八年级数学同步系列测试卷(三)
北师大版初中数学八年级上册《3.1 确定位置》同步练习卷(含答案解析
北师大新版八年级上学期《3.1 确定位置》同步练习卷一.选择题(共25小题)1.小明乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km),若小艇C在游船的正南方2km,则下列关于小艇A、B的位置描述,正确的是()A.小艇A在游船的北偏东60°,且距游船3kmB.游船在的小艇A北萄东60°,且距游船3kmC.小艇B在游船的北偏西30°,且距游船2kmD.小艇B在小艇C的北偏西30°,且距游船2km2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)3.中国象棋是中华名族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(﹣2,1)4.如图,已知棋子“车”的坐标为(﹣2,1),棋子“马”的坐标为(3,﹣1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)5.北京市为了全民健身,举办“健步走“活动,活动场地位于奥林匹克公园(路线:森林公园→玲珑塔→国家体育场→水立方)如图,体育局的工作人员在奥林匹克公园设计图上标记玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,3),则终点水立方的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,﹣1)6.如图是丁丁画的一张脸的示意图,如果用(1,3)表示靠左边的眼睛,用(3,3)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,2)C.(1,1)D.(3,1)7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)8.小刚从学校出发往东走500m是一家书店,继续往东走1000m,再向南走1000m 即可到家,若选书店所在的位置为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,若以点A表示小刚家的位置,则点A的坐标是()A.(1500,﹣1000)B.(1500,1000)C.(1000,﹣1000)D.(﹣1000,1000)9.如图,表示甲、乙、丙三人在排练厅所站的3块地砖.若甲、乙所站的地砖分别记为(2,2),(4,3),则丙所站的地砖记为()A.(5,6)B.(6,5)C.(7,6)D.(7,5)10.如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)11.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,﹣1),则表示“天安门”的点的坐标为()A.(0,0)B.(﹣1,0)C.(1,0)D.(1,1)12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)13.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)14.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为()A.(0,3)B.(3,2)C.(2,3)D.(3,0)15.如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)16.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)17.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)18.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)19.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用有序数对(0,﹣1)表示,黑棋②的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对()表示.A.(﹣2,4)B.(2,﹣4)C.(4,﹣2)D.(﹣4,2)20.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A 的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1B.点O2C.点O3D.点O421.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)22.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)23.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D24.从学校向东走600米,再向南走500米到小伟家;从学校向南走500米,再向西走300米到小亮家,则下列结论正确的是()A.小亮家在小伟家的正东600米处B.小亮家在小伟家的正南500米处C.小亮家在小伟家的正西900米处D.小亮家在小伟家的正北600米处25.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)二.填空题(共14小题)26.小聪出校门向东走100米,再向北走120米到达阳光文具店,若以学校校门所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向,1个单位长度代表1米建立平面直角坐标系,则阳光文具店的坐标是.27.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,已知所在位置的坐标为(﹣3,2),所在位置的坐标为(﹣1,0),在中国象棋的规则中,“马走日,象(相)飞田”,若下一步移动,则下一步可能走到的位置的坐标为.28.象棋是一项益智游戏,如图,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为.29.如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为.30.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果士所在位置的坐标为(﹣1,﹣2),相所在位置的坐标为(2,﹣2),那么将棋子炮右移一格后的位置的坐标为.31.如图,若棋盘中表示“帥”的点可以用(0,1)表示,表示“卒“的点可以用(2,2)表示,则表示“馬”的点用坐标表示为.32.如图,若小红的位置可以用坐标(﹣7,﹣4)表示,小明的位置可以用坐标(﹣5,﹣8)表示,则小亮的位置可以用坐标表示为.33.在如图的方格纸上,若用(﹣1,1)表示点A的位置,(0,3)表示点B的位置,那么点C的位置可表示为.34.如图是城市中某区域的示意图,小聪同学从点O出发,先向西走100米,再向南走200米到达学校,如果学校的位置用(﹣100,﹣200)表示,那么(300,200)表示的地点是.35.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.36.如图所示的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是.37.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为.38.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1、1),则此“QQ”笑脸右眼B的坐标.39.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.三.解答题(共11小题)40.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,若游乐场的坐标为(3,2),宠物店的坐标为(﹣1,﹣2),解答以下问题(1)请在图中建立适当的平面直角坐标系,并写出汽车站的坐标;(2)若消防站的坐标为(3,﹣1),请在坐标系中标出消防站的位置.41.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的地方是哪个?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.42.如图是学校的平面示意图,已知旗杆的位置是(﹣2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(﹣2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.43.如图,方格纸中每个小方格都是长为1个单位的正方形,已知学校位置坐标为A(1,2).(1)请在图中建立适当的平面直角坐标系;(2)写出图书馆B位置的坐标是.44.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.45.如图,已知火车站的坐标为(2,2),文化宫的坐标为(﹣1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标;46.如图,这是某城市部分简图,请建立适当的平面直角坐标系,并分别写出各地的坐标.47.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(﹣4,4),点B位于点(3,1),则“帅”所在点的坐标为;“马”所在点的坐标为;“兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.48.这是一个动物园游览示意图,彤彤同学为了描述这个动物园图中每个景点位置建了一个平面直角坐标系,南门所在的点为坐标原点,回答下列问题:(1)分别用坐标表示狮子、飞禽、两栖动物,马所在的点.,,,.(2)动物园又新来了一位朋友大象,若它所在点的坐标为(3,﹣2),请直接在图中标出大象所在的位置.(描出点,并写出大象二字)(3)若丽丽同学建了一个和彤彤不一样的平面直角坐标系,在丽丽建立的平面直角坐标系下,飞禽所在的点的坐标是(﹣1,3)则此时坐标原点是所在的点,此时南门所在的点的坐标是.49.李老师到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),(1)你能帮李老师在下图中建立平面直角坐标系求出其他各景点的坐标吗?(2)若图中一个单位长度代表实际距离100米,请你求出其中某两点(已用字母标记)间的实际距离.50.如图是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若光岳楼的坐标为(﹣3,1),请建立平面直角坐标系,并用坐标表示下列景点的位置:金凤广场(,);动物园(,);湖心岛(,);山峡会馆(,).北师大新版八年级上学期《3.1 确定位置》同步练习卷参考答案与试题解析一.选择题(共25小题)1.小明乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km),若小艇C在游船的正南方2km,则下列关于小艇A、B的位置描述,正确的是()A.小艇A在游船的北偏东60°,且距游船3kmB.游船在的小艇A北萄东60°,且距游船3kmC.小艇B在游船的北偏西30°,且距游船2kmD.小艇B在小艇C的北偏西30°,且距游船2km【分析】利用方向角的表示方法对各选项进行判断.【解答】解:小艇A在游船的北偏东30°,且距游船3km;小艇B在游船的北偏西60°,且距游船2km;游船在小艇的南偏西30°,且距游船3km;小艇B在小艇C的北偏西30°,且距游船2km.故选:D.【点评】本题考查了坐标确定位置:是熟练掌握平面内特殊位置的点的坐标特征.理解方向角的表示方法.2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)【分析】先利用已知两点的坐标画出直角坐标系,然后可写出白棋(甲)的坐标.【解答】解:根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选:D.【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.3.中国象棋是中华名族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(﹣2,1)【分析】根据“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),建立平面直角坐标系,结合坐标系可得答案.【解答】解:如图所示,根据题意可建立如图所示平面直角坐标系,则“兵”位于点(﹣2,1),故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.4.如图,已知棋子“车”的坐标为(﹣2,1),棋子“马”的坐标为(3,﹣1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)【分析】先根据棋子“车”的坐标和棋子“马”的坐标,画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:根据题意可建立如图所示的坐标系:则棋子“炮”的坐标为(2,1),故选:B.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5.北京市为了全民健身,举办“健步走“活动,活动场地位于奥林匹克公园(路线:森林公园→玲珑塔→国家体育场→水立方)如图,体育局的工作人员在奥林匹克公园设计图上标记玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,3),则终点水立方的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,﹣1)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:终点水立方的坐标是(﹣2,﹣3).故选:A.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.6.如图是丁丁画的一张脸的示意图,如果用(1,3)表示靠左边的眼睛,用(3,3)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,2)C.(1,1)D.(3,1)【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:根据题意:用(1,3)表示左眼,用(3,3)表示右眼,可以确定平面直角坐标系中的x轴为从下面数第一行向上为正方向,y轴为从左面数第一列向右为正方向.那么嘴的位置可以表示成(2,1).故选:A.【点评】此题主要考查了坐标确定位置,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)【分析】根据点A、C的位置结合其表示方法,可得出相邻同心圆的半径差为1,结合点B在第四个圆上且在150°射线上,即可表示出点B.【解答】解:∵A(5,30°),C(3,300°),∴B(4,150°).故选:B.【点评】本题考查了坐标确定位置,根据点A、C的坐标找出点B的坐标是解题的关键.8.小刚从学校出发往东走500m是一家书店,继续往东走1000m,再向南走1000m 即可到家,若选书店所在的位置为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,若以点A表示小刚家的位置,则点A的坐标是()A.(1500,﹣1000)B.(1500,1000)C.(1000,﹣1000)D.(﹣1000,1000)【分析】由题意可知,小刚从学校出发往东走1500m,再向南走1000m即可到家,选书店所在的位置为原点建立坐标系,即可小刚家的坐标.【解答】解:选书店所在的位置为原点,分别以正东、正北方向为x,y轴正方向建立平面直角坐标系,所以书店的坐标是(0,0),小刚家的坐标是(1000,﹣1000),故选:C.【点评】主要考查了直角坐标系的建立和运用,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.9.如图,表示甲、乙、丙三人在排练厅所站的3块地砖.若甲、乙所站的地砖分别记为(2,2),(4,3),则丙所站的地砖记为()A.(5,6)B.(6,5)C.(7,6)D.(7,5)【分析】直接利用甲、乙所站的地砖分别记为(2,2),(4,3),即可得出最后一个位置的坐标.【解答】解:∵甲、乙所站的地砖分别记为(2,2),(4,3),∴丙所站的地砖记为:(7,5).故选:D.【点评】此题主要考查了坐标确定位置,正确应用已知点位置是解题关键.10.如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)【分析】直接利用“将”位于点(1,﹣1),得出原点位置进而得出答案.【解答】解:如图所示:“马”位于点(4,2).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.11.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,﹣1),则表示“天安门”的点的坐标为()A.(0,0)B.(﹣1,0)C.(1,0)D.(1,1)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:“天安门”的点的坐标为:(1,0).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(0,2).故选:B.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.13.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.14.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为()A.(0,3)B.(3,2)C.(2,3)D.(3,0)【分析】根据A点坐标,建立坐标系,可得C点坐标.【解答】解:点C的位置可表示为(3,2),故选:B.【点评】此题主要考查了坐标确定位置,关键是正确建立坐标系.15.如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【分析】直接利用已知点坐标得出原点位置,进而得出答案.【解答】解:如图所示:兵”位于点为:(﹣3,1).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.16.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【分析】根据点的坐标的定义即可得.【解答】解:根据题意知小李所对应的坐标是(7,4),故选:C.【点评】本题主要考查坐标确定位置,解题的关键是掌握点的坐标的概念.17.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)【分析】根据题意画出坐标系,进而确定公园的坐标.【解答】解:如图所示:公园的坐标是:(﹣100,﹣250).故选:C.【点评】此题主要考查了坐标确定位置,正确理解题意是解题关键.18.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.19.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用有序数对(0,﹣1)表示,黑棋②的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对()表示.A.(﹣2,4)B.(2,﹣4)C.(4,﹣2)D.(﹣4,2)【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋③的坐标即可.【解答】解:建立平面直角坐标系如图,白棋③的坐标为(﹣4,2).故选D.【点评】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.20.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A 的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1B.点O2C.点O3D.点O4【分析】根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),进而得出观测点位置.【解答】解:如图所示:连接BC,并延长,即可得出,观测点的位置应在点O1.故选:A.【点评】此题主要考查了坐标确定位置,正确利用已知点得出观测点是解题关键.21.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1),故选:A.【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.22.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)【分析】以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.【解答】解:建立平面直角坐标系如图所示,将(1,6).故选C.【点评】本题考查了坐标确定位置,读懂题目信息,准确确定出坐标原点是解题的关键.23.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D【分析】根据点在平面直角坐标系中的确定方法解答即可.【解答】解:∵点M的位置用(﹣40,﹣30)表示,∴(﹣10,20)表示的位置是点A.故选:A.【点评】本题考查了坐标确定位置,主要利用了平面直角坐标系中点的位置的确定方法,是基础题.24.从学校向东走600米,再向南走500米到小伟家;从学校向南走500米,再向西走300米到小亮家,则下列结论正确的是()A.小亮家在小伟家的正东600米处B.小亮家在小伟家的正南500米处C.小亮家在小伟家的正西900米处D.小亮家在小伟家的正北600米处【分析】根据题意,以学校为“观测点”画出路线图,再据具体的路线长度,即可得到问题的答案.【解答】解:如图:小亮家在小伟家的正西600+300=900米处.故选:C.【点评】此题考查根据方向和距离确定位置,画出线路图是解决问题的关键.25.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)【分析】根据已知两点坐标建立坐标系,然后确定其它点的坐标.【解答】解:用(0,0)表示A点,(0,4)表示B点,则以点A为坐标原点,AB所在直线为y轴,向上为正方向,x轴是过点A的水平直线,向右为正方向.所以点C的坐标为(3,2)故选:C.【点评】考查类比点的坐标及学生解决实际问题和阅读理解的能力.解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.解题的关键是确定原点及x,y轴的位置和方向.二.填空题(共14小题)26.小聪出校门向东走100米,再向北走120米到达阳光文具店,若以学校校门所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向,1个单位长度代表1米建立平面直角坐标系,则阳光文具店的坐标是(100,120).【分析】根据描述得出阳光文具店在所建立直角坐标系的第一象限,再结合距离可得其坐标.【解答】解:由题意知阳光文具店在所建立直角坐标系的第一象限,其坐标为(100,120),故答案为:(100,120).【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应,记住平面内特殊位置的点的坐标特征.27.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,已知所在位置的坐标为(﹣。
