电机滚动轴承保持架失效原因分析

合集下载

滚动轴承常见的失效形式和原因分析范文

滚动轴承常见的失效形式和原因分析范文

滚动轴承常见的失效形式及原因分析+浪逐风尖2008-11-05 10:55滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析

电机滚动轴承保持架失效原因分析【摘要】圆柱滚子槽形保持架轴承的失效形式主要是保持架早期磨损。

针对造成该问题的几种因素:保持架加工工艺、滚子倒角尺寸、装配工艺和表面处理工艺进行了改进和控制,有效解决了保持架早期失效问题,提高了槽形保持架轴承的使用寿命。

【关键词】保持架;滚子轴承;磨损;寿命;工艺保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。

滚动轴承在工作时,由于滑动摩擦而造成轴承发热和磨损,特别是在高速运转的条件下,由于离心力的作用,加速了摩擦磨损与发热,严重时会造成保持架烧伤和断裂,致使轴承不能正常使用。

保持架损坏在轴承失效形式中占有较大的比例。

下面以6201- 2RZ轴承的保持架为研究对象。

某轴承企业生产的6201- 2RZ 轴承装在某型电机上使用不到2天就发生抱死,且此类现象频现。

在对电机进行分解后发现:轴承外表面有变色的油脂,用手转动轴承完全卡死,轴承密封盖打开后可观察到轴承内部较黑,剩余油脂已全部碳化,轴承保持架有一处断裂;轴承清洗后可见大量片状碎屑,在钢球与内滚道间居多,防尘盖附着的油脂中也混有部分碎屑。

一、故障特征鉴于轴承已经发生止转失效,部分零件已经损坏严重,轴承的旋转精度及尺寸精度完全丧失,已无法测量,故直接对轴承外圈切割将轴承进行分解,发现有以下几个特征:1.一粒钢球从断裂的兜孔中脱离,挤压到相邻兜孔,两个兜孔都已变形;钢球表面已经失去光泽,朝外一侧严重磨损(图1)。

图1 钢球从断裂的兜孔中脱离2.内外沟道的工作轨迹均偏离沟道中心位置,且内圈工作轨迹较宽,约占沟道宽度的3/5。

内、外沟道均发现有多个轴向压痕,工作轨迹表面出现了粗糙度下降的情况;内沟道黏有大量金属铁屑,连续铺满约180°的内沟道表面,铁屑已被碾压成片状。

3.保持架内径与外径方向均有明显磨损,兜孔边缘可见挤压变形;七个兜孔中有五个兜孔保持基本完整,一片半保持架在两个相邻的损坏的兜孔间的铆钉孔处断裂,断裂处铆钉已不可见,断口卷曲变形(无脆性断裂特征);另一片半保持架在对应位置有挤压变形,铆钉孔内径方向磨豁。

探讨滚动轴承失效的原因以及维护方法

探讨滚动轴承失效的原因以及维护方法

探讨滚动轴承失效的原因以及维护方法摘要:本文作者结合自己的工作经验,针对滚动轴承失效的原因进行仔细研究分析,最终提出了具体的维护方法,希望能够对同行研究和使用者有所帮助。

关键词:滚动轴承失效原因维护方法关于滚动轴承,其属于机械之中一种普遍使用的标准零部件,通常情况下是由内圈、外圈、滚动体以及保持架共同构成的[1]。

具有效率高、润滑方便、摩擦阻力小以及良好的互换性等优点,在机械工作中发挥着十分重要的作用。

然而,在实际的工作应用之中,因为种种原因,滚动轴承失效的情况时常发生,多次出现机械故障。

一、关于滚动轴承失效的几种形式1.滚动轴承发生疲劳点蚀通常情况下,如果滚动轴承的各种工作条件良好,安装、维护以及润滑均没有问题,那么它在工作的过程中,承载元件可能会因为需要承受脉动循环变应力的作用,而导致各接触表面的金属材料局部剥落,进而产生疲劳点蚀[2]。

