省南通市实验中学2015届中考数学二模考试试题
2015年江苏省南通市中考数学试卷(含解析版).doc
2015年江苏省南通市中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1064.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.218.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣29.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)= .14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD= cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED ⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q 分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2015年江苏省南通市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图..【分析】根据俯视图是从上面看所得到的图形判断即可.【解答】解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()。
2015年江苏省南通市中考数学试题(解析版)
2015年江苏省南通市中考数学试题一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.点评:考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图..分析:根据俯视图是从上面看所得到的图形判断即可.解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将7700000用科学记数法表示为7.7×106.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念求解.解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)考点:三角形三边关系..分析:根据三角形的三边关系对各选项进行逐一分析即可.解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2考点:解直角三角形;坐标与图形性质..分析:设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.解答:解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.点评:本题考查了三角函数的定义,理解正切函数的定义是关键.7.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21考点:利用频率估计概率..分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:由题意可得,×100%=20%,解得,a=15.故选:B.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2考点:一元一次不等式的整数解..分析:表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<2故选D.点评:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.9.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个考点:一次函数的应用..分析:根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.解:由图可得,两人在1小时时相遇,行程均为10km,故②正确;出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,故①错误;出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙的行程比甲多3km,故③错误;乙比甲先到达终点,故④错误.正确的只有①.故选A.点评:本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2考点:相似三角形的判定与性质;勾股定理;圆周角定理..分析:连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AB ﹣DE求解即可得出答案.解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AB﹣DE=5﹣=2.8.点评:此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BE D.二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=(2m+n)(2m﹣n).考点:因式分解-运用公式法..专题:计算题.分析:原式利用平方差公式分解即可.解答:解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.考点:根与系数的关系..分析:根据两根之和等于一次项系数与二次项系数商的相反数作答即可.解答:解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.点评:本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)=y2.考点:整式的混合运算..分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y2点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)考点:方差;折线统计图..分析:根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.解答:解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.点评:本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.考点:垂径定理;勾股定理..分析:根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.解答:解:由垂径定理,得AC=AB=12cm.有半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.点评:本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.考点:等腰三角形的性质..分析:设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.解答:解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.点评:本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.考点:相似三角形的判定与性质;矩形的性质..分析:首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.解答:解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.点评:本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.考点:抛物线与x轴的交点..分析:首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.