青岛版数学八年级第一学期中测试题及答案(三)
青岛版数学八年级第一学期中测试题(三)(时间:120分钟分值:100分)一、选择题(共10小题,每小题3分,满分30分)1.(3分)图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.(3分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS3.(3分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS4.(3分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处5.(3分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处6.(3分)等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线7.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的8.(3分)当a=﹣1时,分式()A.等于0B.等于1C.等于﹣1D.无意义9.(3分)已知,则的值等于()A.6B.﹣6C.D.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=二、填空题(共6小题,每小题4分,满分16分)11.(3分)等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是.12.(3分)小明在穿衣镜里看到身后墙上电子钟显示,则此时实际时刻为.13.(3分)已知=,则的值为.14.(3分)如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是.15.(3分)分式,,﹣的最简公分母是.16.(3分)已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为.三、解答题(共7小题,满分54分)17.(6分)计算:.18.(8分)计算:()•.19.(6分)先化简,再求值:()+,其中x=6.20.(6分)解方程:.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?22.(10分)如图,点B、C、E、F在同一直线上,AB∥DE,∠A=∠D,BF=CE求证:AB=DE.23.(10分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.参考答案一、选择题(共10小题,每小题3分,满分30分)1.(4分)图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ【考点】KB:全等三角形的判定.【分析】仔细观察图形,验证各选项给出的条件是否符合全等的判定方法,符合的是全等的不符合的则不全等,题目中D选项的两个三角形符合SAS,是全等的三角形,其它的都不能得到三角形全等.【解答】解:A选项中条件不满足SAS,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足SAS,不能判定两三角形全等;D选项中条件满足SAS,能判定两三角形全等.故选:D.2.(4分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS【考点】KB:全等三角形的判定.【分析】由于∠B=∠D,∠1=∠2,再加上公共边,则可根据“AAS”判断△ABC≌△ADC.【解答】解:在△ABC和△ADC中,,∴△ABC≌△ADC(AAS).故选:A.3.(4分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS【考点】KB:全等三角形的判定.【专题】11:计算题.【分析】由于BE=ED,AE=EC,再加上对顶角相等,则可根据“SAS”判断△ABE≌△CDE.【解答】解:在△ABE和△CDE中,,∴△ABE≌△CDE(SAS).故选:B.4.(4分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选:C.5.(4分)如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处【考点】KF:角平分线的性质.【专题】12:应用题.【分析】根据角平分线上的点到角的两边的距离相等,分点P在三条公路相交的三角形地带和地带之外作出图形即可得解.【解答】解:如图,可选择的地址有四处.故选D.【6.(4分)等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线【考点】KH:等腰三角形的性质;P2:轴对称的性质.【分析】本题除了要根据等腰三角形的性质进行求解外,还要注意图形的对称轴是直线,而不是线段.【解答】解:根据等腰三角形的性质可知:顶角平分线、底边的中、底边的高所在的直线是等腰三角形的对称轴.故选:D.7.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.【解答】解:将分式中的x,y的值变为原来的100倍,则此分式的值100倍,故选:B.8.(3分)当a=﹣1时,分式()A.等于0B.等于1C.等于﹣1D.无意义【考点】64:分式的值.【专题】11:计算题.【分析】根据分式的分母不为0求出x不能为1,且不能为﹣1,故a=﹣1代入分式无意义.【解答】解:根据题意得:a2﹣1≠0,即a≠1且a≠﹣1,则a=﹣1时,分式无意义.故选:D.9.(3分)已知,则的值等于()A.6B.﹣6C.D.【考点】65:分式的基本性质;6B:分式的加减法.【专题】11:计算题.【分析】由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.【解答】解:已知可以得到a﹣b=﹣4ab,则==6.故选:A.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意可得等量关系:180吨÷实际每天生产化肥(x+3)吨=120吨÷原计划每天生产化肥x吨,根据等量关系列出方程即可.【解答】解:原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意得:=,故选:A.【点评】此题主要由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题(共6小题,每小题4分,满分16分)11.(3分)等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是90°或36°.【考点】KH:等腰三角形的性质.【分析】根据已知条件,根据比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.【解答】解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故答案为:36°或90°.12.(3分)小明在穿衣镜里看到身后墙上电子钟显示,则此时实际时刻为15:51.【考点】P4:镜面对称.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻与15:51成轴对称,所以此时实际时刻为15:51.故答案为:15:51.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.13.(3分)已知=,则的值为﹣.【考点】S1:比例的性质.【分析】根据两内项之积等于两外项之积可得x=3y,然后代入比例式进行计算即可得解.【解答】解:∵=,∴x=3y,∴==﹣.故答案为:﹣.14.(3分)如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是(﹣2,0).【考点】D5:坐标与图形性质;KA:全等三角形的性质.【分析】根据全等三角形对应边相等可得OD=OB,然后写出点D的坐标即可.【解答】解:∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(﹣2,0).故答案为:(﹣2,0).15.(3分)分式,,﹣的最简公分母是36a4b2.【考点】69:最简公分母.【分析】找出系数的最小公倍数,字母的最高次幂,即可得出答案.【解答】解:分式,,﹣的最简公分母是36a4b2,故答案为36a4b2.【点评】本题考查了最简公分母,掌握因式分解是解题的关键.16.(3分)已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为1.【考点】S2:比例线段.【分析】根据四条线段成比例,列出比例式,再把a=4,b=2,c=2,代入计算即可.【解答】解:∵线段a、b、c、d是成比例线段,∴=,∵a=4,b=2,c=2,∴=,∴d=1.故答案为:1.三、解答题(共7小题,满分54分)17.(6分)计算:.【考点】6B:分式的加减法.【分析】先通分,然后计算分式的加法.【解答】解:原式=﹣===.18.(8分)计算:()•.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式括号中先计算除法运算,再计算减法运算,约分即可得到结果.【解答】解:原式=(﹣•)•=•=1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:()+,其中x=6.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=6代入原式进行计算即可.【解答】解:原式=[﹣]•=•=x﹣4.当x=6时,原式=4﹣6=﹣2.20.(6分)解方程:.【考点】B3:解分式方程.【专题】11:计算题.【分析】首先两边同乘2x﹣5去掉分母,然后解整式方程即可求解.【解答】解:两边同乘2x﹣5得x﹣5=2x﹣5,∴x=0,检验当x=0时,2x﹣5≠0,∴原方程的根为x=0.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?【考点】8A:一元一次方程的应用.【分析】设原来全厂共有4x人.依据“女工与全厂人数的比是2:3,”列出方程,并解答.【解答】解:设原来全厂共有4x人.依题意得(3x+60):(4x+60×2)=2:3,9x+180=8x+240,9x﹣8x=240﹣180,4x=240.答:原来全厂共有240人.22.(10分如图,点B、C、E、F在同一直线上,AB∥DE,∠A=∠D,BF=CE求证:AB=DE.【考点】KD:全等三角形的判定与性质.【专题】14:证明题.【分析】由AB∥DE,BF=CE,易得∠B=∠E,BC=EF,然后利用SAS即可判定△ABC ≌△DEF,继而证得AB=DE.【解答】证明:∵AB∥DE,BF=CE,∴∠B=∠E,BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.23.(10分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.【考点】KD:全等三角形的判定与性质;KL:等边三角形的判定.【专题】2B:探究型.【分析】先证△ABP≌△ACQ得AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠P AC=60°,∴∠P AQ=∠CAQ+∠P AC=60°,∴△APQ是等边三角形.。
八年级上册数学 全册全套试卷测试卷(含答案解析)
2.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
【答案】105°.
【解析】
【分析】
先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
如图,∠ECD=45°,∠BDC=60°,
【详解】
设这个三角形的第三边为x.
根据三角形的三边关系定理,得:9-4<x<9+4,
解得5<x<13.
故选A.
【点睛】
本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.
11.若一个凸多边形的内角和为720°,则这个多边形的边数为
A.4B.5C.6D.7
【答案】C
八年级上册数学 全册全套试卷测试卷(含答案解析)
一、八年级数学三角形填空题(难)
1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC= ∠ACD− ∠ABC= ∠A=21°.
∴∠COB=∠ECD+∠BDC=45°+60°=105°.
故答案为:105°.
【点睛】
此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.
3.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.
【答案】160.
【解析】
【详解】
解:根据三角形的三边关系可得:8-3<a<8+3,
浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)
第三章:一元一次不等式单元测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列说法中错误的是( )A. 如果b a <,那么c b c a -<-B. 如果a >b ,c >0,那么ac >bcC. 如果m <n ,p <0,那么p n p m >D. 如果x >y ,z <0,那么xz >yz 2.关于x 的不等式组⎩⎨⎧>+-<012x a x 只有4个整数解,则a 的取值范围是( )A. 5≤a ≤6B. 5≤a <6C. 5<a ≤6D. 5<a <63.不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532所有整数解的和是( )A .﹣1B .0C .1D .2 4.方程组⎩⎨⎧=+=+1553y x m y x 有正数解,则m 的取值范围( ) A .3<m <5B .m >3C .m <5D .m <3或m >5 5.已知关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,则a 的取值范围是( ) A .910-≥a B .910->a C .0910<≤-a D .0910<<-a 6.如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对 (a 、b )共有( )A. 17个 B .64个 C .72个 D .81个7.不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 的解集在数轴上表示正确的是( )8.若不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >29.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在 准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只A .55B .72C .83D .8910.若a 使关于x 的不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 有两个整数解,且使关于x 的方程2132-=+x a x 有负 数解,则符合题意的整数a 的个数有( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式2x +3<-1的解集为________12.不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 的解为___________________ 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 ________ 14.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的不等式组为___________________________15.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有5个,则a 的取值范围是_____________ 16.若关于x 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解,且关于x 的方程()()2322+--=x x kx 有非负整数解,则符合条件的所有整数k 的和为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解不等式(组)(1)1643312--≤-x x (2)()⎪⎩⎪⎨⎧->++≤--1223134122x x x x x18.(本题8分)若式子645+x 的值不小于3187x --的值,求满足条件的x 的最小整数值.19(本题8分)若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0,c 是不等式组 ⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 的最大整数解,求△ABC 的周长.20(本题10分).现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试定出用车厢节数x 表示总费用y 的公式.(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?21(本题10分)已知关于y x ,的方程组⎩⎨⎧+=---=+137m y x m y x 的解满足0≤x ,0<y . (1)用含m 的代数式分别表示x 和y ;(2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式122+<+m x mx 的解为1>x ?22(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客 车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23(本题12分).(1)若三角形的三边长分别是2、x 、8,且x 是不等式32122x x -->+的正整数解,试求第三边x 的长. (2)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为61<<-x ,求b a ,的值. (3)已知不等式689312+≤-x x ,该不等式的所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵b a <,∴c b c a -<-,故A 选项正确;∵a >b ,c >0,∴ac >bc ,故B 选项正确;∵m <n ,p <0,∴pn p m >,故C 选项正确; ∵x >y ,z <0,∴yz xz <,故D 选项错误,故选择D2.答案:C解析:解不等式组⎩⎨⎧>+-<012x a x 得:21-<<-a x∵只有4个整数解,4223≤-<,∴65≤<a ,故选择C3.答案:B 解析:解不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532得:11≤≤-x ,∴所有整数解是:1-,0,1,∴和为0,故选择B4.答案:A解析:解这个关于x ,y 的方程组得⎪⎪⎩⎪⎪⎨⎧-=-=23152155my m x ∴得到不等式组⎪⎪⎩⎪⎪⎨⎧>->-0231502155m m 解得3<m <5, 故选:A .5.答案:C解析:关于x 的不等式12572->-a a x ,解得25419->a x , ∵关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,故a <0, ∴不等式7<ax 的解集是x >7a . ∴254197-≥a a , 解得,910-≥a , ∵a <0, ∴0910<≤-a ,故选择C6.答案:C解析:由原不等式组可得:89b x a <≤. 在数轴上画出这个不等式组解集的可能区间,如下图根据数轴可得:190≤<a ,483<≤b . 由90≤<a ,∴a=1,2,3…9,共9个.由3224<≤b ,∴b=24,.25,26,27,…,31.共8个.∴有序数对(a 、b )共有9×8=72(个)故选:C .7.答案:C 解析:解不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 得:32≤<-x ,故选择C8.答案:A解析:解不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231得:m x 48<<,∵不等式组无解,∴4m ≤8,解得m ≤2,故选:A .9.答案:C解析:设该村共有x 户,则母羊共有(5x +17)只,由题意知,()()⎩⎨⎧<--+>--+31175017175x x x x , 解得:221<x <12, ∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选:C .10.答案:B 解析:解方程2132-=+x a x 得:12--=a x , ∵方程2132-=+x a x 有负数解,21->a 解不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 得:⎪⎪⎩⎪⎪⎨⎧-≥-<232321x a x ∵不等式组()⎪⎩⎪⎨⎧≥++>+233213x a x x 有两个整数解,∴123210≤-<a ∴53≤<a ,∴⎪⎩⎪⎨⎧≤<->5321a a ,∴满足条件的a 值为4,5两个,故选择B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:2-<x解析:解不等式2x +3<-1得:2-<x12.答案:292<≤x 解析:解不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 得:292<≤x13.答案:2-解析 :解不等式组⎩⎨⎧+<-≥-122b a x b a x 得:212++<≤+b a x b a ∵ 该不等式组的解集为 :3≤x<5 , ∴⎪⎩⎪⎨⎧=++=+52123b a b a , 解得 :3-=a ,6=b ,∴236-=-=a b 故答案为 :-2.14.答案:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 解析:(x ﹣1)位同学植树棵树为9×(x ﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵, ∴可列方程组为:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 15.答案:﹣4≤a <﹣3解析:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.16.