加的 EDTA 将夺取已与钙指示剂结合的 Ca2+, 使钙指示剂还原为原来的形态, 当液色由紫红色变成蓝紫色时即为滴定终点(式5),此时消耗的EDTA标准溶液的体积记为V2.1.2.4 确定回收液中Mg2+含量由于EDTA与Ca2+、Mg2+的络合比都为1:1, 因此可由式6计算出回收液中Ca2+、Mg2+含量, 其中, 500表示回收液稀释倍数.1.3 产品表征用扫描电镜SEM(S-4700, HITACHI公司)观测样品形貌及粒径的大小, 用 X射线衍射仪(XTRA, Thermo公司)测定CaCO3产品晶型(图1). 根据式7计算碳酸钙产品中文石相的质量分数[15-16]:式中, y为文石相的含量百分比, Ia和Ic分别为XRD图谱中文石相、方解石相的最强特征峰的积分强度,衍射面分别为(221)、(104), 在优化工艺条件下制备的针状碳酸钙中文石相含量高达96%.2 结果与讨论2.1 回收液套用可行性分析碳化工艺中, 反应物MgCl2·6H2O和 Ca(OH)2按3:2的摩尔比投料, 由于Mg(OH)2的溶度积常数远小于 Ca(OH)2的溶度积常数, 因此, 该体系存在如下反应过程(式 8), 经过 3h的搅拌预反应, 大部分Mg2+转化成胶状Mg(OH)2沉淀, 而Ca(OH)2将溶解转化成Ca2+.碳化过程中发生的化学反应如下式(9)所示. 随着碳化反应的进行, Mg(OH)2逐渐溶解转化成Mg2+,由于MgCO3的溶度积常数远远大于CaCO3的溶度积常数, MgCO3在碳酸钙产品中含量很少. Mg2+在整个反应过程中很少被消耗, 主要起晶型导向的作用, 同时氯化镁用量大, 因此可以考虑回收再利用.图1 优化工艺条件下制备的针状碳酸钙的形貌(A)和XRD图谱(B)Fig. 1 Morphology (A) and XRD pattern (B) of needle-like CaCO3 prepared with the optimal operation parameters2.2 Mg2+损失对回收液套用的影响2.2.1 直接套用回收液回收碳化反应结束后的滤液(记为回收液 A),直接在滤液中加入原工艺配比量的Ca(OH)2, 在相同的工艺条件下重复利用制备针状碳酸钙.通过对比图2(A)、2(B)和2(C)发现, 随着套用次数的增加, 碳酸钙产品的平均长径比逐渐降低,并有大量的细微颗粒状碳酸钙形成. 从图3的XRD图谱可以看出, 随着套用次数的增加, 碳酸钙的晶相构成发生了较大的变化, (104)晶面所对应的方解石相碳酸钙的积分强度越来越大, 而(221)晶面所对应的文石相碳酸钙的积分强度有所下降. 根据式(7)计算的结果显示, 循环次数增加至 3次后, 文石晶型的含量从96%降到了65%, 方解石晶型的含量逐渐增加, 结合文献[13, 17]可以证实图2中的小颗粒为方解石相碳酸钙. 在过滤和洗涤时氯化镁部分损失, 而套用过程中没有补加氯化镁, 原反应物料比发生明显变化, 导致针状碳酸钙产物中杂晶增多、品质下降, 因此在套用实验中必须补加氯化镁, 以消除物料比例变化对实验的影响.图2 套用回收液A制备针状碳酸钙产品的形貌Fig. 2 Morphologies of needle-like CaCO3 prepared indiscriminately with the recycled solution ARepetition times (A) 1; (B) 2; (C) 3; (D) 3图3 套用回收液A制备针状碳酸钙产品的XRD图谱Fig. 3 XRD patterns of needle-like CaCO3 prepared indiscriminately with the recycle solution A(A) Original preparation; Repetition times (B) 1, (C) 2, (D) 32.2.2 补加MgCl2·6H2O后套用回收液通过 EDTA络合滴定确定回收液中的 Ca2+、Mg2+含量后, 根据原工艺反应物配比, 向套用的氯化镁溶液中补加损失量的 Mg2+(记为回收液 B), 在相同的工艺条件下循环利用制备针状碳酸钙.研究结果表明, 经过 6次的回收套用, 碳酸钙产品中文石的含量从96%逐渐降至70%, 针状碳酸钙产品长径比的均匀性也逐渐变差, 方解石相的含量逐渐增加. 对比图3和图4发现, 随着套用次数的增多, (104)晶面所对应的方解石相碳酸钙的积分强度的增长速度有所减缓, 但从图 5可以看出, 当氯化镁循环利用次数大于4次时, 针状碳酸钙产品的平均长径比明显变小, 同时文石相含量骤降到 80%以下, 此时回收液已经不适合再继续套用.2.3 其它物质对回收液套用的影响2.3.1 Ca2+对回收液套用的影响图4 套用回收液B制备针状碳酸钙产品的XRD图谱Fig. 4 XRD patterns of needle-like CaCO3 prepared indiscriminately with the recycle solution B(A) Original preparation; Repetition times (B) 1, (C) 2, (D) 3, (E) 4, (F) 5, (G) 6上述6次补加MgCl2·6H2O后套用回收液的实验中, 通过 EDTA络合滴定以及式(6)求得的 Mg2+含量基本上保持恒定, 损失率保持~4%, 但 Ca2+的含量随着套用次数的增加而增大, 因此有必要验证碳酸钙产品中文石相含量的降低是否为Ca2+含量的增大引起的.在1.1节的碳化过程中, 在 MgCl2溶液中先加入适量CaCl2, 使该溶液中Ca2+含量与上述第6次回收液中 Ca2+含量相等, 接着加入原工艺配比的Ca(OH)2, 再次重复碳化过程. 通过对比图 1、图5(F)和图 6发现, 添加 CaCl2后没有对针状碳酸钙产品的形貌造成影响, 且文石相含量也没有减少,说明回收液中的 Ca2+不是导致文石相含量下降的主要因素.2.3.2 CaCO3晶核、HCO3-对回收液套用的影响当绝大部分 Ca2+转化为 CaCO3之后, 继续通CO2将存在如下(式10)平衡反应:因此, 回收液中除了含有 Ca2+外, 还存在一定浓度的HCO3-, 同时回收液中存在细微的CaCO3晶核颗粒不能通过过滤、洗涤等操作除去. 从之前表征结果可知, 这些物质的存在不利于针状碳酸钙的套用制备, 因此考虑滴加适量的稀盐酸来调节回收液 B的pH值(此时记为回收液C), 使CaCO3晶核颗粒在酸性条件下转化为Ca2+, 同时HCO3-被H+中和, 从而消除这些物质对套用实验的影响.图5 套用回收液B制备针状碳酸钙产品的形貌Fig. 5 Morphologies of needle-like CaCO3 prepared indiscriminately with the recycle solution BRepetition times (A) 1; (B) 2; (C) 3; (D) 4; (E) 5; (F) 6图6 添加适量CaCl2后制备针状碳酸钙的形貌(A)和XRD图谱(B)Fig. 6 Morphology (A) and XRD pattern (B) of needle-like CaCO3 prepared with CaCl2从图7、图8可知, 在消除CaCO3晶核颗粒和HCO3-影响之后, 补加损失的Mg2+, 套用次数能够明显增加, 直到12次回收液套用之后, 碳酸钙产品中文石相的含量才降到 80%以下, 可见通过补加氯化镁、消除 CaCO3晶核颗粒和 HCO3-影响等方式,能有效延长回收液的循环套用次数, 但针状碳酸钙长径比减小、文石相含量下降和细微小颗粒增多的趋势还是存在的, 不能够一直套用下去. 这可能是由于原料中的微量可溶性杂质随着套用次数的增加逐步累积, 由于晶体的各向异性, 这些微量杂质能够在碳酸钙晶体的不同晶面上发生选择性吸附, 这种吸附对碳酸钙晶体的多个晶面都起到限制生长的作用, 而Mg2+只对方解石相特征晶面的生长起到限制作用, 在 Mg2+与这些微量杂质的共同作用下, 晶体的外形趋向于立方状. 因此这些杂质的存在影响了针状碳酸钙文石晶相的形成, 而有利于方解石晶相的形成, 这种微量杂质的影响跟物料的品质和纯度有关, 在工业上无法避免.图7 套用回收液C制备针状碳酸钙产品的XRD图谱Fig. 7 XRD patterns of needle-like CaCO3 prepared indiscriminately with the recycle solution C(A) Original preparation; Repetition times (B) 3, (C) 6, (D) 9, (E) 12图8 套用回收液C制备针状碳酸钙产品的形貌Fig. 8 Morphologies of needle-like CaCO3 prepared indiscriminately with the recycle solution CRepetition times (A) 3, (B) 6, (C) 9, (D) 123 结论1)直接套用回收液 1次以后, 针状碳酸钙产品中文石相的含量低于 80%, 针状的长径比将大幅下降, 并有大量细微立方状方解石相碳酸钙生成, 不适合继续套用.2)通过EDTA络合滴定确定回收液中Mg2+含量,并补加损失的Mg2+, 在相同的工艺条件下碳化可使回收液的套用次数增加到4次.3)影响Mg2+回收再利用的主要因素包括氯化镁的损失、回收液中存在的CaCO3晶核颗粒和HCO3-,而回收液中的Ca2+影响不显著.4)经过补加氯化镁, 同时加酸调节回收液pH的方式优化后, Mg2+回收再利用套用次数延长至12次,使针状碳酸钙的生产成本大大降低, 同时氯化镁的回收再利用还能减少废料的排放, 有利于保护环境.参考文献:【相关文献】[1] 袁建君, 方琪, 刘智恩. 晶须的研究进展. 材料科学与工程, 1996, 14(4): 1−7.[2] 徐兆瑜. 晶须的研究和应用新进展. 化工技术与开发, 2005, 34(2): 11−17.[3] 项久兴, 孙秋菊, 武士威, 等. 碳酸钙晶须的应用研究进展. 精细与专用化学品, 2010, 18(1):27−30.[4] Hao Y J, Jin G Q, Han X D, et al. Synthesis and characterization of bamboo-like SiC nanofibers. Materials Letters, 2006, 60(11): 1334−1337.[5] Khalsa H S, Smith M D. Crystal growth and structure determination of K2TiO3: a five coordinate titanate. Materials Research Bulletin, 2009, 44(1): 91−94.