解答:解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根,∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>,设fx=ax2﹣3x﹣1∵实数根都在﹣1和0之间,∴当a>0时,如图①,f(﹣1)>0,f(0)>0f(0)=a×02﹣3×0﹣1=﹣1<0,∴此种情况不存在;当a<0时,如图②,f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.点评:本题主要考查了一元二次方程根的情况的判别及抛物线与x轴的交点,数形结合确定当x=0和当x=﹣1时函数值的取值范围是解答此题的关键.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.考点:实数的运算;零指数幂;负整数指数幂..专题:计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).考点:解直角三角形的应用-方向角问题..专题:计算题.分析:过P作PC垂直于AB,在直角三角形ACP中,利用锐角三角函数定义求出AC与PC的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+CB求出AB的长即可.解答:解:过P作PC⊥AB于点C,在Rt△ACP中,PA=40海里,∠APC=45°,sin∠APC=,cos∠APC=,∴AC=AP•sin45°=40×=40(海里),PC=AP•cos45°=40×=40(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC=,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.点评:此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图..分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.解答:解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.考点:二元一次方程组的应用..分析:1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解答:解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.点评:本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.考点:反比例函数与一次函数的交点问题..分析:(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.解答:解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.考点:切线的性质;扇形面积的计算..分析:(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.解答:解:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵PA、PB是⊙O的切线,∴APB=30°,在RT△APO中,tan30°=,∴AP===4cm,∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).点评:此题考查了切线的性质,解直角三角函数,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥B D.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.考点:平行四边形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形..专题:证明题.分析:(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.解答:证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.点评:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含30度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?考点:二次函数的应用..分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.解答:解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.点评:此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x (0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.考点:几何变换综合题..分析:(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.解答:(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DA B.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,梦想不会辜负每一个努力的人∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PE B.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;TA=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.点评:本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.考点:二次函数综合题..专题:综合题.分析:(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt△CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.解答:(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),梦想不会辜负每一个努力的人 21 ∴ME =﹣x ,CE =5﹣(x 2+6x +5)=﹣x 2﹣6x ,∴=,整理得x 2+4x =0,解得x 1=0(舍去),x 2=﹣4,∴点M 的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P (m ,m ﹣1),Q (m +1,m ), ∴PQ 2=(m +1﹣m )2+(m ﹣m +1)2=2,OQ 2=(m +1)2+m 2=2m 2+2m +1,OP 2=m 2+(m ﹣1)2=2m 2﹣2m +1, 当PQ =OQ 时,2m 2+2m +1=2,解得m 1=,m 2=;当PQ =OP 时,2m 2﹣2m +1=2,解得m 1=,m 2=; 当OP =OQ 时,2m 2+2m +1=2m 2﹣2m +1,解得m =0,综上所述,m 的值为0,,,,.点评: 本题考查了二次函数的综合题:熟练掌握二次函数图象和一次函数图象上点的坐标特征、二次函数的性质,会求抛物线与直线的交点坐标;理解坐标与图形性质,会利用两点间的距离公式计算线段的长;会运用相似比计算线段的长;能运用分类讨论的思想解决数学问题.。
江苏省南通市2015-2016年中考二模数学试题及答案 (1)
2014 年某电商在双 11 售出手机各品牌占有率 扇形统计图
其它 40%
A 32% B 16%
C
25.如图,点 A、B、C、D、E 在⊙ O 上, AB CB 于点 B , tan D 3 , BC 2 , H 为 CE 延长线上一点,且 AH 10 , CH 5 2 . (1)求证: AH 是⊙O 的切线; (2)若点 D 是弧 CE 的中点,且 AD 交 CE 于点 F ,求 EF 的长. D F C O A
22.列方程或方程组解应用题 小明到学校的小卖部为班级运动会购买奖品,若购买 4 根荧光笔和 8 个笔记本需要 100 元,若购买 8 根荧光笔和 4 个笔记本需要 80 元,请问荧光笔和笔记本的单价各是多少 元? 四、解答题(本 题共 20 分,每小题 5 分)