而且,当滚动轴承发生疲劳点蚀的时候,在其进行运转的过程之中,往往会产生振动和噪声,并且它的旋转精度也会出现下降,导致机器无法正常工作。

2.滚动轴承发生塑性变形另外,如果滚动轴承的转速很低,而且发生间歇摆动,这样通常是不会产生疲劳点蚀情况。

然而,滚动轴承却可能因为受到太大的静载荷或者是冲击载荷,引发内外圈滚道和滚动体这两者之间的接触处产生局部应力,并且这种局部应力直接超过材料的屈服极限,进而最终导致滚动轴承产生塑性变形。

这样就能够形成不均匀的凹坑,最终使得滚动轴承在工作的过程中发出剧烈的振动以及噪声。

3.滚动轴承发生磨损在滚动轴承高速运转的过程中,可能会因为使用方法不正确,没有进行科学合理的维护,或者是因为密封问题以及润滑不良等问题,最终引起滚动轴承发生磨粒磨损或者是胶合磨损的现象。

二、关于滚动轴承失效的具体原因分析1.因为载荷问题造成滚动轴承失效通常情况下,人们在进行滚动轴承的分类时,往往根据滚动轴承所承受载荷的方向,把其分为三大类:第一类,向心轴承。

它主要是承受径向载荷。

滚动轴承常见失效形式及原因分析

滚动轴承常见失效形式及原因分析

滚动轴承常见失效形式及原因分析滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面。

轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:>>>>1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

>>>>2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

>>>>3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:(1)制造因素a.产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

滚动轴承保持架损坏的原因分析

滚动轴承保持架损坏的原因分析

滚动轴承保持架损坏的原因分析
1、润滑不良。

润滑对于轴承是必不可少,适当的润滑可以延长轴承的使用寿命以及减少噪音。

但若如果没有润滑剂或者润滑不到位的话,易形成粘着磨损,使工作表面状态恶化,粘着磨损产生的异物,回进入保持架,可能造成保持架断裂,另外,也会造成严重磨损。

2、轴承蠕变。

轴承的滚动蠕变是指当配合面上产生间隙时,轴承配合面之间的相对滑动。

发生蠕变的配合面呈现明亮或黑暗的镜面,有时是由擦伤引起的。

滚动轴承蠕变有两种:内圈蠕变和外圈蠕变,产生套圈相对轴或外壳向圆周方向位置偏离的现象。

3、安装维护不当。

不正确的安装或维护也会导致轴承保持架损坏,如果轴承保持架安装不当,会导致轴承保持架在运行过程中受到非预期的应力,使其损坏。

例如,如果安装螺栓松动或错误的调整,轴承保持架就会受到不均匀的压力,导致破裂,此外,维护是轴承保持架长寿的关键。

如果维护不足,轴承保持架会受到腐蚀、积灰和其他损坏。

这些问题会使轴承保持架结构变得脆弱,导致破裂,因此,在使用轴承保持架时,应该注意正确的安装和定期维护。

4、硬物杂物侵入。

平时应保持轴承的干净和密封状况,如果有外来硬物杂物混入会增加保持架与轴承外圈的摩擦系数,有可能造成轴承散架。

5、承受负荷不宜。

造成此种情况的原因很多,过盈力太大、轴承内部温度过高、杂物混入等都会导致保持架的动转受到阻力并加重转动负何,促使了保持架的磨损,如此的恶性循环,就有可能导致轴承保
持架的断裂。

常见滚动轴承的失效形式及原因分析

常见滚动轴承的失效形式及原因分析

常见滚动轴承的失效形式及原因分析滚动轴承可以有效地减少轴承各零部件之间的摩擦,从而更加流畅地运转,可以有效帮助提高机械设备的使用性能。

但滚动轴承在长时间使用后有时会出现失效的现象,那么,大家知道常见滚动轴承的失效形式及原因具体都有哪些吗?又该如何处理解决轴承失效呢?小编为大家进行了详细的总结,下面一起来了解一下吧。