答案:9- 解析:解不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 得:1+4k ≤x ≤6+5k , ∵不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解∴5-≥k解关于x 的方程()()2322+--=x x kx 得,16+-=k x , ∵关于x 的方程()()2322+--=x x kx 有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(1)解析:去分母得:()643122--≤-x x去括号得:10324-≤-x x ,移项合并得:8-≤x(2)()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②解不等式①得:54≥x 解不等式②得:3<x ∴不等式组的解为:354<≤x18.解析:∵式子645+x 的值不小于3187x --的值, ∴3187645x x --≥+,解得:41-≥x ∴满足条件的x 的最小整数值为019.解析:∵a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0, ∴a=3,b=4, 解不等式⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 得:2925<<x , 最大整数解为4,故△ABC 的周长=3+4+4=11.即△ABC 的周长为1120.解析:(1)6000元=0.6万元,8000元=0.8万元,设用A 型车厢x 节,则用B 型车厢(40−x)节,总运费为y 万元,依题意,得y=0.6x+0.8(40−x)=−0.2x+32(2)解:依题意,得()()⎩⎨⎧≥-+≥-+8804035151240402535x x x x , 解得:⎩⎨⎧≤≥2624x x ,∴2624≤≤x ,∵x 取整数,故A 型车厢可用24节或25节或26节,相应有三种装车方案: ①24节A 型车厢和16节B 型车厢;②25节A 型车厢和15节B 型车厢; ③26节A 型车厢和14节B 型车厢.21.解析:(1)解方程组方程组⎩⎨⎧+=---=+137m y x m y x 得⎩⎨⎧--=-=423m y m x (2)∵0≤x , 0<y∴⎩⎨⎧<--≤-04203m m 解得:32≤<-m(3)不等式 122+<+m x mx∵原不等式的解集是1>x∴012<+m∴ 21-<m 又∵32≤<-m ,∴212-≤<-m ∵ m 为整数∴1-=m22.解析:(1)设辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,⎩⎨⎧=+=+105218032y x y x ,解得:⎩⎨⎧==3045y x , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:()⎩⎨⎧<≥-+624063045x x x 解得:64<≤x ,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.23.解析:(1)原不等式可化为3(x+2)>-2(1-2x ),解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x=7(2)不等式组可化为⎪⎩⎪⎨⎧+->-<.2532b a x b a x , 因为它的解集为61<<-x , 所以⎪⎩⎪⎨⎧-=+-=-,,125362b a b a 解得⎩⎨⎧==.24b a , (3)解不等式689312+≤-x x 得:x ≥-2; ∵x ≥-2,∴不等式的所有负整数解为-2,-1,y =-2+(-1)=-3,把y =-3代入2y -3a =6得-6-3a =6,解得a =-4.1、人生如逆旅,我亦是行人。
鲁教版(五四制)八年级数学上册第三章综合测试卷含答案
鲁教版(五四制)八年级数学上册第三章综合测试卷一、选择题(每题3分,共36分)1.某班5名同学的身高(单位:cm)分别为170,169,172,173,171,则这5名同学身高的平均数是()A.170 cm B.171 cmC.171.5 cm D.172 cm2.【2022·沈阳】调查某少年足球队全体队员的年龄,得到数据结果如下表:则该足球队队员年龄的众数是()A.15岁B.14岁C.13岁D.7人3.【2022·株洲】某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67,63,69,55,65,则该组数据的中位数为()A.63 B.65 C.66 D.694.若一组数据2,3,5,x的极差为6,则x的值是() A.8 B.9 C.11 D.8或-15.【母题:教材P60习题T3(2)】为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果做了调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.算术平均数C.加权平均数D.众数6.【2022·黄石】我市某校开展共创文明班,一起向未来的古诗文朗诵比赛活动,有10名同学参加了初赛,按初赛成绩由高到低取前5名进入决赛.如果小王同学知道了自己的成绩后,要判断能否进入决赛,他需要知道这10名同学成绩的()A.平均数B.众数C.中位数D.方差7.【母题:教材P52随堂练习T2】某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如下表.如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁8.【2022·贵阳】小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数据可能是()A.5,10 B.5,9 C.6,8 D.7,89.小明想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5,记这组新数据的方差为s12,则()A.s02>s12 B.s02=s12C.s02<s12D.无法确定10.【2022·南充】为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差11.数据3,1,x,4,5,2的众数与平均数相等,则x的值是() A.2 B.3 C.4 D.512.【2022·本溪】甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是()A.甲的射击成绩比乙的射击成绩更稳定B.甲射击成绩的众数大于乙射击成绩的众数C.甲射击成绩的平均数大于乙射击成绩的平均数D.甲射击成绩的中位数大于乙射击成绩的中位数二、填空题(每题3分,共18分)13.【2022·丹东】某书店与一所中学建立帮扶关系,连续6个月向该中学赠送书籍的数量(单位:本)分别为200,300,400,200,500,550,则这组数据的中位数是________本.14.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为________分.15. 某同学使用计算器求20个数据的平均数时,错将其中一个数据201输入为21,那么由此求出的这组数据的平均数与实际平均数的差是________.16.【2023·淄博桓台县期中】已知一组数据5,2,x,6,4,它们的平均数是4,则这组数据的标准差为________.17.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为________.18.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量如下表,若甲、乙两个样本数据的方差分别为s甲2,s乙2,则s甲2______s乙2.(填“>”“=”或“<”)三、解答题(19~21题每题8分,其余每题14分,共66分) 19.一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:x=85+80+86+824=83.25(分),小明的算法正确吗?若不正确,请写出正确的计算过程.20.某单位欲从内部招聘管理人员一名,现对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩(单位:分)如下表所示:测试项目甲乙丙笔试75 80 90面试93 70 68根据录用程序,该单位组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每名职工只能推荐一人)如图,每得一票记1分.现根据实际需要,单位将笔试、面试、民主评议三项测试成绩按433的比例确定个人总成绩,那么谁将被录用?21.下表是某校八年级(1)班抽查20名学生某次数学测验的成绩统计表:成绩/分60 70 80 90 100人数/人 1 5 x y 2(1)若这20名学生成绩的平均分是82分,求x,y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数是a,中位数是b,求a,b的值.22.“节省一分零钱,献出一份爱心,温暖世间真情”,某校倡议学生捐出一部分零花钱帮助山区儿童学习,倡议前为了解情况,校团委随机调查了本校部分学生一周的零花钱金额,并绘制了如图所示的统计图.请根据图中信息,回答下列问题:(1)所调查的学生一周的零花钱金额的众数是________元,中位数是________元;(2)求所调查的学生一周的零花钱金额的平均数;(3)若全校1 200名学生每人捐出一周零花钱金额的50%,请估计该校学生共捐款多少元.23.为了提高学生对数学的学习的兴趣,某校举行了主题为“生活中的数学”的知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分,为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩.已知抽查得到的八年级的数据如下:80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:成绩等级分数(单位:分) 学生数D等60<x≤70 5九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)(1)根据题目信息填空:a=______,c=______,m=______;(2)八年级的小宇和九年级的小乐的分数都为80分,请判断小宇、小乐在各自年级的排名哪位更靠前?请简述你的理由;(3)若九年级共有600人参加参赛,请估计九年级80分以上的人数.24.甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:平均成绩/环中位数/环众数/环 方差/环2 甲 a 7 7 1.2 乙7b8c根据以上信息,整理分析数据如下:(方差公式s 2=1n [(x 1-)2+(x 2-)2+…+(x n -)2])(1)填空:a =________;b =________;c =________; (2)从平均数和中位数的角度来比较,成绩较好的是______(填“甲”或“乙”);(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.答案一、1.B 2.C 3.B4.D【点拨】当x是最大数时,x-2=6,解得x=8;当x是最小数时,5-x=6,解得x=-1.综上所述:x的值是8或-1.5.D6.C【点拨】∵一共有10名同学参加比赛,取前5名进入决赛,∴成绩的中位数应为第5名、第6名同学成绩的平均数,如果小王的成绩大于中位数,则可以晋级,反之则不能晋级,故只需要知道10名同学成绩的中位数即可.7.B【点拨】甲的总成绩=90×60%+90×40%=90(分),乙的总成绩=95×60%+90×40%=93(分),丙的总成绩=90×60%+95×40%=92(分),丁的总成绩=90×60%+85×40%=88(分).∵93>92>90>88,∴应推荐乙.8.C【点拨】数据5,5,6,7,8,9,10的众数为5,中位数为7,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则5不能去掉,7不能去掉,所以去掉可能是6,8.9.B【点拨】∵新数据是将这组数据中的每一个数都减去90所得,∴新数据与原数据的波动幅度不变,∴s02=s12.10.B【点拨】计算平均数、方差需要全部数据,故A,D不符合题意;∵50-5-11-16=18>16,∴无法确定众数分布在哪一组,故C不符合题意;从统计图可得前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26个的平均数,∴已知的数据中中位数确定,且不受后面数据的影响.11.B【点拨】根据题意,得数据3,1,x,4,5,2的平均数为(3+1+x+4+5+2)÷6=(15+x)÷6=52+x6.由题意易知数据3,1,x,4,5,2的众数为x.∵数据3,1,x,4,5,2的众数与平均数相等,∴52+x6=x,∴x=3.12.A【点拨】由图可得甲射击10次的成绩分别为5,6,6,7,5,6,6,6,7,6;乙射击10次的成绩分别为9,5,3,6,9,10,4,7,8,9.甲的成绩起伏比乙的成绩起伏小,故A正确;甲的众数是6,乙的众数是9,故B错误;甲的平均数为110×(5+6+6+7+5+6+6+6+7+6)=6,乙的平均数为110×(9+5+3+6+9+10+4+7+8+9)=7,故C错误;甲的中位数是6,乙的中位数是7.5,故D 错误.二、13.350 14.8415.-9 【点拨】求20个数据的平均数时,错将其中的一个数据201输入成21,即少加了180;则由此求出的平均数与实际平均数的差是-18020=-9. 16. 217.4.4 【点拨】根据题意可知,这5个数是1,2,3,8,8,∴平均数为1+2+3+8+85=4.4. 18.< 【点拨】∵x 甲=70+71×4+726=71(g), x 乙=70×3+71×2+736=4256(g), ∴s 甲2=16×[(70-71)2+(71-71)2×4+(72-71)2]=13,s 乙2=16×[⎝ ⎛⎭⎪⎫70-42562×3+⎝ ⎛⎭⎪⎫71-42562×2+⎝ ⎛⎭⎪⎫73-42562]=4136.∵13<4136,∴s 甲2<s 乙2.三、19.解:小明的算法不正确.该校八年级数学测试的平均成绩为85×48+80×52+86×50+82×5048+52+50+50=83.2(分).【点拨】数据总和÷数据总个数=平均数.20.解:民主评议测试成绩:甲:200×25%=50(分); 乙:200×40%=80(分); 丙:200×35%=70(分). 总成绩: 甲:75×4+93×3+50×34+3+3=72.9(分); 乙:80×4+70×3+80×34+3+3=77(分); 丙:90×4+68×3+70×34+3+3=77.4(分). ∵77.4>77>72.9, ∴丙将被录用. 21.解:(1)依题意,得 ⎩⎪⎨⎪⎧1+5+x +y +2=20,60×1+70×5+80x +90y +100×2=82×20, 整理,得⎩⎪⎨⎪⎧x +y =12,8x +9y =103, 解得⎩⎪⎨⎪⎧x =5,y =7. (2)由(1)知a =90分,b =80分. 答:众数是90分,中位数是80分. 22.解:(1)30;30 (2)所调查的学生人数为6+13+20+8+3=50,150×(10×6+20×13+30×20+50×8+100×3)=32.4(元).答:所调查的学生一周的零花钱金额的平均数是32.4元.(3)32.4×50%×1 200=19 440(元).答:估计该校学生共捐款19 440元.23.解:(1)10;77.5;25(2)八年级的小宇的排名更靠前.理由如下:因为八年级的中位数是77.5,九年级的中位数是82.5,所以八年级的小宇和九年级的小乐的分数都为80分,小宇的排名更靠前.(3)600×50%=300(人).故估计九年级80分以上的人数是300人.24.解:(1)7; 7.5;4.2(2)乙(3)选乙.理由:甲、乙两名队员的平均成绩一样,但乙成绩的中位数比甲高,众数比甲高,说明乙的高分比甲多,所以选乙更合适(答案不唯一).。
八年级上册数学 全册全套试卷测试卷(含答案解析)
八年级上册数学 全册全套试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点 (2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI.【答案】(1)证明见解析;(2)22(0,)7F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作EG ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.试题解析:(1)过E 点作EG⊥x 轴于G ,∵B (0,-4),E (-6,4),∴OB=EG=4,在△AEG 和△ABO 中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥A E交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD,∴可证△AEG≌△DAK,∴D(1,3),设F(0,y),∵S梯形EGKD=S梯形EGOF+S梯形FOKD,∴()()() 111347463222y y +⨯=+⨯++∴227y=∴220,7F⎛⎫⎪⎝⎭(3)连接MI、NI∵I 为△MON 内角平分线交点,∴NI 平分∠MNO,MI 平分∠OMN,在△MIN 和△MIA 中,∵MN MA NMI AMI MI MI =⎧⎪∠=∠⎨⎪=⎩∴△MIN ≌△MIA (SAS ),∴∠MIN=∠MIA ,同理可得∠MIN=∠NIB,∵NI 平分∠MNO,MI 平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI ,作IS⊥OM 于S, ∵IH⊥ON,OI 平分∠MON,∴IH=IS=OH=OS ,∠HIS=90°,∠HIP+∠QIS=45°,在SM 上截取SC=HP ,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC ,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP ,∴C △POQ =OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.2.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(包含答案解析)(3)
一、选择题1.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .52.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 3.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA4.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等5.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A.∠F=∠BCF B.AE=7cm C.EF平分AB D.AB⊥CF6.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④7.如图所示,已知∠A=∠C,∠AFD=∠CEB,那么给出的条件不能得到ADF CBE△≌△是()A.∠B=∠D B.EB=DF C.AD=BC D.AE=CF,如果添加一个条件还不能判定8.如图,AC与DB相交于E,且BE CE△≌DCE,则添加的这个条件是().ABEA .AC DB =B .A D ∠=∠C .B C ∠=∠D .AB DC = 9.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .410.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF11.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 12.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题13.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.14.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.15.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .16.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________17.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.18.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.19.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.22.如图,已知∠AOC 是直角,∠BOC =46°,OE 平分∠BOC ,OD 平分∠AOB . (1)试求∠DOE 的度数;(2)当∠BOC =α(0°≤α≤90°),请问∠DOE 的大小是否变化?并说明理由.23.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B .求证:△ABC ≌△CDE .24.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.25.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数. 26.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,则CM 即为CF EF +的最小值,再根据三角形的面积公式求出CM 的长,即为CF EF +的最小值.【详解】解:过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,BD 平分ABC ∠,'MF AB ⊥于点M ,''F E BC ⊥于'E ,'''MF F E ∴=,'''''CM CF MF CF E F ∴=+=+的最小值.三角形ABC 的面积为10,4AB =, ∴14102CM ⨯⋅=,21054CM ⨯∴==. 即CF EF +的最小值为5,故选:D .【点睛】本题考查的是轴对称-最短路线问题,根据题意作出辅助线是解题的关键.2.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.C解析:C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.4.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.5.C解析:C【分析】证明EF ∥BC 即可得到A 正确,证明()Rt ACB Rt FEC HL ≅,得AC =EF =12cm ,CE =BC =5cm ,得到B 正确,根据∠A +∠ACD =∠F +∠ACD =90°即可证明D 正确.【详解】解:∵EF ⊥AC ,∠ACB =90°,∴∠AEF =∠ACB =90°,∴EF ∥BC ,∴∠F =∠BCF ,故A 正确;在Rt ACB 和Rt FEC 中,CB EC AB FC =⎧⎨=⎩, ∴()Rt ACB Rt FEC HL ≅,∴AC =EF =12cm ,∵CE =BC =5cm ,∴AE =AC ﹣CE =7cm .