[6] Xu C X, Sun X W. Characteristics and growth mechanism of ZnO whiskers fabricated by vapor phase transport. Japanese Journal o f Applied Physics, 2003, 42: 4949−4952.[7] Tsuzuki T, Pethick K, McCormick P G. Synthesis of CaCO3 nanoparticles by mechano-chemical processing. Journal of Nanoparticle Research, 2000, 2(4): 375−380.[8] Ahn J W, Kim J H, Park H S, et al. Synthesis of single phase aragonite precipitated calcium carbonate in Ca(OH)2-Na2CO3-NaOH reaction system. Korean J. Chem. Eng., 2005, 22(6): 852−856.[9] Kojima Y, Sadotomo A, Yasue T, et al. Control of crystal shape and modification of calcium carbonate prepared by precipitation form calcium hydrogencarbonate solution. Journal of Ceramic Society of Japan, 1992, 100(9): 1145−1153.[10] 许兢, 陈庆华, 钱庆荣. 尿素水解法制备晶须碳酸钙. 结构化学, 2003, 22(2): 233−237.[11] Hu Z, Shan M, Cai Q, et al. Synthesis of needle-like aragonite form limestone in the presence of magnesium chloride. Journal of Materials Processing Technology, 2009,209(3): 1607−1611.[12] Park W K, Ko S J, Lee S W, et al. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. Journal of Crystal Growth, 2008, 310(10): 2593−2601.[13] 马俊, 刘华彦, 梁锦, 等. 两种重要形貌的碳酸钙的可控合成及生长机理探讨. 材料科学与工程学报, 2011, 29(2): 227−232.[14] 程建国. 无机及分析化学. 浙江: 浙江科学技术出版社, 2006: 186−199.[15] Bischoff J L, Fyfe W S. Catalysis, inhibition, and the calcitearagonite problem; [Part] 1, The aragonite-calcite transformation. American Journal of Science, 1968, 266: 65−79. [16] Ota Y, Inui S, Iwashita T, et al. Preparation of aragonite whiskers. Journal of the American Ceramic Society, 1995, 78(7): 1983−1984.[17] 梁锦, 刘华彦, 陈银飞. 碳化参数对纳米碳酸钙粒径与形貌的影响. 无机盐工业, 2009, 41(12): 22−24.。
碳酸司维拉姆片原料粒度对产品质量的影响研究
[作者简介]李明杰(1969-),男,本科,副主任药师,研究方向为药物制剂。
[通信作者]杜子坤(1986-),男,本科,工程师,研究方向为药物制剂,E-mail:*******************。
慢性肾脏病(CKD)自被发现以来,其发病率一直高居不下[1-2],高磷血症作为其最常见的并发症之一,也是一直困扰临床的一大难题。
血磷水平能否得到有效控制与CKD 患者的预后和生存时间密切相关[3-4]。
碳酸司维拉姆是一种非吸收磷酸结合交联聚合体,含多个胺基,并通过一个碳原子连接到聚合体主链上。
碳酸司维拉姆口DOI:10.16659/ki.1672-5654.2021.19.040碳酸司维拉姆片原料粒度对产品质量的影响研究李明杰1,杜子坤2,常慧君2,牛昊21.淄博市临淄区市场监督管理局,山东淄博256199;2.山东齐都药业有限公司,山东淄博255400[摘要]目的研究碳酸司维拉姆片原料粒度对产品质量的影响。
方法于2019年6月—2020年11月展开该实验研究;采用不同粒度碳酸司维拉姆原料进行实验研究,对混合效果、压片可压性、崩解时间、崩解延迟、体外磷结合效果进行研究,考察碳酸司维拉姆片不同粒度原料对产品质量的影响。
结果采用D90为41.5、62.4、81.6、101.6μm 的原料药与辅料混合,混合效果良好。
使用旋转压片机压片,可以轻松压制到适当硬度,可压性良好。
试验显示碳酸司维拉姆原料粒径越小,碳酸司维拉姆片的崩解时间越长,影响因素放置一定时间后崩解延迟越显著。
原料体外磷结合试验显示,随着原料粒度变小,碳酸司维拉姆的磷结合力提高,磷酸盐去除速率较快。
结论原料粒度对碳酸司维拉姆片崩解时间和磷结合能力存在一定程度的影响,合理控制原料药粒径可确保仿制制剂与参比制剂溶出一致,达到磷结合的理想效果。
[关键词]碳酸司维拉姆片;粒度;含量均匀度;可压性;崩解时间;磷结合[中图分类号]R943[文献标识码]A[文章编号]1672-5654(2021)07(a)-0040-04Study on the Effect of Raw Material Particle Size of Sevelamer Carbonate Tablets on Product QualityLI Mingjie 1,DU Zikun 2,CHANG Huijun 2,NIU Hao 21.Market Supervision and Administration Bureau of Linzi District,Zibo,Shandong Province,256199China;2.ShandongQidu Pharmaceutical Co.,Ltd.,Zibo,Shandong Province,255400China[Abstract]Objective To study the effect of raw material particle size of sevelamer carbonate tablets on product quality.Methods The research work was carried out in June 2019,and the experimental study was completed in November 2020;the experimental research was carried out with different particle size sevelamer carbonate raw materials,and the mixing ef⁃fect,compressibility,disintegration time,and disintegration delay,in vitro phosphorus binding effect to study the effect of different particle size raw materials of sevelamer carbonate tablets on product quality.Results The raw materials with D90of 41.5μm,62.4μm,81.6μm,101.6μm were mixed with excipients,and the mixing effect was ing a rotary tablet press to compress tablets,it can be easily compressed to an appropriate hardness with good compressibility.Tests have shown that the smaller the particle size of the sevelamer carbonate raw material,the longer the disintegration time of the sevelamer carbonate tablet,and the more significant the disintegration delay after the influencing factors are placed for a certain period of time.The in vitro phosphorus binding test of the raw material showed that as the particle size of the raw material becomes smaller,the phosphorus binding force of sevelamer carbonate increases,and the phosphate removal rate was faster.Conclusion The particle size of the raw material has a certain degree of influence on the disintegration time and phosphorus binding capacity of sevelamer carbonate tablets.A reasonable control of the particle size of the raw materialdrug can ensure that the dissolution of the imitation preparation and the reference preparation are consistent,and achieve the desired effect of phosphorus binding.