23.如图,在 ABC 中, M , N 分别是边 AB 、 BC 的中点, E 、 F 是边 AC 上的三等 分点,连接 ME 、 NF 且延长后交于点 D ,连接 BE 、 BF (1)求证:四边形 BFDE 是平行四边形 (2)若 AB 3 2 , A 45 , C 30 ,求:四边形 BFDE 的面积
A
15.综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面 镜子放在与假山 AC 距离为 21 米的 B 处,然后沿着射线 CB 退后到点 E ,这时恰好在镜子里看到山头 A ,利用皮尺测量 BE 2.1 米,若小 宇的身高是 1.7 米,则假山 AC 的高度为________________.
AB 2 2 , GE 2 ,△ EGF 绕 G 点逆时针方向旋转 角度,请直接写出旋转过 程中 BH 的最大值.
E
E H A G O D
A
2015年南通市实验中学二模试卷
2015年初三数学第二次模拟考试中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应.....位置..上)1.四个数﹣1,0,21,2中为无理数的是()A.2B.0C.21D.1-.2.下列运算中,结果是a6的式子是()A. 32aa⋅B.612aa-C.6)(a-D.33)(a3.将5.62×10-4用小数表示为()A. 0.005 62B.0.000 562C.0..000 056 2D.0.000 005 624.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C. 70°D.80°5.如图,该几何体的主视图应为()(第5题)第4题C.A.B.D.B.C.D.第10题图6.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为21,把△EFO 缩小,则点E 的对应点E ′的坐标是 ( ) A . (-2,1)B . (-2,1)或(2,-1)C . (-8,4)或(8,-4)D . (-8,4)7.若代数式1-x x有意义,则实数x 的取值范围是 ( ) A . 1≠xB . x ≥0C . x >0D . x ≥0且1≠x8. 已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形 9.如图,∠BAC =45°,BA =6,要使△ABC 唯一确定, 那么BC 的长度满足的条件是 ( ) A . BC =23 B .623<≤BCC .BC >6D . BC =23或BC >610.如图,正方形OABC 的一个顶点O 是平面直角坐标系的原 点,顶点A ,C 分别在y 轴和x 轴正半轴上, P 为边OC 点,且PQ ⊥BP , PQ =BP ,当点P 从点C 运动到点O 时,可知点Q 始终在某函数图象上运动,则其函数图象是 ( ) A .直线的一部分B .圆的一部分C .双曲线的一部分D .抛物线的一部分二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11. 因式分解:a a 22-= .12.一个正多边形的每个外角都是36°,这个正多边形的边数是 . 13.把角度化为度、分的形式,则20.3°=20°′.14.已知圆锥的侧面积为10平方厘米,底面半径为2厘米,则圆锥的母线长 为 厘米.第9题15.如图,AB 是⊙O 的直径,BC 是弦,∠ABC =30°.过圆心O 作OD ⊥BC 交BC 于点D ,连接DC ,则∠DCB = °.16.若041=-+-a b ,且一元二次方程02=++b ax kx 有两个相等的实数根,则k 的值为 .17. 如图1,在同一直线上,甲自点A 开始追赶匀速前进的乙,且图2表示两人之间的距离与所经过时间的函数关系.若乙的速度为1.5 m/s ,则经过40 s ,甲自点A 移动了 米.18.二次函数c bx ax y ++=2的顶点在第一象限,且过(0,1),(-1,0),则c b a S ++=212的范围是 . 三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:()|145sin 2|3211024-+-+⎪⎭⎫ ⎝⎛-⨯-- π;(2)化简:22)11(ba abb a b a -÷+--.(第题)ABCOD图1(第17题)(s )图220.(本小题满分5分)解方程:xx 332=-.21.(本小题满分10分) 如图,四边形ABCD 是平行四边形,E 、F 是对角线AC 上的两点,∠1=∠2. (1)求证:AE =CF ;(2)求证:四边形EBFD 是平行四边形.22.(本小题满分10分)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x ,不放回再抽取第二张,将数字记为y ,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x ,y )在函数xy 4=图象上的概率.23.(本小题满分10分) 某校260名学生参加植树活动,要求每人植4~7棵,活动 结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C : 6棵;D :7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形 图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由; (2)写出这20名学生每人植树量的众数、中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵.24. (本小题满分8分)如图,AB 是⊙O 的直径,过⊙O 上的点C 作切线交AB 的延 长线于点D ,∠D =30º. (1)求∠A 的度数;(2)过点C 作CF ⊥AB 于点E ,交⊙O 于点F ,CF =求»BC 的长度(结果保留π) .图1图2·O ABDE CF(第24题)25.(本小题满分8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A 处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1︰3,AB=10米,AE=15米.(i=1︰3是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(结果保留根号).26.(本小题满分8分)某水果店总共筹备了5.1万资金计划购入一些时令水果销售(品种及价格如下表所示).现租用一辆载货量2.4吨的小货车进货(租金600元),要求将余下资金全部用于采购水果并使得所购水果装满货车.设进凤梨x㎏,进芒果y㎏,(2)应该怎样安排进货才能使水果店在销售完这批水果后获利最多?此时最大销售利润为多少元?如图,已知∠POQ=60°,点A、B分别在射线OQ、OP上,且OA=2,OB=4,∠POQ 的平分线交AB于C,一动点N从O点出发,以每秒1个单位长度的速度沿射线OP向点B作匀速运动,MN⊥OB交射线OQ于点M.设点N运动的时间为t(0<t<2)秒.(1)求证:△ONM∽△OAB;(2)当MN=CM时,求t的值;(3)设△MNC与△OAB重叠部分的面积为S.请求出S关于t的函数表达式,并求出S的最大值.O如图1,Rt△ABC的斜边AB在x轴上,AB=4,点A的坐标为(1,0),点C在y轴的负半轴上.若抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,(1)求该抛物线的函数表达式;(2)如图2,动直线l:y=+m交抛物线于D,E,若DE=10,求m的值;(3)若以动直线l:y+m为对称轴,线段BC关于直线l的对称线段B′C′与二次函数图象有交点,求m的取值范围.备用图。
2015年江苏省南通市中考数学试卷(含详细答案)