故B 正确;如图,记AB 与EF 交于点G ,如果AE =CE ,∵EF ∥BC ,∴EG 是△ABC 的中位线,∴EF 平分AB ,而AE 与CE 不一定相等,∴不能证明EF 平分AB ,故C 错误;∵Rt ACB Rt FEC ≅,∴∠A =∠F ,∴∠A +∠ACD =∠F +∠ACD =90°,∴∠ADC =90°,∴AB ⊥CF ,故D 正确.∴结论不正确的是C .故选:C .【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理. 6.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;7.A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS、SAS、AAS、ASA;【详解】A∵∠A=∠C,∠AFD=∠CEB,∠B=∠D,三个角相等,不能判定三角形全等,该选项不符合题意;B∵∠A=∠C,∠AFD=∠CEB,EB=DF,符合AAS的判定,该选项符合题意;C∵∠A=∠C,∠AFD=∠CEB,AD=BC,符合AAS的判定,该选项符合题意;D∵∠A=∠C,∠AFD=∠CEB,AE=CF,∴AF=CE,符合ASA的判定,该选项符合题意;故选:A.【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;8.D解析:D【分析】根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE,∠AEB=∠DEC,∴只需要添加对顶角的邻边,即AE=DE(由AC=BD也可以得到),或任意一组对应角,即∠A=∠D,∠B=∠C,∴选项A、B、C可以判定,选项D不能判定,故选:D.【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.9.B解析:B【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得1 2×2×AC+12×2×4=7,于是可求出AC的值.【详解】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴12×2×AC+12×2×4=7,∴AC=3.故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.10.A解析:A【分析】欲使△AED≌△BFC,已知AC=DB,AE∥BF,可证明全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可;【详解】∵ AC=BD,∴ AD=CE,∵ AE∥BF,∴∠A=∠E,A、如添加ED=CF,不能证明△AED≌△BFC,故该选项符合题意;B、如添加AE=BF,根据SAS,能证明△AED≌△BFC,故该选项不符合题意;C、如添加∠E=∠F,利用AAS即可证明△AED≌△BFC,故该选项不符合题意;D、如添加ED∥CF,得出∠EDC=∠FCE,利用ASA即可证明△AED≌△BFC,故该选项不符合题意;故选:A.【点睛】本题考查了全等三角形的判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理;11.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.12.B解析:B【分析】在线段AC上作AF=AB,证明△AEF≌△AEB可得∠AFE=∠B,∠AEF=∠AEB,再证明△CEF≌△CED可得CD=CF,即可求得四边形ABDC的周长.【详解】解:在线段AC上作AF=AB,∵AE是BAC∠的平分线,∴∠CAE=∠BAE,又∵AE=AE,∴△AEF≌△AEB(SAS),∴∠AFE=∠B,∠AEF=∠AEB,∵AB∥CD,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE,∵AE CE ⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED ,在△CEF 和△CED 中∵D CFE CEF CED CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEF ≌△CED (AAS )∴CE=CF ,∴四边形ABDC 的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b +,故选:B .【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键.二、填空题13.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.14.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理 解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.15.10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CDAC=AE加上BC=AC三角形的周长为BE+BD+DE=BE+CB=AE+BE于是周长可得【详解】解:∵AD平分∠BAC交B解析:10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE=CD,AC=AE,加上BC=AC,三角形的周长为BE+BD+DE=BE+CB=AE+BE,于是周长可得.【详解】解:∵AD平分∠BAC交BC于点D,DE⊥AB,∠C=90°,∴CD=DE,∵AD=AD,∴ACD AED,∴AC=AE,又∵AC=BC,∴△DEB的周长=DB+DE+BE=AC+BE=AB=10.故填:10.【点睛】本题主要考查角平分线的性质以及全等三角形的证明,解题的关键是理解并掌握角平分线的性质以及全等三角形的证明方法.16.2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.17.6【分析】过点P作PH⊥AMPQ⊥AN连接AP根据角平分线上的点到角两边的距离相等可得PH=PE=PQ再根据三角形的面积求出BC然后求出AC+AB再根据S△ABC=S△ACP+S△ABP-S△BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S △ABC=12×3×9-7.5=6 cm 2 【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S △ABC 的面积的表示.18.【分析】首先由角平分线的性质可知DF=DE=4然后由S △ABC=S △ABD+S △ACD 及三角形的面积公式得出结果【详解】解:∵AD 是∠BAC 的平分线DE ⊥ABDF ⊥AC ∴DF=DE=4又∵S △ABC解析:【分析】首先由角平分线的性质可知DF=DE=4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=4.又∵S △ABC =S △ABD +S △ACD ,AB=8, ∴12×8×4+ 12×AC×4=28, ∴AC=6.故答案是:6.【点睛】本题主要考查了角平分线的性质;利用三角形的面积求线段的长是一种很好的方法,要注意掌握应用.19.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB 进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.20.或【分析】对点P和点Q是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t =; 故答案为:1或72. 【点睛】 本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.(1)45︒;(2)不会变化,理由见解析.【分析】(1)根据题意可知DOE BOD BOE ∠=∠-∠,12BOD AOB ∠=∠,12BOE BOC ∠=∠.即可推出12DOE AOC ∠=∠,即可求出DOE ∠. (2))根据(1)可知DOE ∠的大小与∠BOC 的大小无关,所以DOE ∠的大小不会变化.【详解】(1)由图可知DOE BOD BOE ∠=∠-∠,∵OE 平分∠BOC ,OD 平分∠AOB .∴12BOD AOB ∠=∠,12BOE BOC ∠=∠. ∴1111()2222DOE AOB BOC AOB BOC AOC ∠=∠-∠=∠-∠=∠, ∵∠AOC 是直角,∴90AOC ∠=︒, ∴1452DOE AOC ∠=∠=︒. (2)根据(1)可知DOE ∠的大小与∠BOC 的大小无关, ∴DOE ∠的大小不会变化且大小为12AOC ∠. 【点睛】本题考查角的计算,角平分线的性质.利用角平分线的性质找出图形中角的关系是解答本题的关键.23.见解析.【分析】首先根据AC ∥DE ,利用平行线的性质可得:∠ACB=∠E ,∠ACD=∠D ,再根据∠ACD=∠B 证出∠D=∠B ,再由∠ACB=∠E ,AC=CE 可根据三角形全等的判定定理AAS 证出△ABC ≌△CDE .【详解】证明:∵AC ∥DE ,∴ACD D ∠=∠,BCA E ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠,又∵AC CE =,∴()ABC CDE AAS ≌.【点睛】此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS ,选用哪一种方法,取决于题目中的已知条件.24.添加AB=CD ;证明见解析.【分析】根据线段的和差关系可得BF=CE ,故添加AB=CD 即可利用SAS 证明△ABF ≌△DCE ,根据全等三角形的性质即可得出AF=DE .【详解】可添加AB=CD ,理由如下:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE ,∵AB CB ⊥,DC CB ⊥,∴∠B=∠C=90°,在△ABF 和△DCE 中,AB CD B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE ,∴AF=DE .【点睛】本题考查全等三角形的判断与性质,全等三角形的判定方法有:SSS 、SAS 、AAS 、ASA 、HL 等;注意:AAA 、SSA 不能判定两个三角形全等,当利用SAS 判定两个三角形全等时,角必须是两边的夹角;熟练掌握并灵活运用适当判定方法是解题关键.25.(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=,∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+,∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质, 角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.26.(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=. ∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键.。
2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813
2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、若分式的值为零,则x的值为()A. ±2B. -2C. 2D. 不存在2、如图,在下列条件中,不能判断△ABD≌△BAC的条件是( )(A)∠BAD=∠ABC,∠ABD=∠BAC (B)AD=BC,BD=AC(C)BD=AC,∠BAD=∠ABC (D)∠D=∠C,∠BAD=∠ABC3、20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是().A.B.C.D.4、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.5、三角形的一个外角为36°,则这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形6、下列运算正确的是()A. (a2b2)2=a2b2B. a5b2÷b2=a5C. (3xy2)2=6x2y4D. a3•a2=a67、若a为方程x2+x-5=0的解,则a2+a+1的值为()A. 16B. 12C. 9D. 68、如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有()个.A. 7个B. 8个C. 9个D. 10个评卷人得分二、填空题(共5题,共10分)9、如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为8cm,则平行四边形ABCD的周长为.10、函数[y=kx−b <]的图象如图所示,则关于[x <]的不等式[k(x−3)−b <][>0> 0<]的解集是.11、▱[ABCD <]中,[∠A=50∘ <],则[∠D= <] ______ .12、分解因式:3x2-12= .13、据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用统计图表示收集到的数据.评卷人得分三、判断题(共6题,共12分)14、数轴上任何一点,不表示有理数就表示无理数.(判断对错)15、3m2-6m=m(3m-6).(判断对错)16、-0.01是0.1的平方根.( )17、判断对错:关于中心对称的两个图形全等。
(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)
(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)(一共4套)苏教版八年级下册期中数学考试题+详细答案系列(第3套)一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.44.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%15.已知关于x的方程=3无解,则m的值为______.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为______.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.六、解答题(共5小题,满分46分)21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.22.(10分)(2017春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.参考答案与试题解析一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.4【考点】反比例函数的性质.【分析】根据反比例函数的性质可知“当k<0时,函数图象位于第二、四象限”,结合四个选项即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0.结合4个选项可知k=﹣1.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,结合函数图象所在的象限找出k值的取值范围是关键.4.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒【考点】利用频率估计概率.【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得文具盒.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.5.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%【考点】由实际问题抽象出分式方程.【分析】方程﹣=20中,表示乙单位人均捐款额,(1+20%)x表示甲单位的人数比乙单位的人数多20%,则表示甲单位人均捐款额,所以方程表示的等量关系为:乙单位比甲单位人均多捐20元,由此得出题中用“…”表示的缺失的条件.【解答】解:设乙单位有x人,那么当甲单位的人数比乙单位的人数多20%时,甲单位有(1+20%)x人.如果乙单位比甲单位人均多捐20元,那么可列出﹣=20.故选C.【点评】本题考查了由实际问题抽象出分式方程的逆应用,根据所设未知数以及方程逆推缺少的条件.本题难度适中.二.填空题(共有10小题,每小题2分,共20分)7.计算=2.【考点】二次根式的性质与化简.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.8.分式,的最简公分母是6x3(x﹣y).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.11.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB 的中点M,N,测得MN=32m,则A,B两点间的距离是64m.【考点】三角形中位线定理.【分析】根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.【点评】本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m<n (填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.某工厂原计划a天生产b件产品,现要提前2天完成,则现在每天要比原来多生产产品件.【考点】列代数式(分式).【分析】根据题意知原来每天生产件,现在每天生产件,继而列式即可表示现在每天要比原来多生产产品件数.【解答】解:根据题意,原来每天生产件,现在每天生产件,则现在每天要比原来多生产产品﹣=件,故答案为:.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5°.【考点】正方形的性质.【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为:22.5°.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.15.已知关于x的方程=3无解,则m的值为﹣4.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x﹣2=0,求出x=2,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:2x+m=3x﹣6,由分式方程无解得到x﹣2=0,即x=2,代入整式方程得:4+m=0,即m=﹣4.故答案为:﹣4【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为3.【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.【考点】分式的加减法.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=﹣==a+b;(2)原式=﹣=.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得,(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得,6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),解得,x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据x2﹣4x﹣1=0得出x2﹣4x=1,代入原式进行计算即可.【解答】解:原式=[﹣]•=•=•==,∵x2﹣4x﹣1=0,∴x2﹣4x=1∴原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.六、解答题(共5小题,满分46分)20.(10分)(2014•兴化市二模)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说50 c文学名著 d e(1)这次随机调查了200名学生,统计表中d=28;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是90°;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?【考点】频数(率)分布表;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,根据频率=频数÷总数,即可求出调查的学生数,进而求出d的值;(2)算出喜欢武侠小说的频率,乘以360°即可;(3)由(1)可知喜欢文学名著类书籍人数所占的频率,即可求出该校1500名学生中有多少名同学最喜欢文学名著类书籍.【解答】解:(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,所以这次随机调查的学生人数为:=200名学生,所以a=200×0.45=90,b=200×0.16=32,∴d=200﹣90﹣32﹣50=28;(2)武侠小说对应的圆心角是360°×=90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有1500×=210名;【点评】此题主要考查了条形图的应用以及用样本估计总体和频数分布直方图,根据图表得出正确信息是解决问题的关键.21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.【考点】反比例函数的应用.【分析】(1)设函数解析式为P=,把V=1.5m3时,p=16kPa代入函数解析式求出k值,即可求出函数关系式;(2)p=40代入求得v值后利用反比例函数的性质确定正确的答案即可.【解答】(1)解:设p与V的函数表达式为p=(k为常数).把p=16、V=1.5代入,得k=24即p与V的函数表达式为;(2)把p=40代入,得V=0.6根据反比例函数的性质,p随V的增加而减少,因此为确保气球不爆炸,气球的体积应不小于0.6m3.【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.22.(10分)(2016春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?【考点】分式方程的应用.【分析】(1)利用总工作量为1,分别表示出甲、乙完成的工作量进而得出等式求出答案;(2)分别求出甲、乙单独完成的费用以及求出甲、乙合作的费用,进而求出符合题意的答案.【解答】解:(1)设甲单独完成全部工程所用的时间为x天,则乙单独完成全部工程所用的时间为(x+6)天,根据题意得,+=1,解得,x=12,经检验,x=12是原方程的解,答:甲单独完成全部工程所用的时间为12天;(2)根据题意得上述3个方案都在20天内.甲单独完成的费用:12×4.5=54万元,乙单独完成的费用:18×2.5=45万元,甲乙合做完成的费用:12×2.5+4×4.5=48万元,即乙单独完成既能按时完工,又能使工程费用最少.【点评】此题主要考查了分式方程的应用,根据题意利用总工作量为1得出等式是解题关键.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【考点】菱形的性质;勾股定理.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.【考点】反比例函数综合题.【分析】(1)由直线与双曲线交于A、B两点,A点横坐标为4,代入正比例函数,可求得点A的坐标,继而求得k值;(2)首先根据对称性,可求得点B的坐标,结合图象,即可求得关于x的不等式的解集;(3)首先过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC,又由双曲线上有一点C的纵坐标为8,可求得点C 的坐标,继而求得答案;(4)由当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,根据平移的性质,即可求得答案.【解答】解:(1)∵直线与双曲线交于A、B两点,A点横坐标为4,∴点A的纵坐标为:y=×4=2,∴点A(4,2),∴2=,∴k=8;(2)∵直线与双曲线交于A、B两点,∴B(﹣4,﹣2),∴关于x的不等式的解集为:﹣4≤x<0或x≥4;(3)过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵双曲线上有一点C的纵坐标为8,∴把y=8代入y=得:x=1,∴点C(1,8),∴S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+8)×(4﹣1)=15;(4)如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,∵点A(4,2),点C(1,8),∴根据平移的性质可得:M(3,0),N(0,6)或M′(﹣3,0),N′(0,﹣6).【点评】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。