[Key words]Sevelamer carbonate tablets;Particle size;Content uniformity;Compressibility;Disintegration time;Phosphorusbinding. All Rights Reserved.CHINA HEALTHINDUSTRYRSD(%)含量均匀度 2.2S-01(D90:41.5μm)1.5S-02(D90:62.4μm)0.60.4S-03(D90:81.6μm)S-04(D90:101.6μm)表1碳酸司维拉姆片混合颗粒RSD 结果服后与胃肠道中的磷结合,降低磷酸盐的吸收,达到降低血磷浓度的效果[5-6]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CaCO 3vaterite microparticles for biomedical and personal care applicationsDaria B.Trushina a ,b ,Tatiana V.Bukreeva c ,d ,Mikhail V.Kovalchuk c ,d ,Maria N.Antipina a ,⁎aInstitute of Materials Research and Engineering,A*STAR,Singapore 117602,Singapore bLomonosov Moscow State University,Faculty of Physics,Moscow 119991,Russia cNational Research Centre “Kurchatov Institute ”,Moscow 123098,Russia dA.V.Shubnikov Institute of Crystallography,Moscow 119333,Russiaa b s t r a c ta r t i c l e i n f o Article history:Received 16January 2014Accepted 21April 2014Available online 14May 2014Keywords:Calcium carbonate (CaCO 3)BiomineralVaterite polymorph Co-precipitation Crystal growthAmong the polymorph modi fications of calcium carbonate,the metastable vaterite is the most practically impor-tant.Vaterite particles are applied in regenerative medicine,drug delivery and a broad range of personal care products.This manuscript scopes to review the mechanism of the calcium carbonate crystal growth highlighting the factors stabilizing the vaterite polymorph in the most cost ef ficient synthesis routine.The size of vaterite par-ticles is a crucial parameter for practical applications.The options for tuning the particle size are also discussed.©2014Elsevier B.V.All rights reserved.1.IntroductionVaterite is a mineral,a polymorph of calcium carbonate (CaCO 3).Vaterite is usually colorless,having spherical shape and porous inner structure.The diameter of a vaterite particle ranges from 0.05to 5μm.Like aragonite,vaterite is a metastable phase of CaCO 3at ambient condi-tions at the surface of the earth.Being less stable than either calcite or aragonite,vaterite has a higher solubility than either of these phases.Therefore,vaterite transforms to calcite or aragonite once it is exposed to water.Temperatures below 60°C facilitate the formation of calcite,and at the higher temperatures,recrystallization to aragonite occurs [1,2].Despite being metastable,vaterite can still be found in nature,for in-stance,in mineral springs.It usually occurs as a minority component of a larger structure or as a result of a pathological process in humans and animals.Thus,vaterite is found in fish otoliths,freshwater pearls,healed scars of some mollusk shells,gallstones and urinary calculi [3].In those circumstances,some impurities (metal ions or organic matter)may stabilize the vaterite and prevent its transformation into calcite or aragonite.Like other polymorphs of calcium carbonate,vaterite rapidly dis-solves at acidic pH,and thus it can undergo degradation both in vivoand in vitro .Biodegradation of vaterite may occur in body fluids or some acidic extracells,or upon the cellular phagocytosis and absorption.Body fluid contains a number of acidic metabolites,such as citrate,lac-tate and acid hydrolysis enzymes,which provide acidic environment for dissolution of the material.After entering cells (mainly macro-phages)by phagocytosis,vaterite particles are split into ions under the effect of cytoplasmic and lysosomal enzymes,and then the degradationproducts,Ca 2+and CO 32−,can be transferred to extracell.Ca2+can then participate in the formation of new tissue without causing organic damage and pathological tissue calci fication [4].Vaterite microparticles can be produced in a number of ways,how-ever,the majority of them is laborious,or requires extreme conditions and special equipment.The main industrial manufacturing method is based on CO 2bubbling through a calcium containing solution,also re-ferred as the Kitano approach [5–8].Among the other popular methods are the double emulsion approach [9],solvothermal growth in auto-clave above 100°C [10],and biomineralization [4,11,12].Synthesis is often carried out in a double jet reactor vessel [13]applying ultrasound [14–16]or magnetic field [14,17,18].The simpli fied method comprises mixing of saturated aqueous stock solutions containing calcium and car-bonate ions.The mixing method is highly cost ef ficient,fast and easy to perform.Moreover,it may be scaled up for industrial production of vaterite particles [19–23].However,the mixing method may result in unwanted recrystallization of vaterite to more stable polymorphs of calcium carbonate.Therefore,a detailed understanding of the CaCO 3crystal growth process is essential for the success in vaterite production.Materials Science and Engineering C 