一、轴承的正常疲劳失效失效产生原因:轴承在其运转总小时数或总转数超过轴承计算寿命后,所发生的疲劳剥落为正常疲劳失效。

产生正常疲劳失效的原因是滚动表面的金属由于运转时的应力循环数超过材料的疲劳极限,从次表层开始萌生疲劳裂纹,并向表面层开裂而落下金属碎片———剥落。

失效表现特征:疲劳裂纹的萌生在次表层,故看不见,用普通仪器也无法侦听到。

剥落的屑片表面粗糙而不规则,原滚动表面留下疤痕状小坑,称为点蚀。

点蚀一旦出现,即迅速扩展,短时间内即引起全面疲劳剥落,宜及早更换轴承,否则将引起轴承的事故性报废,可能对安装部位甚至对整机带来严重的后果。

失效处理办法:超过计算寿命的疲劳剥落,实际上是不可避免的终必然发生的现象,这时材料的潜力已被充分利用。

如用户在工作寿命方面的要求仍不满足,可在轴承的润滑剂中加添合适的极压添加剂,改用性能更高或尺寸更大的轴承,或选用真空冶炼、多次真空重炼等钢材所制轴承。

二、轴承的正常磨损失效失效产生原因:轴承在其运转总小时数或总转数超过轴承的计算寿命,或超过磨损寿命后的过度磨损,为正常磨损失效。

滚动轴承的运动都伴有微小滑动,所受负荷也总有一定波动,因而润滑可延缓磨损但实际不能避免两界面的固体接触,即不能完全避免磨损。

失效表现特征:滚动表面沿运动方向发生较光滑的磨损条纹,新条纹有较显著的金属光泽。

滚动轴承的正常磨损也有三个阶段,即短期的“跑合”磨损,很长时间的平缓磨损,以及短期的剧烈磨损,终使轴承的精度丧失,或引起振动和噪声而不能继续使用。

失效处理办法:超过额定寿命或磨损寿命的磨损失效,在现有技术水平条件下实际上也是不可避免的。

高压电机滚动轴承故障原因及改进措施

高压电机滚动轴承故障原因及改进措施

高压电机滚动轴承故障原因及改进措施一、引言在电机领域,高压电机是一种很常见的设备,它在各种工业领域中担当着重要的作用。

而滚动轴承是高压电机中非常重要的零部件,如果出现故障将会导致电机停机,给生产带来不小的影响。

本文将探讨高压电机滚动轴承的故障原因及改进措施。

1.润滑不良滚动轴承在工作过程中需要得到充分的润滑,以减少摩擦和磨损。

如果润滑不良,就会导致滚动轴承过热、磨损严重,甚至导致轴承卡死。

润滑不良的原因主要包括润滑油质量不合格、油脂老化变质、注油不足等。

2.安装不正确滚动轴承的安装不正确也是高压电机滚动轴承故障的一个重要原因。

安装不正确会导致轴承受力不均,增加摩擦,从而加速轴承的磨损。

安装不正确的具体表现包括安装间隙过小、偏心度过大、轴承座孔与轴承不平行等。

3.过载运行高压电机在工作过程中如果频繁发生过载运行,会导致滚动轴承的磨损加剧,甚至损坏。

过载运行会导致轴承承受较大的径向载荷和轴向载荷,从而加速轴承的磨损。

4.杂质进入在高压电机工作环境中,灰尘、金属屑、异物等杂质可能会进入到滚动轴承中,造成轴承磨损或损坏。

杂质进入的原因主要包括密封不良、清洁不及时等。

5.工作温度过高高压电机工作温度过高也会导致滚动轴承的故障。

高温会使润滑油流失,增加摩擦,从而加速轴承的磨损。

三、改进措施1.改进润滑系统改进润滑系统是预防高压电机滚动轴承故障的关键措施之一。

可以选择更高品质的润滑油,定期更换油脂,严格执行润滑计划,保证轴承得到充足的润滑。