人教版八年级数学上册全册单元测试卷(含答案)
人教版八年级数学上册全册单元测试卷(含答案)第十一章三角形是初中数学中的重要概念之一,本章主要介绍三角形的定义、分类、性质以及相关定理。
首先,三角形是由三条线段组成的图形,其中每条线段都是三角形的一条边,而三条边的交点称为三角形的顶点。
根据三角形的边长和角度大小,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。
其次,全等三角形是指在形状和大小上完全相同的两个三角形,它们的对应边和对应角都相等。
全等三角形有很多应用,比如在证明几何定理时经常会用到。
第十二章轴对称是初中数学中的一个重要概念,它是指一个图形关于某条直线对称后完全重合的情况。
轴对称可以分为水平轴对称和垂直轴对称两种情况,对称轴是指图形中被对称的那条直线。
轴对称有很多应用,比如在绘制图形、证明几何定理和解决实际问题时都会用到。
第十三章整式的乘法与因式分解是初中数学中的一个重要知识点,它涉及到多项式的基本运算和分解。
整式是由常数、变量和它们的乘积以及它们的各项次幂所构成的代数式,而整式的乘法和因式分解则是对多项式进行拆分和组合的过程,能够帮助我们更好地理解和应用代数式。
第十四章分式是初中数学中的一个重要概念,它是指由两个整式相除所得到的代数式。
分式可以分为真分式、带分式和整式三种情况,其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于等于分母次数的分式,而整式则是指分母为常数的分式。
分式在数学中有着广泛的应用,比如在解方程、证明定理和计算实际问题时都会用到。
第十五章三角形单元测试是初中数学中的一种测试形式,它主要考察学生对于三角形相关知识和技能的掌握情况。
本测试共有10道选择题,每道题目有4个选项,只有一个选项是正确的。
测试时间为90分钟,满分为100分。
通过三角形单元测试,学生可以了解自己在三角形方面的薄弱环节,并及时进行补充和提高。
二、填空题11.x的取值范围是 1<x<312.可以构成 4 个三角形13.∠A+∠B+∠C+∠D+∠E+∠F等于 540°14.如果一个正多边形的内角和是900°,则这个正多边形是正 10 边形15.n=816.需要安排 3 种不同的车票17.得到的图形是正三角形,它的内角和(按一层计算)是 360°18.∠BOC的度数是 80°三、解答题19.因为BD平分∠ABC,所以∠CBD=∠ABD=40°又因为DA⊥AB,所以∠ADB=90°-∠ABD=50°所以∠C=∠CBD+∠ADB=40°+50°=90°20.(1) 画出△XXX的外角∠BCD后,再画出∠BCD的平分线CE,如图:image.png](/upload/image_hosting/edn2j1v0.png)2) 由于∠A=∠B,所以∠ACB=∠ABC,而∠BCD是△ABC的外角,所以∠BCD=∠ACB+∠ABC又因为CE是∠BCD的平分线,所以∠ECD=∠DCB,所以∠ECD+∠XXX∠BCD即∠ECD+∠XXX∠ACB+∠ABC又因为∠ACB=∠ABC,所以∠ECD=∠DCB所以CE∥AB21.(1) 如图:image.png](/upload/image_hosting/1a0z4h2p.png)ABC+∠ACB=30°+90°=120°XXX∠XXX∠ABC+∠XXX-∠XXX-∠XCB=120°-90°-30°=0°2) ∠ABX+∠ACX的大小不变,因为它们与三角板XYZ 的位置无关,只与△ABC的角度有关,而△XXX的角度没有变化。
(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(有答案解析)(3)
一、选择题1.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 2.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组 3.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 4.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等5.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .96.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A .4:3B .16:9C .3:4D .9:167.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:48.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .129.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 10.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 11.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°12.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题13.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.14.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.15.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .16.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________ 17.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.18.如图,ABC 的面积为215cm ,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD AP ⊥于点D ,连接DB ,则DAB 的面积是______2cm .19.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)20.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.三、解答题21.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.22.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.(问题2)小明发现只利用直角三角板也可以作AOB ∠的角平分线,方法如下: 步骤:①利用三角板上的刻度,在OA 、OB 上分别截取OM 、ON ,使OM ON =. ②分别过点M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为AOB ∠的平分线.请根据小明的作法,求证OP 为AOB ∠的平分线.23.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.24.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)求证:∠EGH>∠ADE;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.25.已知:直线EF分别与直线AB,CD相交于点G,H,并且180AGE DHE∠+∠=︒(1)如图1,求证://AB CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:M AGM CHM∠=∠+∠;(3)如图3,在(2)的条件下,射线GH是BGM∠的平分线,在MH的延长线上取点N,连接GN,若N AGM∠=∠,12M N FGN∠=∠+∠,求MHG∠的度数.26.下面是小芳同学设计的“过直线外一点作这条直线垂线”的尺规作图过程.已知:如图1,直线l及直线l外一点P .求作:直线l的垂线,使它经过点P .作法:如图2,① 以P为圆心,大于P到直线l的距离为半径作弧,交直线l于A、B两点;② 连接PA和PB;③ 作∠APB的角平分线PQ,交直线l于点Q.④ 作直线PQ .∴直线PQ就是所求的直线.根据小芳设计的尺规作图过程,解答下列问题:(1)使用直尺和圆规,补全图2(保留作图痕迹);(2)补全下面证明过程:证明:∵ PQ平分∠APB,∴∠APQ=∠QPB.又∵ PA= ,PQ=PQ,∴△APQ≌△BPQ()(填推理依据).∴∠PQA=∠PQB()(填推理依据).又∵∠PQA +∠PQB = 180°,∴∠PQA=∠PQB = 90°.∴ PQ ⊥ l .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项不符合题意;C、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠BAE=∠CAD,可得∠DAB=∠EAC,故本选项不符合题意;D、添加DA=DE无法求出∠DAB=∠EAC,故本选项符合题意.故选:D.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.2.C解析:C【分析】要使△ABC ≌△DEF 的条件必须满足SSS 、SAS 、ASA 、AAS ,可据此进行判断.【详解】解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF .第③组满足ASA ,能证明△ABC ≌△DEF .第④组只是SSA ,不能证明△ABC ≌△DEF .所以有3组能证明△ABC ≌△DEF .故符合条件的有3组.故选:C .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.3.C解析:C【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S =1632⨯=故选C .【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .4.B解析:B【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA 是不能判定三角形全等的.【详解】解:A ,三边分别相等的两个三角形全等,故本选项正确;B ,两边和一个角对应相等的两个三角形不一定全等,故本选项错误;C ,两个角和一个边对应相等的两个三角形,可利用ASA 或AAS 判定全等,故本选项正确;D ,斜边和一条直角边分别相等的两个直角三角形全等,故本选项正确.故选:B【点睛】此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等.5.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.A解析:A【分析】过点D 作DE 垂直于AB ,DF 垂直于AC ,由AD 为角BAC 的平分线,根据角平分线定理得到DE=DF ,再根据三角形的面积公式表示出△ABD 与△ACD 的面积之比,把DE=DF 以及AB :AC 的比值代入即可求出面积之比.【详解】解:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F .∵AD 为∠BAC 的平分线,∴DE=DF ,又AB :AC=4:3,∴S △ABD :S △ACD =(12AB•DE ):(12AC•DF )=AB :AC=4:3. 故选:A .【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题. 7.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.8.A解析:A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC=AD=AE=3.9.B解析:B【分析】根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD,根据∠ADC 是△BDC的外角,得到∠ADC=∠B+∠BCD,由三角形外角的性质得到∠MAC=∠B+∠ACB,于是得到结果.【详解】解:∵EF∥AB,∠EFC=β,∴∠B=∠EFC=β,∵CD平分∠BCA,∴∠ACB=2∠BCD,∵∠ADC是△BDC的外角,∴∠ADC=∠B+∠BCD,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC是△ABC的外角,∴∠MAC=∠B+∠ACB,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B.【点睛】本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.10.D解析:D【分析】设点Q的运动速度是x cm/s,有两种情况:①AP=BP,AC=BQ,②AP=BQ,AC=BP,列出方程,求出方程的解即可.【详解】解:设点Q的运动速度是x cm/s,∵∠CAB=∠DBA,∴△ACP与△BPQ全等,有两种情况:①AP=BP,AC=BQ,则1×t=4-1×t,则3=2x,解得:t=2,x=1.5;②AP=BQ,AC=BP,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.11.B解析:B【分析】根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∵ED ∥AC ,∴18034146AED ∠=︒-︒=︒,∵BE ⊥AE ,∴90AEB =︒∠,∴36090146124BED ∠=︒-︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键 。
北师大版数学八年级上册 第3章 位置与坐标测试卷(含答案)
第3章测试卷(满分120分,时间90分钟)项是符合要求的)1.根据下列表述,能确定位置的是( )A.光明剧院2排B.某市人民路C.北偏东40°D.东经112°,北纬36°2.在平面直角坐标系中,点 A(-3,0)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上3.如图,小明从点O出发,先向西走40米,再向南走30米到达点M.如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点AB.点 BC.点 CD.点 D4.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1)5.已知A(6,0),B(2,1),O(0,0),则△ABO的面积为( )A.1B.2C.3D.46.已知M(1,—2),N(—3,—2),则直线MN与x轴,y轴的位置关系分别为( )A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交7.已知点A(a,2019)与点A'(-2 020,b)是关于原点 O的对称点,则a+b的值为( )A.1B.5C.6D.48.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标 B的位置,正确的是( )A.(-4,150°)B.(4,150°)C.(-2,150°)D.(2,150°)9.无论m为何值,点A(m,5-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10.一个小球从点 A(3,3)出发,经过y轴上点C 反弹后经过点B(1,0),则小球从A 点经过点 C 到B 点经过的最短路线长是( )A.4B.5C.6D.7二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.点A(−√3,0)关于y轴的对称点的坐标是 .12.已知点 A(m-1,3)与点 B(2,n+1)关于x轴对称,则m=. .13.在平面直角坐标系中,点A₁(1,1),A₂(2,4),A₃(3,9),A₄(4,16),…,用你发现的规律确定点.A₉的坐标是14.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点 A'的坐标为 .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有个.16.如图,在△ABC中,点A的坐标为(0,1),点 B 的坐标为(0,4),点 C 的坐标为(4,3),如果要使△ABD与.△ABC全等,那么点 D的坐标是 .17.如图,在△ABC中,点 A 的坐标为(0,1),点C的坐标为(4,3)如果要使以点 A、B、D为顶点的三角形与△ABC全等,那么点 D的坐标是 .18.在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依次类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除余数是1时,则向右走1个单位长度,当n被3除余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(8分)在平面直角坐标系中,点A关于y轴的对称点为点B,点B关于x轴的对称点为点C.(1)若点 A 的坐标为(1,2),请你在给出的坐标系中画出△ABC,设的值;AB 与y轴的交点为D,求S ADOS ABC(2)若点 A的坐标为(a,b)(ab≠0),判断△ABC的形状.20.(8分)如图,在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,3),B(2,-1).(1)作出线段AB 关于y 轴对称的线段C、D.(2)怎样表示线段CD 上任意一点 P 的坐标?21.(10分)长阳公园有四棵古槐A,B,C,D(单位:m).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定净如图所示的四边莆EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.(10分)在平面直角坐标系xOy中,点M的坐标为((3,−2),,线段AB的位置如图所示,其中点 A 的坐标为(7,3),点 B的坐标为(1,4).(1)将线段AB平移可以得到线段MN,其中点 A 的对应点为M(3,−2),点 B 的对应点为N,则点 N的坐标为 .(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点 N 并顺次连接BC,CM,MN,NB,然后求出四边形 BCMN的面积S.23.(10分)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4₄(),A₈(),A₁₂();(2)写出点.A₄ₙ的坐标(n是正整数);(3)指出蚂蚁从点.A₁₀₀至点A₁₀₁的移动方向.24.(12分)(1)在平面直角坐标系中,将点A(−3,4)向右平移5个单位长度到点.A₁,再将点A₁绕坐标原点顺时针旋转90°到点 A₂,求点A₁,A₂的坐标;(2)在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位长度得到第一象限内的点.B₁,再将点B₁绕坐标原点顺时针旋转90°到点B₂,写出点B₁,B₂的坐标;(3)在平面直角坐标系中,将点P(c,d)沿水平方向平移n个单位长度到点.P₁,,再将点P₁绕坐标原点顺时针旋转90°到点 P₂,写出点 P₂的坐标.第3章测试卷1. D2. B3. B4. A5. C6. D7. A8. B9. C 10. B11.(√3,0) 12.3 —4 13.(9,81) 14.(1,2) 15.8016.(4,2)或(-4,2)或(-4,3)17.(4,-1)、(-1,3)、(-1,-1) 18.(100,33)19.解(1)如图所示,14.(2)直角三角形.20.解(1)如图线段CD;(2)P(-2,y)(-1≤y≤3).21.解(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则保护区的面积S=S矩形MNHO−S△GMF−S△GNH−S△EHO=60×50−12×20×50−12×10×50−12×10×60=3000−500−250−300=1950(m²)22.解(1)由点M(3,-2)的对应点A(7,3)知先向右平移4个单位、再向上平移5个单位,∴点B(1,4)的对应点N的坐标为(-3,-1),故答案为:(-3,-1).(2)如图,描出点 N并画出四边形BCMN,S=12×4×5+12×6×1+12×1×2+2×1+12×3×4=10+3+1+2+6=22.23.解(1)2 0 4 0 6 0;(2)A₄n(2n,0);(3)向上.24.解(1)∵将点A(-3,4)向右平移5个单位长度到点A₁,∴点A₁的坐标为(2,4),∵又将点 A₁绕坐标原点顺时针旋转90°到点A₂,∴A₂的坐标为(4,-2).(2)根据(1)中的规律,得B₁的坐标为(a+m,b),B₂的坐标为(b,-a-m).(3)分两种情况:①当把点P(c,d)沿水平方向向右平移n个单位长度到点P₁时,P₁的坐标为((c+n,d),P₂的坐标为(d,-c-n);②当把点P(c,d)沿水平方向向左平移n个单位长度到点P₁时,P₁的坐标为(c-n,d),然后将点P₁绕坐标原点顺时针旋转90°到点 P₂,则 P₂的坐标为(d,-c+n).。
(苏科版)初中数学八年级上册 第3章综合测试试卷03及答案