45(2014)644–658⁎Corresponding author.Tel.:+6568741974;fax:+6568720785.E-mail address:antipinam@.sg (M.N.Antipina)./10.1016/j.msec.2014.04.0500928-4931/©2014Elsevier B.V.All rightsreserved.Contents lists available at ScienceDirectMaterials Science and Engineering Cj ou r n a l h o m e p a g e :w ww.e l s e v i e r.c om /l o c a t e /ms e cHere we introduce the current opinions on the vaterite crystal growth and review the conditions promoting the vaterite polymorph of calcium carbonate.Due to its biodegradability,low cost and unique physical and chemical properties,vaterite is highly demanded in bio-medicine and is an essential component of a big variety of personal care products.Besides being actively used in bone implants,abrasives,cleaners and absorbers,vaterite is playing a key role in encapsulation and drug delivery.However,the size of the vaterite particles is often a crucial parameter.Possible ways to in fluence the particle size are also discussed in the manuscript.2.Introduction to the CaCO 3crystal growthThe formation of a new solid phase is initiated through nucleation in supersaturated solution.Solid state precipitates initially in an amorphous sediment of spherical granules with a diameter of 10nm –70nm [5,17,19,20,24,25].Then,the transformation and dissolution –recrystallization processes result in a mixture of calcium carbonate crystalline hydrated forms (hexahydrate and monohydrate)and three anhydrous crystalline polymorphs (vaterite,aragonite and calcite).Vaterite nucleation and growth are of special interest,and the vaterite particle formation mechanism is a subject of on-going debate [25].Two explanations for the formation of primary polycrystalline vaterite spheres exist in the literature.The nano-aggregation concept claims that the spheres are the result of rapid aggregation of initially formed nano-sized crystals [6,16,22,26,27].However,only relatively insoluble substances develop high supersaturations,so that precipitation can also be considered as crystallization of sparingly soluble substances.Thus,the concept of classical spherulitic growth shown schematicallyin Fig.1advocates that a sphere of vaterite with polycrystalline features originates from the formation of a single nucleus followed by branching of this small crystal (often mentioned as ripening of crystallites)[26,28,29].It is also supposed that a final particle can be a result of both crystal-lization processes taking place at a time [30].According to the crystal growth theory,precipitation starts from nu-cleation.The initially formed nuclei grow into crystallites.The crystal growth process occasionally entailed with the formation of secondary nuclei causes signi ficant changes in the initial concentrations of calcium and carbonate ions in solution.The crystal growth itself is a complex process comprising two elementary processes taking place either at some distance from the crystal surface or at the crystal –solution inter-face.These elementary processes are 1)diffusion and/or convection of growth units through the bulk towards the crystal –solution interface,and 2)surface integration processes at the crystal –solution interface.The slowest of these consecutive processes determines the overall crys-tal growth rate.The solid phase thus formed (crystals)undergoes further changes in physical and chemical properties.These secondary changes occur under conditions close to equilibrium signifying the tendency of the system to establish equilibrium.Theoretically,precipitation terminates when the crystals present in the system form one crystal which is in equilibrium with the saturated solution.In practice,precipitation is completed when crystals reach a size that causes sedimentation.The process that leads to equilibrium is called ageing and takes place through several possible ways.Dissolution of small and simultaneous growth of large particles (also referred as Ostwald ripening)and recrystallization are the mechanisms that probably always occur in the early stages of the precipitate formation.Coagulation and agglomeration followed by sintering change the initial dispersion of the system by the formation of more stable large aggregates (Fig.1).The preference for vaterite formation exists when starting ionic ac-tivity productIAP ¼a Ca 2þÃa CO 2−3lies between thermodynamic solubilityproduct for amorphous calcium carbonate K SP (ACC)and the solubility product for vaterite K SP (Vaterite)[26].The logarithmic ion activityproduct of Ca 2+and CO 32−in the suspension at 25°C is shown as a func-tion of time in Fig.2a.Regions I,II and III in Fig.2correspond to unstable stage,metastable stage and stable