2.优化安装工艺优化安装工艺是预防高压电机滚动轴承故障的重要措施。

在安装过程中要严格执行安装规范,保证安装间隙、偏心度等参数符合要求,确保轴承受力均匀,最大限度减少摩擦和磨损。

3.预防过载运行预防过载运行是预防高压电机滚动轴承故障的重要措施之一。

在电机运行中,要保证载荷在设计范围内,避免频繁发生过载运行,以减少滚动轴承的磨损。

4.加强清洁管理加强清洁管理是预防高压电机滚动轴承故障的必需措施。

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因分析滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机滚动轴承保持架失效原因分析
【摘要】圆柱滚子槽形保持架轴承的失效形式主要是保持架早期磨损。

针对造成该问题的几种因素:保持架加工工艺、滚子倒角尺寸、装配工艺和表面处理工艺进行了改进和控制,有效解决了保持架早期失效问题,提高了槽形保持架轴承的使用寿命。

【关键词】保持架;滚子轴承;磨损;寿命;工艺
保持架在滚动轴承中起着等距离隔离滚动体并防止滚动体掉落,引导并带动滚动体转动的作用。

滚动轴承在工作时,由于滑动摩擦而造成轴承发热和磨损,特别是在高速运转的条件下,由于离心力的作用,加速了摩擦磨损与发热,严重时会造成保持架烧伤和断裂,致使轴承不能正常使用。

保持架损坏在轴承失效形式中占有较大的比例。

下面以6201- 2RZ轴承的保持架为研究对象。

某轴承企业生产的6201- 2RZ 轴承装在某型电机上使用不到2天就发生抱死,且此类现象频现。

在对电机进行分解后发现:轴承外表面有变色的油脂,用手转动轴承完全卡死,轴承密封盖打开后可观察到轴承内部较黑,剩余油脂已全部碳化,轴承保持架有一处断裂;轴承清洗后可见大量片状碎屑,在钢球与内滚道间居多,防尘盖附着的油脂中也混有部分碎屑。

一、故障特征
鉴于轴承已经发生止转失效,部分零件已经损坏严重,轴承的旋转精度及尺寸精度完全丧失,已无法测量,故直接对轴承外圈切割将轴承进行分解,发现有以下几个特征:
1.一粒钢球从断裂的兜孔中脱离,挤压到相邻兜孔,两个兜孔都已变形;钢球表面已经失去光泽,朝外一侧严重磨损(图1)。

图1 钢球从断裂的兜孔中脱离
2.内外沟道的工作轨迹均偏离沟道中心位置,且内圈工作轨迹较宽,约占沟道宽度的3/5。

内、外沟道均发现有多个轴向压痕,工作轨迹表面出现了粗糙度下降的情况;内沟道黏有大量金属铁屑,连续铺满约180°的内沟道表面,铁屑已被碾压成片状。

3.保持架内径与外径方向均有明显磨损,兜孔边缘可见挤压变形;七个兜孔中有五个兜孔保持基本完整,一片半保持架在两个相邻的损坏的兜孔间的铆钉孔处断裂,断裂处铆钉已不可见,断口卷曲变形(无脆性断裂特征);另一片半保持架在对应位置有挤压变形,铆钉孔内径方向磨豁。

在未分解之前该处一粒钢球已从兜孔中脱出。

在断裂处相隔一个铆钉的位置,发现一枚铆钉在中心位置断
裂,铆钉头镶嵌在保持架上。

兜孔内侧有明显的材料堆积现象,这种特征是钢球与保持架相互挤压所造成的。

4.轴承的钢球有环形接触痕迹,处于非正常工作状态;钢球的工作环带很宽,并可见磨损与金属粘连,该处特征与内沟道特征完全对应,推断是钢球与碎屑、沟道碾磨时产生的磨损与金属附着。