第3章综合测试一、选择题(共10小题)1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A .75°B .60°C .45°D .30°2.如图,ABC △中,90ACB Ð=°,沿CD 折叠CBD △,使点B 恰好落在AC 边上的点E 处,若25A Ð=°,则BDC Ð等于( )A .44°B .60°C .67°D .70°3.直角三角形的边长分别为a ,b ,c ,若29a =,216b =,那么2c 的值是( )A .5B .7C .25D .25或74.在Rt ABC △中,90B Ð=°,1BC =,2AC =,则AB 的长是( )A .1B C .2D 5.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A .72B .52C .80D .766.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是()A .4B .6C .8D .107.若ABC △的三边a 、b 、c 满足22220a b a b c -++-=(),则ABC △是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.在下列长度的各组线段中,不能构成直角三角形的是( )A .3,4,5B .7,24,25C .1,1D 9.下列各组数中能够作为直角三角形的三边长的是( )A .1,2,3B .2,3,4C .3,4,5D .4,5,610.下列四组数据中,不能作为直角三角形的三边长是( )A .6,8,10B .7,24,25C .2,5,7D .9,12,15二、填空题(共8小题)11.若直角三角形的一个锐角为50°,则另一个锐角的度数是________度.12.直角三角形两锐角平分线相交所成的钝角的度数是________.13.直角三角形两直角边长分别为3和4,则它斜边上的高为________.14.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ AB ∥,则正方形EFGH 的边长为________.16.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是正方形,ABF △、BCG △、CDH △、DAE △是四个全等的直角三角形.若2EF =,8DE =,则AB 的长为________.17.三角形的三边长为a 、b 、c ,且满足等式222a b c ab +-=(),则此三角形是________三角形(直角、锐角、钝角).18.若ABC △的三边长分别为5、13、12,则ABC △的形状是________.三、解答题(共8小题)19.如图,在平面直角坐标系中,AOB △是直角三角形,90AOB Ð=°,斜边AB 与y 轴交于点C .(1)若A AOC Ð=Ð,求证:B BOC Ð=Ð;(2)延长AB 交x 轴于点E ,过O 作OD AB ^,且DOB EOB Ð=Ð,OAE OEA Ð=Ð,求A Ð度数;(3)如图,OF 平分AOM Ð,BCO Ð的平分线交FO 的延长线于点P ,当ABO △绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问P Ð的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.20.如图,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P ,PH OA ^,垂足为H ,OPH △的重心为G .(1)当点P 在AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度;(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果PGH △是等腰三角形,试求出线段PH 的长.21.如图,ABC △中,90ACB Ð=°, 5 cm AB =, 3 cm BC =,若点P 从点A 出发,以每秒2 cm 的速度沿折线A C B A ---运动,设运动时间为t 秒(0t >).(1)若点P 在AC 上,且满足PA PB =时,求出此时t 的值;(2)若点P 恰好在BAC Ð的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,BCP △为等腰三角形.22.如图是单位长度为1的正方形网格.(1)在图1的线段AB ;(2)在图2中画出一个以格点为顶点,面积为5的正方形.23.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中90DAB Ð=°,求证:222a b c +=.证明:连结DB ,过点D 作BC 边上的高DF ,则DF EC b a ==-,21122ACD ABC ADCB S S S b ab =+=+Q △△四边形.又21122ADB DCB ADCB S S S c a b a =+=+-Q △△四边形(),2211112222b abc a b a \+=+-(),222a b c \+=.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中90DAB Ð=°.求证:222a b c +=.24.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连接CF ,AB a =,BC b =,AC c =.(1)请你结合图1用文字和符号语言分别叙述勾股定理.(2)请利用直角梯形BCFG 的面积证明勾股定理:222a b c +=.25.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2334…n 1123…a2212+3212+3222+4232+…b 461224…c2212-3212-3222-4232-…其中m 、n 为正整数,且m n >.(1)观察表格,当2m =,1n =时,此时对应的a 、b 、c 的值能否为直角三角形三边的长?说明你的理由.(2)探究a ,b ,c 与m 、n 之间的关系并用含m 、n 的代数式表示:a =________,b =________,c =________.(3)以a ,b ,c 为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.26.如图,已知 6 m CD =,8 m AD =,90ADC Ð=°,24 m BC =,26 m AB =;求图中阴影部分的面积.第3章综合测试答案解析一、1.【答案】D【解析】解:Q 在一个直角三角形中,有一个锐角等于60°,\另一个锐角的度数是906030°-°=°.故选:D .【考点】直角三角形两锐角互余的性质2.【答案】D【解析】解:ABC Q △中,90ACB Ð=°,25A Ð=°,9065B A \Ð=°-Ð=°,由折叠的性质可得:65CED B Ð=Ð=°,BDC EDC Ð=Ð,40ADE CED A \Ð=Ð-Ð=°,()1180702BDC ADE \Ð=-Ð=o o .故选:D .【考点】折叠的性质,三角形内角和定理,三角形外角的性质3.【答案】D【解析】解:当b 为直角边时,22225c a b =+=,当b 为斜边时,2227c b a =-=,故选:D .【考点】勾股定理4.【答案】B【解析】解:在Rt ABC △中,90B Ð=°,1BC =,2AC =,AB \==,故选:B .【考点】勾股定理5.【答案】D【解析】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则212252169x =+=,所以13x =,所以“数学风车”的周长是:136476+´=().故选:D .6.【答案】A【解析】解:由题意得:大正方形的面积是9a ,较短直角边为b ,即229a b +=,1a b -=,解得a =,b =,则4ab =.解法2,4个三角形的面积和为918-=;每个三角形的面积为2;则122ab =;所以4ab =故选:A .【考点】勾股定理在直角三角形中的灵活运用,正方形面积的计算7.【答案】C【解析】解:22220a b a b c -++-=Q(),0a b \-=,2220a b c +-=,解得:a b =,222a b c +=,ABC \△的形状为等腰直角三角形;故选:C .【考点】勾股定理逆定理以及非负数的性质8.【答案】D【解析】解:A 、222345+=Q ,\能构成直角三角形;B 、22272425+=Q ,\能构成直角三角形;C 、22211+=Q ,\能构成直角三角形.D 、222+¹Q ,\不能构成直角三角形;故选:D .【考点】勾股定理的逆定理9.【答案】C【解析】解:A 、222123+¹,不能构成直角三角形,故此选项错误;B 、22223=4+,不能构成直角三角形,故此选项错误;C 、22234=5+,能构成直角三角形,故此选项正确;D 、22245=6+,不能构成直角三角形,故此选项错误.故选:C .【考点】勾股定理逆定理10.【答案】C【解析】解:A 、22268=10+,符合勾股定理的逆定理,故能作为直角三角形的三边长;B 、222724=25+,符合勾股定理的逆定理,故能作为直角三角形的三边长;C 、22252=7+,符合勾股定理的逆定理,故不能作为直角三角形的三边长;D 、222129=15+,符合勾股定理的逆定理,故能作为直角三角形的三边长.故选:C .【考点】勾股定理的逆定理二、11.【答案】40°【解析】解:Q 一个锐角为50°,\另一个锐角的度数905040=°-°=°.故答案为:40°.12.【答案】135°【解析】解:如图:AE Q 、BD 是直角三角形中两锐角平分线,90245OAB OBA \Ð+Ð=°¸=°,两角平分线组成的角有两个:BOE Ð与EOD Ð这两个交互补,根据三角形外角和定理,45BOE OAB OBA Ð=Ð+Ð=°,18045135EOD \Ð=°-°=°,故答案为:135°.【考点】直角三角形内角的性质,三角形内角和13.【答案】125【解析】解:设斜边长为c ,高为h .由勾股定理可得:22234c =+,则5c =,直角三角形面积113422S c h =´´=´´可得125h =,故答案为:125.【考点】勾股定理求直角三角形的边长,面积法求直角三角形的高14.【答案】4.8【解析】解:Q 直角三角形的两直角边长为6和8,斜边长为:10=,三角形的面积168242=´´=,设斜边上的高为x ,则110242x ×=,解得 4.8x =.故答案为:4.8.【考点】勾股定理,三角形的面积公式15.【答案】10【解析】解: 141422819648192824´-´¸=-¸=¸=()(), 24422964100´+´=+=10=.答:正方形EFGH 的边长为10.故答案为:10.【考点】勾股定理的证明16.【答案】10【解析】解:依题意知,8BG AF DE ===,2EF FG ==,6BF BG BF \=-=,\直角ABF △中,利用勾股定理得:10AB ===.故答案是:10.【考点】勾股定理的证明17.【答案】直角【解析】解:222a b c ab +-=Q(),22222a ab b c ab \++-=,222a b c \+=,\三角形是直角三角形.故答案为直角.【考点】勾股定理的逆定理,完全平方公式18.【答案】直角三角形【解析】解:22251213+=Q ,即222a b c +=,ABC \△是直角三角形.故答案为:直角三角形.【考点】勾股定理的逆定理三、19.【答案】(1)AOB Q △是直角三角形,90A B \Ð+Ð=°,90AOC BOC Ð+Ð=°.A AOC Ð=ÐQ ,B BOC \Ð=Ð.(2)90A ABO Ð+Ð=°Q ,90DOB ABO Ð+Ð=°,A DOB \Ð=Ð,即DOB EOB OAE OEA Ð=Ð=Ð=Ð.90DOB EOB OEA Ð+Ð+Ð=°Q ,30DOB \Ð=°,30A \Ð=°.(3)P Ð的度数不变,30P Ð=°,90AOM AOC Ð=°-ÐQ ,BCO A AOC Ð=Ð+Ð,OF Q 平分AOM Ð,CP 平分BCO Ð,1119045222FOM AOM AOC AOC \Ð=Ð=°-Ð=°-Ð(),11112222PCO BCO A AOC A AOC Ð=Ð=Ð+Ð=Ð+Ð().11809045302P PCO FOM A \Ð=°-Ð+Ð+°=°-Ð=°().【解析】(1)易证B Ð与BOC Ð分别是A Ð与AOC Ð的余角,等角的余角相等,就可以证出.(2)易证90DOB EOB OEA Ð+Ð+Ð=°,且DOB EOB OEA Ð=Ð=Ð就可以得到.(3)18090P PCO FOM Ð=°-Ð+Ð+°()根据角平分线的定义,就可以求出.【考点】角平分线的定义,直角三角形的性质20.【答案】(1)当然是GH 不变.延长HG 交OP 于点E ,G Q 是OPH △的重心,23GH EH \=,PO Q 是半径,它是直角三角形OPH 的斜边,它的中线等于它的一半;12EH OP \=,2121(6)23232GH OP æö\=´=´´=ç÷èø.(2)延长PG 交OA 于C ,则23y PC =´.我们令OC a CH ==,在Rt PHC △中,PC =,则23y =Rt PHO △中,有22222636OP x a =+==(),则2294x a =-,将其代入23y =得26)3y x ==<<.(3)如果PG GH =,则2y GH ==,解方程:0x =,那GP 不等于GH ,则不合意义;如果,2PH GH ==则可以解得:2x =;如果,PH PG =,则x y =代入可以求得:x =PH 或2.【解析】(1)由题意可知:重心是三角形中线交点,它把中线分为1:2的比例,如果中线长度不变,题中的三线段长度也不变.在直角三角形OHP 中PO 是直角三角形OPH 的斜边,也是半径是保持不变的所以线段GH 保持不变;则根据直角三角形中斜边的中线是斜边的一半可以求得OP 中线的长度,进而求得GH 的长度.(2)延长PG 交OA 于C ,则23y PC =´;分别再直角三角形OPH 和直角三角形PHC 中运用两次勾股定理即可以求出y 关于x 的函数解析式.(3)分别讨论GH PG =,GH PH =,PH PG =这三种情况,根据(2)中的解析式可以分别求得x 的值.【考点】重心的概念,直角三角形与等腰三角形的性质21.【答案】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB △中,222PC CB PB +=,即:2224232t t -+=()(),解得:2516t =,\当2516t =时,PA PB =.(2)当点P 在BAC Ð的平分线上时,如图1,过点P 作PE AB ^于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP △中,222PE BE BP +=,即:22224172t t -+=-()(),解得:83t =,当6t =时,点P 与A 重合,也符合条件,\当83t =或6时,P 在ABC △的角平分线上.(3)在Rt ABC △中, 5 cm AB =Q , 3 cm BC =, 4 cm AC \=,根据题意得:2AP t =,当P 在AC 上时,BCP △为等腰三角形,PC BC \=,即423t -=,12t \=,当P 在AB 上时,BCP △为等腰三角形,①CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ^于E ,1322BE BC \==,12PB AB \=,即52342t --=,解得:194t =.②PB BC =,即2343t --=,解得:5t =.③PC BC =,如图3,过C 作CF AB ^于F ,∴BF=BP ,90ACB Ð=°Q ,由射影定理得;2BC BF AB =×,即223432t --=,解得:5310t =,\当12t =,5,5310,194时,BCP △为等腰三角形.【解析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论.(2)当点P 在CAB Ð的平分线上时,如图1,过点P 作PE AB ^于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论.(3)在Rt ABC △中,根据勾股定理得到 4 cm AC =,根据题意得:2AP t =,当P 在AC 上时,BCP △为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP △为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ^于E ,求得194t =,若PB BC =,即2343t --=,解得E ,③PC BC =,如图3,过C 作CF ⊥AB 于F ,由射影定理得;2BC BF AB =×,列方程2343252t --=´,即可得到结论.【考点】等腰三角形的判定,三角形的面积22.【答案】(1)(2)【解析】(1)根据勾股定理作出以1和3直角边的三角形的斜边即可.(2.【考点】勾股定理23.【答案】证明:连结BD ,过点B 作DE 边上的高BF ,则BF b a =-,1112222ACB ABE ADE ACBED S S S S ab b ab =++=++Q △△△五边形,又2111()222ACB ABD BDE ACBED S S S S ab c a b a =++=++-Q △△△五边形,22111111()222222ab b ab ab c a b a \++=++-,222a b c \+=.【解析】首先连结BD ,过点B 作DE 边上的高BF ,则BF b a =-,表示出ACBED S 五边形,两者相等,整理即可得证.【考点】勾股定理的证明24.【答案】(1)直角三角形两直角边的平方和等于斜边的平方. Rt ABC △中,90B Ð=°,AB a =,BC b =,AC c =,则有222b c a +=.(2)2211112222B AFG AFC AC BCFG S S S S ab ab c ab c =++=++=+Q △△△梯形,221111()()()2222BCFG S FG BC BG a b a b a ab b =×+×=++=++梯形,222111222ab c a ab b \+=++,整理得:222a b c +=.【解析】(1)直角三角形两直角边的平方和等于斜边的平方.(2)用两种方法求出梯形BCFG 的面积,列出等式,即可证明.【考点】勾股定理25.【答案】(1)当2m =,1n =时,5a =、4b =、3c =,222345+=Q ,a \、b 、c 的值能为直角三角形三边的长.(2)观察得,22a m n =+,2b mn =,22c m n =-.(3)以a ,b ,c 为边长的三角形一定为直角三角形,222242242a m n m m n n =+=++Q (),224224224224242b c m m n n m n m m n n +=-++=++,222a b c \=+,\以a ,b ,c 为边长的三角形一定为直角三角形.【解析】(1)计算出a 、b 、b 的值,根据勾股定理的逆定理判断即可.(2)根据给出的数据总结即可.(3)分别计算出2a 、2b 、2c ,根据勾股定理的逆定理进行判断.【考点】勾股定理的逆定理26.【答案】解:在Rt ADC △中, 6 CD =Q 米,8 AD =米,24 BC =米,26 AB =米,2222286100AC AD CD \=+=+=,10AC \=米(取正值).在ABC △中,22221024676AC BC +=+=Q ,2226676AB ==.222AC BC AB \+=,ACB \△为直角三角形,90ACB Ð=°.2111110248696()2222S AC BC AD CD \=´-´=´´-´´=阴影米.答:图中阴影部分的面积为296 米.【解析】先根据勾股定理求出AC 的长,再根据勾股定理的逆定理判断出ACB △为直角三角形,再根据1122S AC BC AD CD =´-´阴影即可得出结论.【考点】勾股定理的运用,勾股定理的逆定理运用。
北师大版八年级上册数学全册同步练习(全套)
第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为 __________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是_________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km)※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.第3题第5题第9题3cm,c=3 cm,则△ABC中最小的角为______度.4.△ABC中,三边长分别为a=6 cm,b=35.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长( ).A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于 ( ). A.3 B.4 C.5 D.13第11题 第12题12.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( ). A.210 B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( ). A.1 B.3C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ). A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= .16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
人教版数学八年级上册第三单元测试卷(答案版)
一、选择题(每题 3 分,共 30 分) 1.下列四个交通标志图中为轴对称图形的是( )
2.已知点 P(3,-2)与点 Q 关于 x 轴对称,则点 Q 的坐标为( )
A.(-3,2)
B.(-3,-2)
C.(3,2)
D.(3,-2)
3.一个等腰三角形的两边长分别为 5 和 11,则这个等腰三角形的周长为( )
MN 与 x 轴的位置关系是________.
12.如图,AE∥BD,C 是 BD 上的点,且 AB=BC,∠ACD=110°,则∠EAB=
________.
(第 12 题)
(第 13 题)
(第 14 题)
13.如图,在正方形方格中,阴影部分是涂黑 7 个小正方形所形成的图案,再将
方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂 法有________种. 14.如图,在△ABC 中,∠C=90°,∠B=30°,AB 边的垂直平分线 ED 交 AB 于点 E,交 BC 于点 D,若 CD=3,则 BD 的长为________. 15.如图,在等腰三角形 ABC 中,AB=AC,P,Q 分别是边 AC,AB 上的点, 且 AP=PQ=QC=BC,则∠PCQ 的度数为________.
24.如图,已知点 D 为等腰直角三角形 ABC 内一点,AC=BC,∠ACB=90°, ∠CAD=∠CBD=15°,E 为 AD 的延长线上的一点,且 CE=CA.
(1)求证:DE 平分∠BDC; (2)若点 M 在 DE 上,且 DC=DM,求证 ME=BD.
25.(1)如图①,已知:在△ABC 中,∠BAC=90°,AB=AC,直线 m 经过点 A ,BD⊥直线 m,CE⊥直线 m,垂足分别为点 D,E.求证 DE=BD+CE.