stage,respectively.Under condition within the region I (unstable stage),calcium car-bonate nanoparticles randomly emerge as an amorphous sediment at all temperatures.Onwards,nanoparticles line up along speci fic crystal-lographic orientations,resulting in a phase change from poorly crystal-line to crystalline.The crystalline CaCO 3begins to form around the time when the IAP curve shows the “in flection point ”(Fig.2a)[19].As the crystals continue to precipitate,the supersaturation status decreases causing the nucleation force to decrease as shown in Fig.2b,and the subsequently formed nanoparticles begin to attach to each other in a crystallographically oriented fashion,which is thermodynamically more stable than random attachment.The transformation of amor-phous calcium carbonate (ACC)is completed just before the steep decrease in the IAP,and all ACC particles disappear forming clusters a few micrometres in diameter.The polymorph composition of precipitated particles in the early metastable stage was presented as a function of temperature in Fig.3.Initial ACC transformed to the combination of vaterite and calcite at low temperatures (14°C to 30°C).Vaterite polymorph occurs predomi-nantly at 30°C –40°C.At intermediate temperatures (40°C to 50°C)the formation of all three polymorphs is observed.Elevating the temper-ature above 60°C stabilizes aragonite polymorph of calcium carbonate.The abundance of a certain modi fication also depends on supersatu-ration [11,13,19,26].The effect of supersaturation has been described by the Ostwald's law of stages:at suf ficiently high supersaturation the most soluble and the least stable form crystallizes first [32].At the be-ginning of the stage II,the system is supersaturated with respect to all polymorphic forms,thus the least stable and higher-energy form of vaterite is the first to crystallize.The crystallization of thevateriteFig.1.Stages and pathways of precipitation processes [15].645D.B.Trushina et al./Materials Science and Engineering C 45(2014)644–658form will proceed until the supersaturation value decreases down to reach the solubility for this form (Fig.4a).At the same time,as the sys-tem is supersaturated with respect to all forms,the crystallization of the second more soluble form (aragonite)begins.Dissolving vaterite con-tributes to further crystallization of the aragonite form until completely transformed [32].Complete dissolution of vaterite induces steep de-crease in the IAP value to Ksp of the next polymorph (aragonite)with subsequent transformation to the most stable calcite [19].Fig.4b pro-vides a range of respective Ksp values for the vaterite,aragonite and cal-cite forms at different temperatures.It can be seen from Fig.4b that the solubility product of all forms decreases at the higher temperatures that is quite uncommon for both organic and inorganic substances.As the vaterite form has the highest solubility among the poly-morphs and precipitates first,it appears to be the most challenging to stabilize its nuclear and suspend the formation of other modi fications.During the metastable stage,all crystals are finally transformed to the most stable modi fication of calcite at all temperatures as a result of water induced dissolution –recrystallization process,Fig.5.The implica-tion of the theory reveals that by controlling the supersaturation and harvesting crystals at an appropriate time,it should be possible to iso-late the certain polymorphic form [32].The stable stage corresponds to particle growth in size without fur-ther changes in morphology.The value of IAP stabilizes at the solubilityproduct of calcite and nuclei grow persistently up to a certain size (Fig.2a)[23].Factors in fluencing the morphology of CaCO 3crystals are those affecting supersaturation.The activity of the calcium and carbonate ions is connected with the ionic strength and temperature.As shown in Fig.6,the time required to reach the metastable stage (T m )of the polymorph mix decreases with increasing temperature.Temperature is an important parameter for bulk crystallizations as it allows to control the product solubility making it possible to obtain only the thermody-namically stable lowest-free-energy form at any given value [32].Tem-perature variations may change the rank order of the thermodynamic stability re flecting the changes in the free energies of the polymorphs.Such a change in terms of solubilities is shown in Fig.7.The change in rank order is characterized by a transition temperature Tc.From these considerations it is clear that the thermodynamic stability of the poly-morphs must be taken into account in studies on crystallization of poly-morphs [32].Changes in the initial pH values have an impact on the ionic strength of the solution,which is related to supersaturation.A higher pH leads to a higher concentration of carbonate ions and a higher supersaturation.When the initial pH value is higher than 7but is lower than 11,the pre-cipitation of calcium carbonate follows the ACC –vaterite pathway de-scribed above [35].The vaterite abundance and its crystal size increase with higher ini-tial concentrations of Ca 2+and CO 32−ions.The change in its dominance with time for the two solutions of different supersaturation values is shown in Fig.8a.In spite of practically equal ion activity of calcium and carbonate in the initial solutions in (A)and (B),the suspension which contains an excess of Ca 2+(A)gives a higher vaterite abundance.Using a computer program,the rate of crystal growth was deter-mined by numerical differentiation and the growth kinetics was found to be parabolic (Fig.8b)[15],which is in good agreement with the ex-perimental data obtained elsewhere [33].Surprisingly,a rather weak dependence of the vaterite growth rate on the ionic strength was found [15].3.Vaterite characterization and properties 3.1.StructureBeing a metastable polymorph,vaterite rarely exists in nature in the pure form,and large single crystals of vaterite are dif ficult for obtaining in-vitro .Because of that,it has been a big challenge to resolve the struc-ture of vaterite for almost acentury.Fig.2.The change in logarithmic ion activity product of calcium and carbonate,log IAP,with time at 25°C (a)(plotted from [19]);the dependence of nucleation rate on supersaturation (b)(plotted from [31]).Fig.3.Plots of abundance of crystalline calcium carbonates at the early metastable stage as a function of temperature (plotted from [19]).646 D.B.Trushina et al./Materials Science and Engineering C 45(2014)644–658The most widely accepted fact is that vaterite has a hexagonal crystal symmetry [10,14,20,29,36,37]and P63/mmc space group [16,25,38],with unit pseudo-cell parameters a ′=4.13Åand c ′=8.49Å.The speci fic gravity measurements reveal that this cell contains two CaCO 3(Z ′=2)[25].Five weak re flections also observed by (X-ray diffraction)XRD initially could not be indexed,and were attributed to the true cell rotated by 30°about the c axis from the main one,with lattice parame-ters a =a 0ffiffiffi33p =7.16Å,c =2c ′=16.98Å,and Z =12[25].The atomic arrangement shown in Fig.9is constructed based on the symmetry el-ements of space group P63/mmc.This model posits 100%occupancy by the calcium and one-third occupancy by the carbonate groups.When the carbon atom was placed in the centre of the prism and the vertical carbonate group was oriented so that each oxygen atom was equidistant from the two nearest calcium atoms,the resultant calci-um –oxygen interatomic distances were found to have the expected values [25].In [38]another structure is suggested.The basic unit cell is essential-ly in agreement with the previous model but the site symmetry of the carbonate groups is different.It was emphasized that additional spectral features observed in diffraction data (diffuse streaks along the c axis and satellite re flections)are attributable to stacking faults perpendicular to the c axis,leading to doubling or tripling of the c lattice parameter,as re flected in Fig.10.The principal debate has arisen on whether the vaterite symmetry is hexagonal or orthorhombic,although recently it was claimed that none of the proposed models is consistent with Raman spectra indicated by the presence of two or more carbonate groups in the asymmetric unit [39].Based on the spectroscopy data,the possibility of at least three structurally independent carbonate groups in the unit cell of vaterite was proposed.A Raman spectrum of vaterite discussed in [39]is characterized by the presence of at least eight relatively broad bands at frequencies corresponding to the external lattice modes whereas the other bands are split into two or three distinct peaks (Fig.11).Vaterite peaks in Raman spectra often have high value of full width at half-maximum in comparison with other polymorphs,which implies that the crystal structure of vaterite is not well ordered.The peak broadening is possibly affected as a result of the stacking faults,layer shifts or syntactic inter-growth irregularities,making it dif ficult to determine the parameters of the crystalstructure.Fig.4.The effect of supersaturation on the crystallization of polymorphs.The circles indicate different supersaturations (a)(plotted from [32]);solubility of the anhydrous crystalline polymorphs at 1bar (b)(plotted from [33]).Fig.5.Schematic