图2中的侧面环形磨痕应是与保持架相互磨损造成的。

5.润滑脂全部碳化变黑。

防尘盖内残存部分碳化后的油脂残留物,残留物中混有许多金属铁屑,铁屑也呈片状。

二、故障分析
根据防尘盖并没有产生变形或机械损伤的情况,以及轴承内部尚存有油脂碳化的颗粒,认为轴承在工作时的密封状态是正常的。

油脂的耐温温度在200℃左右,油脂产生碳化现象,说明轴承出现过发热异常的情况。

从对故障轴承内外沟道的工作轨迹不在中心位置这一现象分析,轴承可能承受了过大的轴向载荷或较大的冲击载荷造成了轴承的损坏。

滚动轴承的滚动体的运动十分复杂,滚动体绕轴承轴线进行公转的同时,还要绕自身轴线进行自转,当轴承受到过大的载荷时,轴承的间隙变小,应力增加,摩擦增大,温升增高,导致轴承发热异常。

三、应对措施
选定6201- 2RZ轴承有针对性地进行了大量的试验,找出了影响质量的关键因素,并采取相应对策加以改进,取得了较好的效果。

(一)保持架加工工艺
采用整体冲压工艺加工的保持架,保持架采用两次弯边,第二次弯边的钢板厚度因拉伸变薄,压印铆合时板厚的一侧较板薄的一侧压点大、深度深,与滚子接触增大,磨损加大。

由于两侧板厚不同,保持架冲孔时定位不准确,无法保证图2中B的尺寸(板厚不均两侧分别为B1和B2),底幅尺寸、底幅平行差难以保证,致使滚子端面与保持架底幅接触不良造成摩擦异常声。

图2 保持架加工工艺
改整体冲压为卷圆对焊,保持架两面弯边的钢板厚底均匀一致,铆合时压点大小、深度均匀,降低了压点的磨损和压点与滚子接触异常声;改进工艺后取消了保持架底幅,消除了滚子端面与保持架底幅和压点接触不良产生的“哨叫”等异常声。

(二)滚子加工工艺
滚子倒角尺寸小、大小不均、形状不规则,导致倒角与压点接触磨损。

利用硬车倒角工艺加大滚子倒角,使倒角尺寸均匀一致,硬车后光饰加工,保证倒角与端面、外径圆滑过渡,减小倒角与压点接触磨损,减轻保持架磨损。

(三)装配工艺
图3 装配工艺
合套模具锁点等分较差,导致在压装过程中保持架的压点大小不一致,与滚子倒角接触处厚薄不均匀,压点薄处不耐磨,且锁点倒角尖锐,压装的保持架压点与滚子倒角接触处明显压薄,对保持架的强度与寿命有着极大的影响。

另外,压装过程中保持架无法定位,导致压装后保持架圆心与轴承旋转中心不一致。

在旋转过程中,保持架的圆心要靠向轴承旋转中心,因保持架是靠压点锁住滚子,所以保持架内径离内圈滚道近处的压点受力较大,磨损就会较反方向的压点大,因此滚子容易脱落且是连续脱落,如图3所示。

(四)表面处理工艺
由于目前国内尚无轴承保持架表面处理技术条件的标准,给分析工作造成了一定的困难。

同种类型(成分、尺寸相近,经过氮碳共渗处理)的日本保持架,其氮碳共渗层深度为0.0075mm,表面硬度及心部硬度分别为696HV0.01和171HV0.01。

比较而言,该断裂保持架的渗层过深(约是日本的6倍),表面硬度偏低,而心部硬度值又偏高。

结合金相组织检查和分析结果,可以确定断裂保持架的表面处理工艺确实存在诸多不足,不合理的氮碳共渗工艺必然会影响保持架的使用性能和寿命。

下面从氮碳共渗温度过高、冷却速度较慢等几方面进行了改进与控制。

相关文档
最新文档