北师大版初中八年级数学上册第三章同步练习题(含答案解析)
第三章测试卷一、选择题(每题3分,共30分)1.(安徽安庆期末)下列表述中,能确定准确位置的是( )A.教室第三排B.湖心南路C.南偏东40°D.东经112°,北纬51°2.在平面直角坐标系中,点A (-3,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上3.若点A (m ,n )在第二象限,则点B (-m ,|n |)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.平面直角坐标系内的点A (-1,2)与点B (-1,-2)关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称5.已知点A (1,0),B (0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定6.在以下四点中,哪一点与点(-3,4)所连的线段与x 轴和y 轴都不相交( )A .(-5,1)B .(3,-3)C .(2,2)D .(-2,-1)7.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)8.从车站向东走400m ,再向北走500m 到小红家;从车站向北走500m ,再向西走200m 到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为( )A .(400,500),(500,200)B .(400,500),(200,500)C .(400,500),(-200,500)D .(500,400),(500,-200)9.如图,直线BC 经过原点O ,点A 在x 轴上,AD ⊥BC 于D ,若B (m ,2),C (n ,-3),A (2,0),则AD ·BC 的值为( )A .不能确定B .5C .10D .7(第9题) (第10题)10.(河南)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时点P 的坐标是( )A .(2016,0)B .(2017,1)C .(2017,-1)D .(2018,0)二、填空题(每题3分,共24分)11.已知点A 在x 轴上,且OA =3,则点A 的坐标为__________.12.已知小岛A 在灯塔B 的北偏东30°的方向上,则灯塔B 在小岛A 的_____的方向上.13.对任意实数,点P (x ,x -2)一定不在第____象限.14.在平面直角坐标系中,一青蛙从点A (-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为_______.15.如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是________.(第15题)(第16题)(第17题)(第18题)16.将正整数按如图的规律排列下去,若用有序数对(m,n)表示m排从左到右第n个数.如(4,3)表示9,则(15,4)表示________.17.如图,A,B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为________.18.(长沙期中)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2.顶点A2坐标是.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(2,6),(4,6),(4,8),(2,8);(2)(3,0),(3,3),(3,6);(3)(3,5),(1,6);(4)(3,5),(5,6);(5)(3,3),(2,0);(6)(3,3),(4,0).20.小林放学后,先向东走了300 m再向北走200 m,到书店A买了一本书,然后向西走了500 m再向南走了100 m,到快餐店B买了零食,又向南走了400 m,再向东走了800 m到了家C.请建立适当的平面直角坐标系,并在坐标系中画出点A,B,C的位置.21.(1)在坐标平面内画出点P(2,3);(2)分别作出点P关于x轴、y轴的对称点P1,P2,并写出P1,P2的坐标.22.长阳公园有四棵古树A,B,C,D,示意图如图所示.(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来划为保护区,请你计算保护区的面积(单位:m).23.如图,平面直角坐标系中,过点A(0,2)的直线a垂直于y轴,M(9,2)为直线a上一点.若点P从点M出发,以2cm/s的速度沿直线a向左移动;点Q从原点同时出发,以1cm/s的速度沿x轴向右移动,多久后线段PQ平行于y轴?24.如图,已知点P(2m-1,6m-5)在第一象限的角平分线OC上,AP⊥BP,点A在x轴上,点B在y轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.25.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫作整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.(1)当m=3时,求点B的坐标的所有可能值;(2)当点B的横坐标为4n(n为正整数)时,用含n的代数式表示m.参考答案第三章测试卷一、选择题(每题3分,共30分)1.(安徽安庆期末)下列表述中,能确定准确位置的是(D)A.教室第三排B.湖心南路C.南偏东40°D.东经112°,北纬51°2.在平面直角坐标系中,点A(-3,0)在(B)A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上3.若点A(m,n)在第二象限,则点B(-m,|n|)在(A)A.第一象限 B.第二象限 C.第三象限 D.第四象限4.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于(B)A.y轴对称B.x轴对称C.原点对称D.直线y=x对称5.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为(C)A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.无法确定6.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交(A)A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1)7.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点(D)A.(7,2)B.(2,6)C.(7,6)D.(4,5)8.从车站向东走400m,再向北走500m到小红家;从车站向北走500m,再向西走200m到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为(C)A.(400,500),(500,200) B.(400,500),(200,500)C.(400,500),(-200,500) D.(500,400),(500,-200)9.如图,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,2),C(n,-3),A(2,0),则AD·BC的值为(C)A.不能确定 B.5 C.10 D.7(第9题)(第10题)【解析】据三角形面积公式得到S △ABC =12AD ·BC ,而S △ABC =S △ABO +S △ACO =12×2×2+12×2×3=5,因此得到12AD ·BC =5,∴AD ·BC =10. 10.(河南)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时点P 的坐标是( B )A .(2016,0)B .(2017,1)C .(2017,-1)D .(2018,0)【解析】当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),运动时间为2秒时,点P 的坐标为(2,0),运动时间为3秒时,点P 的坐标为(3,-1),运动时间为4秒时,点P 的坐标为(4,0).根据图象可得第n 秒时,点P 的横坐标为n ,纵坐标每4秒一个循环.∵2017÷4=504……1,∴第2017秒时,点P 的坐标是(2017,1).二、填空题(每题3分,共24分)11.已知点A 在x 轴上,且OA =3,则点A 的坐标为____(3,0)或(-3,0)______.12.已知小岛A 在灯塔B 的北偏东30°的方向上,则灯塔B 在小岛A 的__南偏西30°___的方向上.13.对任意实数,点P (x ,x -2)一定不在第__二__象限.14.在平面直角坐标系中,一青蛙从点A (-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为____(1,2)___.15.如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是____(4,2)或(-4,2)或(-4,3)____.(第15题)(第16题) (第17题) (第18题)16.将正整数按如图的规律排列下去,若用有序数对(m ,n )表示m 排从左到右第n 个数.如(4,3)表示9,则(15,4)表示____109____.17.如图,A ,B 两点的坐标分别为(2,4),(6,0),点P 是x 轴上一点,且△ABP 的面积为6,则点P 的坐标为____(3,0)或(9,0)____.【解析】设点P 的坐标为(x ,0),根据题意得12×4×|6-x |=6,解得x =3或9,所以点P 的坐标为(3,0)或(9,0).18.(长沙期中)如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位得到△A 1B 1C 1,再作△A1B1C1关于x 轴对称图形△A 2B 2C 2.顶点A 2坐标是2,-3.【解析】解答本题的关键是根据网格结构作出对应点的位置,然后写出坐标.分别将点A 、B 、C 向右平移4个单位,作出△A 1B 1C 1,然后作出△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,如图所示,A 2坐标为(2,-3).三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(2,6),(4,6),(4,8),(2,8);(2)(3,0),(3,3),(3,6);(3)(3,5),(1,6);(4)(3,5),(5,6);(5)(3,3),(2,0);(6)(3,3),(4,0).解:画出的图形如图所示.20.小林放学后,先向东走了300 m再向北走200 m,到书店A买了一本书,然后向西走了500 m再向南走了100 m,到快餐店B买了零食,又向南走了400 m,再向东走了800 m到了家C.请建立适当的平面直角坐标系,并在坐标系中画出点A,B,C的位置.解:(答案不唯一)以学校门口为坐标原点、向东为x轴的正方向建立平面直角坐标系,各点的位置如图:21.(1)在坐标平面内画出点P(2,3);(2)分别作出点P关于x轴、y轴的对称点P1,P2,并写出P1,P2的坐标.解:(1)点P(2,3)如图所示;(4分)(2)点P1,P2如图所示,(6分)P1(2,-3),P2(-2,3).(8分)22.长阳公园有四棵古树A,B,C,D,示意图如图所示.(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来划为保护区,请你计算保护区的面积(单位:m).解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)四边形EFGH各顶点坐标分别为E(0,10),F(0,30),G(50,50),H(60,0),另外M(0,50),N(60,50),则保护区的面积S=S长方形MNHO -S△GMF-S△GNH-S△EHO=60×50-12×20×50-12×10×50-12×10×60=3 000-500-250-300=1 950(m2).23.如图,平面直角坐标系中,过点A(0,2)的直线a垂直于y轴,M (9,2)为直线a上一点.若点P从点M出发,以2cm/s的速度沿直线a向左移动;点Q从原点同时出发,以1cm/s的速度沿x轴向右移动,多久后线段PQ平行于y轴?解:设经过t s后PQ∥y轴,则AP=9-2t,OQ=t.∵PQ∥y轴,∴点P与点Q的横坐标相等,即AP=OQ,∴9-2t=t,解得t=3.故3s后线段PQ平行于y轴.24.如图,已知点P(2m-1,6m-5)在第一象限的角平分线OC上,AP⊥BP,点A在x轴上,点B 在y轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.解:(1)由题意,得2m-1=6m-5.解得m=1.所以点P的坐标为(1,1).(2)当PA不垂直于x轴时,作PD⊥x轴于点D,PE⊥y轴于点E,则△PAD≌△PBE,所以AD=BE.所以AD=BE.所以OA+OB=OD+AD+OB=OD+BE+OB=OD+OE=2,为定值.当PA⊥x轴时,显然PB⊥y轴,此时OA+OB=2,为定值.故OA+OB的值不发生变化,其值为2.25.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫作整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.(1)当m=3时,求点B的坐标的所有可能值;(2)当点B的横坐标为4n(n为正整数)时,用含n的代数式表示m.解:(1)如图①,当点B的横坐标分别为3或4时,m=3,即当m=3时,点B的坐标的所有可能值是(3,0),(4,0);(2)如图②,当点B的横坐标为4n=4时,n=1,此时m=0+1+2=3;当点B的横坐标为4n=8时,n=2,m=1+3+5=9;当点B的横坐标为4n=12时,n=3,m=2+5+8=15;…,当点B的横坐标为4n时,m=(n-1)+(2n-1)+(3n-1)=6n-3.。
黑龙江省牡丹江市2019年八年级上学期数学期末学业水平测试试题(模拟卷三)
黑龙江省牡丹江市2019年八年级上学期数学期末学业水平测试试题(模拟卷三)一、选择题1.上复习课时李老师叫小聪举出一些分式的例子,他举出了: 211133,22x xy x x y π++,,,,1m,其中正确的个数为( ).A .2B .3C .4D .52.设a >b >0,a 2+b 2=4ab ,则a b a b +-的值为( )A.3 C.23.计算 2x 2·(-3x 3)的结果是( )A .-6x 5B .6x 5C .-2x 6D .2x 6 4.使分式32x x +有意义的x 的取值范围为( ) A .x≠﹣2B .x≠2C .x≠0D .x≠±2 5.现有如图所示的卡片若干张,其中A 类、B 类为正方形卡片,C 类为长方形卡片,若用此三类卡片拼成一个长为2+a b ,宽为+a b 的大长方形,则需要C 类卡片张数为( )A .1B .2C .3D .46.已知点P(﹣2,4),与点P 关于x 轴对称的点的坐标是( )A .(﹣2,﹣4)B .(2,﹣4)C .(2,4)D .(4,﹣2)7.在平面直角坐标系中,点(2,-3)关于x 轴的对称点坐标是( )A .(2,3)B .(-2,-3)C .(-2,3)D .(-3,2)8.如图,点A ,C ,D ,E 在Rt △MON 的边上,∠MON=90°,AE ⊥AB 且AE=AB ,BC ⊥CD ,BH ⊥ON 于点H ,DF ⊥ON 于点F ,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为( )A .30B .50C .66D .809.如图,直线AB ,CD 相交于点O ,090DOF ∠=,OF 平分AOE ∠,若042BOD ∠=,则EOF ∠的度数为( )A.42°B.38°C.48°D.84°10.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2.若∠3=25°,为了使白球反弹后能将黑球直接撞入底袋中,那么击打白球时,必须保证∠1为( )A .65°B .75°C .55°D .85°11.如图,在ABC ∆中,90C =∠,30A ∠=,AB 的垂直平分线分别交,AB AC 于点,D E ,若4AE =,则EC 的长是( )A.4B.3C.2D.112.已知如下命题:①三角形的中线、角平分线、高都是线段;②三角形的三条高必交于一点;③三角形的三条角平分线必交于一点;④三角形的三条高必在三角形内.其中正确的是( )A.①②B.①③C.②④D.③④ 13.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形 14.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .1415.现定义一种运算“⊕”,对任意有理数m 、n,规定:m ⊕n=mn(m −n),如1⊕2=1×2(1−2)=−2,则(a+b) ⊕ (a −b)的值是( )A.2ab 2−2b 2B.2ab 2+2b 2C.2a 2b −2b 3D.2ab −2ab 2 二、填空题16.分式421m -的值是正整数,则整数m=_____. 17.如果a 2﹣b 2=8,且a+b=4,那么a ﹣b 的值是__.18.如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE=FE ,FC ∥AB ,CF=5,BD=2,点C 到直线AB 的距离为9,△ABC 面积为_________.19.如图,已知∠AOB =64°36′,OC 平分∠AOB ,则∠AOC =_____°.20.如图,已知是等边三角形,点、、、在同一直线上,,则________度.三、解答题21.计算:(1)(-2)0+(-1)2019-2 x (12)-2; (2)(-2a 2)2・a 4+6a 12÷(-2a 4). 22.如图,公园里有A 、B 两个花坛,A 花坛是长为20米,宽为916a 米的长方形,花坛中间16横竖各铺设一条小路(阴影部分),竖着的小路宽为0.5米,横着的小路宽为1米,剩余部分栽种花卉;B 花坛是直径为2a 米的半圆,其中修建一个半圆形水池(阴影部分),剩余部分栽种花卉,求B 花坛比A 花坛栽种花卉的面积大多少?(取π)23.如下图,ABC ∆和CDE ∆是等腰直接角三角形,90BAC CED BCE ∠=∠=∠=,点M 为BC 边上一点,连接EM ,BD 交于点N ,点N 恰好是BD 中点,连接AN .(1)求证:MN EN =;(2)连接AM 、AE ,请探究AN 与EN 的位置关系与数量关系。
新人教版初中数学八年级数学上册第一单元《三角形》测试卷(有答案解析)(3)