depiction of the formation of CaCO 3spherulites and the transformation from amorphous phase to typical calcite [34].647D.B.Trushina et al./Materials Science and Engineering C 45(2014)644–658Different variations of the model were proposed,resulting in the unit cell with P6522or Ama2space group or modi fied orthorhombic unit cell.Based on diffraction tomography and transmission electron microscopic data,two structures with very low symmetries (a mono-clinic unit cell and a triclinic one)were suggested in [40].Taking into account all the diffraction data obtained in the study,the lowest sym-metries were hypothesized.Nevertheless,the most recent report claims that vaterite should be considered as a combination of two different crystal structures that co-exist within a pseudo-single crystal [3].The structure of vaterite crystal is possibly predominantly hexagonal with at least one other coexisting minor crystallographic structure.The minor atomic structure,existing as nanodomains within the major matrix,is still unknown.The coexis-tence of two structures of different symmetries largely explains theamount of contradicting results previously obtained by different research groups all over the world.There are at least three different theoretical models equally well de-scribing the vaterite structure at room temperature.These distinct models,each comprising multiple structures,can explain the disorder of vaterite in terms of different orientations of the carbonate anions,multi-ple stacking sequences of the carbonate layers,and possible chiral forms.Hence,vaterite is not a single “disordered ”structure but should instead be considered as a combination of different forms,and each form can ex-hibit rapid interchange between multiple structures that possess similar average properties.Besides explaining the existence of several vaterite forms it suggests that perhaps not all samples of vaterite might be the same,while still exhibiting similar spectroscopic properties [41].The polycrystalline nature of the vaterite particle compared to monocrystalline calcite is evident from diffraction diagrams recorded from areas within the two particle slices displayed in Fig.12a and b [42].Random orientation of the crystallites within the vaterite particle should produce continuous circles on the diffraction diagram.The points of increased intensity along the circle reveal the preferential alignment of the crystallites.The fact that these diffraction spots are elongated indicates a certain degree of variation in the crystal orienta-tion.Interestingly,however,the broken ring pattern of electron diffrac-tion obtained from a micrometer-scale area exhibited 6-fold symmetry.For example,the diffraction rings of (110)and (114)were composed of six bright and six dark segments (Fig.12c).That means that the crystal-lographic direction of the nanocrystals in the mosaic is not random but roughly arranged in the same orientation.The presence of texture in the vaterite sample supports the concept of spherulitic growth but does not provide suf ficient evidence,since a hypothetical ordered aggregation process could give the same diffraction pattern.High resolution TEM image (Fig.12d)displays the size of the indi-vidual crystallites.The diffraction rings in Fig.12e are more continuous indicating less systematic orientation,emphasizing the variability of the vaterite structure [42].Fig.13reveals an XRD pattern of vaterite power obtained by solvothermal synthesis in the presence of ethylene glycol.The powder XRD exhibits the characteristic re flections of vaterite,which correspond to lattice planes hkl and d-spacings shown in Table 1[16].Diffractograms of vaterite spherulites composed of nanocrystalline sub-domains or grains usually reveal relatively broad peaks of low intensity,which still can be analysed by the Scherrer equation relating the grain size and peak width [20,24].The phase composition can be re fined from X-ray diffractograms by Rietveld analysis [14,29,40].3.2.Shape and morphologyThe particle morphology may be the most uncertain characteristic because it displays a great deal of variety.The main crystal structure of polycrystalline vaterite is hexagonal with typically a spherical crystal habit like the one shown in Fig.14a [5,9,13,17,24,43–47].The spherical form is also called framboid [5]or raspberry [27](translation of ‘la framboise ’from French).A detailed examination of particle surface showed that spheroids are composed of smaller single crystal sub-units (Fig.14b)arranged with some degree of order as mentioned earlier.The most common interior feature is the presence of grooves radiating from the centre