一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个2.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠3.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF4.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .85.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 6.做一个三角形的木架,以下四组木棒中,符合条件的是( ) A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm 7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( ) A .10 B .8 C .6 D .48.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90°9.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°10.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4011.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C .长方形四个角都是直角D .三角形的稳定性 12.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5二、填空题13.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .14.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.15.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.如图:70B ∠=︒,60A ∠=︒,将ABC 沿一条直线MN 折叠,使点C 落到1C 位置,则12∠-∠=______.18.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.19.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题21.ABC 中,AD 是BAC ∠的角平分线,AE 是ABC 的高.(1)如图1,若40B ︒∠=,60C ︒∠=,求DAE ∠的度数;(2)如图2()B C ∠<∠,试说明DAE ∠、B 、C ∠的数量关系.22.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 23.题情景:在三角形纸片内部给定-些点,满足这些点连同三角形三个顶点没有三个点在一条直线上,以这些点为顶点,将纸片剪成-些小三角形纸片,一共能得到几个小三角形?问题解决:甲同学绘制了如下三个图,分别在三角形内部取1个点、2个点,如下图所示:继续探究:在三角形内部取三个点,画出分割的图形,并经过观察计数完成表格: 内部点的个数1 2 3 n 得到三角形个数 3 5成表格:内部点的个数1 2 3 n 得到三角形个数n ,得到三角形的个数是x ,请直接写出x 与m 、n 的关系:______________.24.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.25.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)26.观察探究及应用.(1)如图,观察图形并填空:一个四边形有_______条对角线;一个五边形有_______条对角线;一个六边形有_______条对角线;(2)分析探究:由凸n 边形的一个顶点出发,可作_______条对角线,多边形有n 个顶点,若允许重复计数,共可作_______条对角线;(3)结论:一个凸n 边形有_______条对角线;(4)应用:一个凸十二边形有多少条对角线?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C ,∴∠B=∠D ,∴选项A 、B 正确;∵∠2=∠A+∠D ,∴2D∠>∠,∴选项C正确;没有条件说明C D∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 3.B解析:B【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【详解】由图可知,过点A作BC的垂线段AD,则ABC中,BC边上的高是AD.故选:B【点睛】本题主要考查了三角形的高的定义,熟记概念是解题的关键.4.A解析:A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:A.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.5.C解析:C【分析】根据三角形内角和180︒求出∠BAC,再由AD是ABC∆的角平分线求得∠DAC,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.6.B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A 中,4+5=9,排除;B 中,4+5>6,满足;C 中,5+6<12,排除;D 中,2+2=4,排除.故选:B .【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.A解析:A【分析】设这个多边形的边数为n ,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n ,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.8.D解析:D【分析】由题意得:∠A=30°,∠FDE=45°,利用平角等于180°,可得到∠ADF 的度数,在△AMD 中,利用三角形内角和为180°,可以求出∠AMD 的度数.【详解】解:∵∠B=60°,∴∠A=30°,∵∠BDE=75°,∠FDE=45°,∴∠ADF=180°-75°-45°=60°,∴∠AMD=180°-30°-60°=90°,故选D .【点睛】此题主要考查了三角形的内角和定理的应用,题目比较简单,关键是要注意角之间的关系.9.B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键. 10.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.11.D解析:D【分析】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断是利用了三角形的稳定性.【详解】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性,D 正确.故答案选D .【点睛】本题比较简单主要考查三角形稳定性的实际应用,通常要使一些图形具有稳定的结构,往往是将其转化为三角形而获得.12.B解析:B【分析】根据三角形的稳定性,要使它不变形,只需每一条边都分别在一个三角形之中即可【详解】解:要使六边形木框不变形,则需每一条边都分别在一个三角形之中,观察图形可得,至少还需要再钉上3根木条故选:B【点睛】本题考查了三角形的稳定性,观察图形如何使每一条边都分别在一个三角形之中是解决本题的关键二、填空题13.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可【详解】∵F 是CE 的中点∴∵E 是BD 的中点∴∴∴△ABC 的面积=故答案为:12【点睛】本题考查了三角形的面积主要利用了三角形的中线解析:12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵ F 是CE 的中点,23AEF S cm ∆=∴ 226ACE AEF S S cm ∆∆== ,∵ E 是BD 的中点,∴ ADE ABE S S ∆∆= ,CDE BCE S S ∆∆= , ∴12ACE ABC S S ∆∆= , ∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.15.2【分析】多边形的每一个内角都是108°则每个外角是72°多边形的外角和是360°这个多边形的每个外角相等因而用360°除以外角的度数就得到外角的个数外角的个数就是多边形的边数再根据从n 边形的一个顶解析:2【分析】多边形的每一个内角都是108°,则每个外角是72°.多边形的外角和是360°,这个多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.再根据从n 边形的一个顶点出发可引出(n−3)条对角线,连接这个点与其余各顶点,可以把一个多边形分割成(n−2)个三角形,依此作答.【详解】根据题意得:360°÷(180°−108°)=360°÷72°=5,那么它的边数是五,从它的一个顶点出发的对角线共有5−3=2条,故答案为:2.【点睛】此题考查了多边形内角与外角,根据多边形的外角和求多边形的边数是常用的一种方法,需要熟记.另外需要记住从n边形的一个顶点出发可引出(n−3)条对角线,把这个多边形分割成(n−2)个三角形.16.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.17.100°【分析】由三角形内角和定理可求得∠C的度数又由折叠的性质求得∠C1的度数然后由三角形外角的性质求得答案【详解】解:如图∵∠B=70°∠A=60°∴∠C=180°﹣∠B﹣∠C=50°由折叠可知解析:100°【分析】由三角形内角和定理,可求得∠C的度数,又由折叠的性质,求得∠C1的度数,然后由三角形外角的性质,求得答案.【详解】解:如图,∵∠B=70°,∠A=60°,∴∠C=180°﹣∠B﹣∠C=50°,由折叠可知:∠C1=∠C=50°,∵∠3=∠2+∠C1∠1=∠3+∠C,∴∠1=∠2+∠C1+∠C,∴∠1﹣∠2=2∠C =100°.故答案为:100°.【点睛】此题考查了折叠的性质、三角形内角和定理以及三角形外角等于和它不相邻的两个内角和的性质.此题难度适中,注意折叠中的对应关系,注意掌握转化思想的应用.18.540°【分析】连接GD根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA=540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG=∠E+∠F进而可求解【详解】解:连解析:540°【分析】连接GD,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA=540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG=∠E+∠F,进而可求解.【详解】解:连接GD,∠A+∠B+∠C+∠CDG+∠DGA=(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG=180°,∠2+∠E+∠F=180°,∠1=∠2,∴∠FGD+∠EDG=∠E+∠F,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA=540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键.19.360°【分析】根据三角形的外角性质和三角形的内角和求出即可【详解】解:∵∠BHI=∠A+∠B∠DIF=∠C+∠D∠FGH=∠E+∠F∴∠BHI+∠DIF+∠FGH=∠A+∠B+∠C+∠D+∠E+∠解析:360°【分析】根据三角形的外角性质和三角形的内角和求出即可.【详解】解:∵∠BHI=∠A+∠B ,∠DIF=∠C+∠D ,∠FGH=∠E+∠F ,∴∠BHI+∠DIF+∠FGH=∠A+∠B+∠C+∠D+∠E+∠F ,∵∠BHI+∠DIF+∠FGH=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点睛】本题考查了三角形的外角和定理,三角形的外角性质的应用,主要考查学生运用定理进行推理的能力,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的外角和等于360°.20.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC 又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于 解析:49【分析】直接根据高相等的三角形,面积之比等于底之比.【详解】解:∵AD 是BC 边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆ ∵13AE AD =E AB ∆和BDE ∆的高相等 ∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49.此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系.三、解答题21.(1)11°;(2)∠DAE=12(∠C-∠B)【分析】(1)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC-∠EAC,即可得出;(2)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC-∠EAC,即可得出;【详解】解:(1)∵∠B=40°,∠C=62°,∴∠BAC=180°-∠B-∠C=180°﹣40°﹣62°=78°,∵AD是∠BAC的平分线,∴∠DAC=12∠BAC=39°,∵AE是BC边上的高,在直角△AEC中,∵∠EAC=90°-∠C=90°﹣62°=28°,∴∠DAE=∠DAC-∠EAC=39°﹣28°=11°;(2)∵∠BAC=180°-∠B-∠C,∵AD是∠BAC的平分线,∴∠DAC=12∠BAC=90°-12(∠B+∠C),∵AE是BC边上的高,在直角△AEC中,∵∠EAC=90°-∠C,∴∠DAE=∠DAC-∠EAC=90°-12(∠B+∠C)-(90°-∠C)=12(∠C-∠B);【点睛】本题考查的是三角形的内角和定理,三角形的高、角平分线的性质,学生应熟练掌握三角形的高、中线和角平分线这些基本知识,能灵活运用解决问题.22.﹣2a+4b﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.解:∵a ,b ,c 为ABC 的三边,∴a+b >c ,b+c >a ,a+c >b∴|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b ﹣c|=﹣[a ﹣(b+c )]+2[b ﹣(c+a )]+(a+b ﹣c )=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b ﹣2c ﹣2a+a+b ﹣c=﹣2a+4b ﹣2c .【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理. 23.继续探究:图见解析,7,21n ;拓展联系:4,6,8,22n +;概括提升:22x n m =+-【分析】继续探究:由题意得出这些三角形的个数是从3开始的连续奇数,据此可得结论; 拓展联系:分别画出图形,得到相关数据,总结规律即可;概括提升:根据n 边形的内部的m 个点,共(m+n )个点作为顶点,可把原n 边形分割成(2m+n-2)个互不重叠的小三角形,据此可得.【详解】解:继续探究:如图,在三角形纸片内部给定1个点,得到3个三角形; 在三角形纸片内部给定2个点,得到5个三角形; 在三角形纸片内部给定3个点,得到7个三角形; 在三角形纸片内部给定n 个点,得到(2n+1)个三角形;故填表得: 内部点的个数1 2 3 n 得到三角形个数3 5 7 2n+1在四边形纸片内部给定1个点,得到4个三角形; 在四边形纸片内部给定2个点,得到6个三角形; 在四边形纸片内部给定3个点,得到8个三角形; 在四边形纸片内部给定n 个点,得到(2n+2)个三角形;填表如下: 内部点的个数1 2 3 n 得到三角形个数4 6 8 (2n+2)(3)设纸片的边数为m,内部给定1个点,得到m 个三角 形, 内部给定2个点,得到(m+2)个三角形, 内部给定3个点,得到(m+2×2)个三角形, 内部给定n 个点,得到(2n+m-2)个三角形, ∴x=2n+n-2.【点睛】此题考查图形的变化规律性;得到三角形的个数与三角形内点的个数的变化规律是解决本题的关键.24.110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE ∥AD ,∴∠ABE=∠BAD=20°,∵BE 平分∠ABC ,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.25.(1)150︒ (2)60︒;理由见解析【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A ∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X ∠+∠=︒-∠18090=︒-︒90=︒,∴ABX ACX ∠+∠ABC XBC ACB XCB =∠-∠+∠-∠()()ABC ACB XBC XCB =∠+∠-∠+∠15090=︒-︒60=︒,故答案为:60°.【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解决本题的关键. 26.(1)2;5;9;(2)(n-3);n(n-3);(3)(3)2n n -;(4)54 【分析】(1)根据图形数出对角线条数即可;(2)根据所画图形可推导出凸n 边形从一个顶点出发可引出(n-3)条对角线,进而可得共可作n(n-3)条对角线;(3)由(2)可知,任意凸n 边形的对角线有条(3)2n n -,即可解答; (4)把n=12代入(3)计算即可.【详解】解:(1)根据图形数出对角线条数,一个四边形有2条对角线,一个五边形有5条对角线,一个六边形有9对角线;故答案为:2;5;9;(2)∵从凸4边形的一个顶点出发,可作1条对角线,从凸5边形的一个顶点出发,可作2条对角线,从凸6边形的一个顶点出发,可作3条对角线,从凸7边形的一个顶点出发,可作4条对角线,…∴从凸n 边形从一个顶点出发可引出(n-3)条对角线,若允许重复计数,共可作n(n-3)条对角线;故答案为:(n-3);n(n-3).(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,故答案为:(3)2n n-.(4)把n=12代入(3)2n n-计算得:1292⨯=54.故一个凸十二边形有54条对角线.【点睛】本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学同步系列测试卷(三)
(11.3 用函数观点看方程(组)与不等式)
(满分:150分 考试时间:90分钟)
班级 姓名 座号 成绩 一、细心填一填(每小题4分,共48分)
1.当x 时,直线y =3x -6上的点在x 轴上方.
2.如果一次函数y =ax +b 与x 轴交于点(3,0),则方程ax +b =0的解是 .
3.已知 是方程组 的解,那么一次函数y =73x -23
与y =-2x +8的交点坐标为 .
4.一次函数y =kx +8与x 轴交于点(3,0),则不等式kx +8<0的解集是 .
5.已知一次函数y =-2x +2,如果函数值y ≥0,则自变量x 的取值范围是 .
6.一元一次方程2x -3=3x -2的解可以看成是直线 与直线 的交点的横坐标.
7.当b = 时,直线y =2x +b 与直线y =3x -4的交点在x 轴上.
8.设一次函数y =kx+b 的图象过点A(2,-1)和点B ,其中B 是直线y =-
12
x +3与y 轴的交点,则函数解析式为 .
9.已知一次函数y =-2x -3,如果-3≤y ≤3,则x 的取值范围是 .
10.已知一次函数y =2x -3,当1<x <2时,函数值y 的取值范围是 .
11.当x 时,函数y =12
x -6的图象上的点在y =x +1的图象上的点的上方. 12.已知一次函数:(1)图象不经过第二象限,(2)图象经过点(2,-5),请写出一个同时满足(1)和(2)的函数 .
二、精心选一选(每小题4分,共24分)
13.一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( )
A.y >0
B.y <0 C .-2<y <0 D. y <-2
14.结合正比例函数y =4x 的图象回答:当x >1时,y 的取值范围是( )
A.y <1
B.1≤y <4
C.y =4
D.y >4
15.如图一次函数y =kx+b 的图象经过A 、B 两点,则kx +b >0的解集是
( )
A.x >0
B.x >2
C.x >-3
D.-3<x <2
16. 小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相
应的两个一次函数的图象 ,如图所示他解的方程组是( )
A. B. C. D. 17.已知直线y =x +2k +1与直线y =-12
x +2的交点在第一象限,则k 的取值范围是( ) A .-52<k <12 B.-12<k <12 C.k >12 D.k >-12
18.如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的
函数图象,下列说法:(1)买2件时甲、乙两家售价一样;(2)买1件时买乙
家的合算;(3)买3件时买甲家的合算;(4)乙家的1件商品售价约为3元.其
中正确的说法是( )
A.①②
B.②③④
C.②③
D.①②③
三、耐心解一解(19~21每题12分,第22~24题每题14分共78分) x =2 y =4 7x -3y =2 2x +y =8 12 、y =-2x+2 y =12x -1 =-2x+2 =-x y =3x -8 y =12x -3 y =-2x+2 y =-12x -1
19.自变量x的取值范围是什么条件时,函数y=3x+8的值满足下列条件.
(1)y=0 (2)y=-4 (3)y>0 (4)y<2
20.已知二元一次方程2x-3y+6=0,用x的代数式表示y,并把y看作x的函数.画出它的图象,根据
图象回答.
(1)当y<0时,对应的x的取值范围是什么?它是哪个不等式的解集;
(2)当x的取值范围是x≥6时,对应的y的取值范围是什么?
(3)当y的取值范围是-6<y≤0时,对应的x的取值范围是什么?
21.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元,由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元,设现在该厂每月生产产品x件,每月纯利润y元.
(1)求出y与x的函数关系式(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
22.学校准备购置一批电脑,甲、乙两公司的报价相同,且都表示对学校优惠,甲公司表示每台均按报价的8.5折优惠;乙公司表示购买10台以上部分按7折优惠.若两公司的电脑品牌、质量和售后服务都相同,(1)请你分别列出两公司购买电脑的总费用与台数的函数关系式.(2)比较一下,帮助学校作出决策.
23.为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与支付水费y(元)
的函数关系如图.
(1)求出当月用水量不超过5吨时,y与x之间的函数关系式.
(2)某居民某月用水量为8吨,求应付的水费是多少?
24.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,
请根据图象所提供的信息解答下列问题:
(1)乙队开挖到30m时,用了h,开挖6h时甲队比乙队多挖了m.
(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;
②乙队在2≤x≤6的时段内,y与x之间的函数关系式.
(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?
四、加试题,专题突破、能力提升(20分)
某工厂用自动控制加工机制作一批工件,该机器运动过程分加油过程和加工过程;加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复,已知机器需运行185分钟才能将这批工件加工完,下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图像,根据图像回答下列问题:
(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)
之间的函数关系式(不必写出自变量x的取值范围);
(2)机器运行多少分钟时,第一个加工过程停止?
(3)加工完这批工件,机器耗油多少升?。