of the particle as radial fibre-like (or channel-like)structures (Fig.14c).Fracture cross-section images display nano-grains developed into oriented rods (Fig.14d).The deviation angle of each main bundle of the oriented rods was roughly estimated to be about 60°(Fig.14e).A so-called “sheaf of wheat ”inner structure of spherulites was ob-served in [5,48].One can imagine this structure as a bundle of fibres tied together at the centre,so that the ends fan out.While the number of growing fibres increases their ends close off to form a sphere.The particle growth scenario called “sphere-to-dumbbell-to-sphere ”(Fig.14f)is currently one of the most explored [21,24,29,49].Fig.6.Plot of the time required to reach the metastable stage (T m )as a function of temper-ature (plotted from [19]).Fig.7.Schematic diagram illustrating the solubility relationship between two polymor-phic forms as a function of temperature close to the phase transition temperature Tc (plotted from [32]).648 D.B.Trushina et al./Materials Science and Engineering C 45(2014)644–658Besides the typical spheroidal structure,in vitro precipitation of vaterite often results in a variety of complex shapes:fried-egg shape,different kinds of layered flower-like (Fig.15a,b)or rosette-shaped structures (Fig.15c)united with 6-fold symmetry [24,31,36,50,51].Fig.15d,e,and f represents a typical SEM image and a suggested a for-mation scheme for such hexagonal-shaped vaterite composed of small hexagonal units.Other reported shapes of vaterite [16,35,50,52]are plates and lenses (Fig.16a and b).Plate morphology is probably the characteristic for the intermediate stage of cauli flower-like particle growth,since other petals growing on plane regions can be seen (Fig.16b).However,the development mechanisms,resulting textures,and common features of all different shapes are yet to be explored.Impor-tantly,in minor cases,calcite could also have a spherical habit [42],so the particle analysis must not rely solely on SEM images,but be supple-mented with the methods discovering more exhaustive information about the phase,e.g.,XRD.3.3.PorosityHigh speci fic surface area and porosity of vaterite particles are of particular importance for their practical applications.Brunauer –Emmett –Teller (BET)analysis reveals the speci fic surface area of the vaterite framboids to be 3.2–8.8m 2g −1for different precipitation con-ditions [5,43,53–55].Vaterite particles with the highest surface area24.72m 2g −1were achieved via coprecipitation with inulin [56].Be-sides,the pore size distribution displayed an average pore size of 20–60nm for the particles with a medium diameter of 4–6μm [43].Theo-retical equation evidently indicates that speci fic surface area is subject to exponential decay with increasing particle size [5].3.4.Absorption spectrumFourier transformation infrared spectroscopy (FTIR)is a very useful technique to identify the polymorph composition of CaCO 3particles [21,50,57].The absorption bands of the different crystallographic varie-ties of CaCO 3are listed in Table 2.Pure vaterite exhibits the characteris-tic vibrational bands at 1480,1070,1087,877,848and 745cm −1,where the last three of the listed bands are the most typical and informative [17,18,35,53,58].The selected FTIR spectrum for vaterite samples pre-cipitated in mono-ethylene glycol solution at 40°C (Fig.17)shows representative bands at 1088,874and 744cm −1attributing to the deformation modes of CO 3in the vaterite polymorph [14].The shifts of peak positions in FTIR spectra indicate interactions between calcium ions and chemical groups of additional molecules in the reaction medi-um (additives or impurities)[10,14,16,18].Shift magnitude directly corresponds to the strength of such interactions.3.5.Chemical and physical propertiesOwing to the mass density (2.54g·cm −3),solid vaterite is used in regenerative medicine [5]for doping of implant scaffolds.Besides,calcium carbonate is quite inert and biocompatible.CaCO 3structure has good stability at neutral and alkaline pH but begins to dissolveatFig.8.Plots of vaterite abundance as a function of time in metastable stage as 25°C with initial concentrations of calcium and carbonate (a).Initial concentrations:(A)0.11M CaCl 2–0.10M Na 2CO 3and (B)0.10M CaCl 2–0.11M Na 2CO 3(plotted from [19]).Plots of the square root of the growth rate as a function of the relative supersaturations and various ionic strengths (b)[15].Fig.9.Vertical projection of vaterite showing orientation of carbonate group relative to calcium atoms [25].Fig.10.Structure of the vaterite unit cell [38].649D.B.Trushina et al./Materials Science and Engineering C 45(2014)644–658。