数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前江苏省南通市2015年初中毕业、升学考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6m 时水位变化记作6m +,那么水位下降6m 时水位变化记作 ( ) A .3m -B .3mC .6mD .6m - 2.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( ) A .70.7710⨯B .77.710⨯C .60.7710⨯D .67.710⨯4.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD5.下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4,4,80()a a a a > 6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )ABC .12D .27.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为( ) A .12B .15C .18D .218.关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( )A .32b --<<B .32b --<≤C .32b --≤≤D .32b --≤<9.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有 ( ) A .1个B .2个C .3个D .4个10.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为 ( )A .2.5B .2.8C .3D .3.2第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 11.因式分解224m n -= .12.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x +的值等于 . 13.计算2(2())x y x x y ---= .14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)15.如图,在O 中,半径OD 垂直于弦AB ,垂足为C ,13cm OD =,24cm AB =,则CD = cm .第15题图第16题图第17题图16.如图,ABC △中,D 是BC 上一点,AC AD DB ==,102BAC =∠,则ADC =∠ 度. 17.如图,矩形ABCD 中,F 是DC 上一点,BF AC ⊥,垂足为E ,12AD AB =,CEF △的面积为1S ,AEB △的面积为2S ,则12SS 的值等于 .18.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在1-和0之间(不包括1-和0),则a 的取值范围是 . 三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:2021()((33)2)----;(2)解方程1325x x =+.20.(本小题满分8分)如图,一海轮位于灯塔P 的西南方向,距离灯塔A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60方向上的B 处,求航程AB 的值(结果保留根号).21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组()79.589.5”的扇形的圆心角为 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为 .22.(本小题满分8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(本小题满分8分)如图,直线y mx n =+与双曲线ky x=相交于2()1,A -,()2,B b 两点,与y 轴相交于点C .(1)求,m n 的值;(2)若点D 与点C 关于x 轴对称,求ABD △的面积.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)24.(本小题满分8分)如图,,PA PB 分别与O 相切于,A B 两点,60ACB =∠. (1)求P ∠的度数;(2)若O 的半径长为4cm ,求图中阴影部分的面积.25.(本小题满分8分)如图,在□ABCD 中,点,E F 分别在,AB DC 上,且ED DB ⊥,FB BD ⊥. (1)求证:AED CFB △≌△;(2)若30A =∠,45DEB =∠,求证:DA DF =.26.(本小题满分10分) 某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?27.(本小题满分13分)如图,Rt ABC △中,90C =∠,15AB =,9BC =,点,P Q 分别在,BC AC 上,3CP x =,403()CQ x x =<<.把PCQ △绕点P 旋转,得到PDE △,点D 落在线段PQ 上. (1)求证:PQ AB ∥;(2)若点D 在BAC ∠的平分线上,求CP 的长;(3)若PDE △与ABC △重叠部分图形的周长为T ,且1216T ≤≤,求x 的取值范围.28.(本小题满分13分)已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线l :1y x =-. (1)求证:点P 在直线l 上;(2)当3m =-时,抛物线与x 轴交于,A B 两点,与y 轴交于点C ,与直线l 的另一个交点为,Q M 是x 轴下方抛物线上的一点,ACM PAQ =∠∠(如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共34页)数学试卷 第8页(共34页)江苏省南通市2015年初中毕业、升学考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】根据正数和负数具有相反意义的量,水位上升记为“+”,水位下降记为“-”,所以水位下降6m时水位变化记作6m -,故选D 。
2015年江苏省南通市中考数学试题与答案
江苏省南通市2015年中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015?南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3mB.3mC.6mD.﹣6m2.(3分)(2015?南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个3.(3分)(2015?南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000 用科学记数法表示为()7B.7.7×107C.0.77×106D.7.7×106A.0.77×104.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2015?南通)下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)6.(3分)(2015?南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)(2015?南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()1A .12B .15C .18D .218.(3分)(2015?南通)关于x 的不等b >0恰有两个负整数b 的取) A .﹣3<b <﹣2B .﹣3<b ≤﹣2C .﹣3≤b ≤﹣2D .﹣3≤b <﹣2 9.(3分)(2015?南通)在20k m 越野赛中,甲乙两选手的行程y (单位:k m )x (单 位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①,甲的速度小于乙的速度;②1小时,两人为10k m ;③1.5小时,甲 的行程比乙多3km ;④甲比乙先到达终点.其中正确的有() A .1个B .2个C .3个D .4个 10.(3分)(2015?南通)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC , 交B C 于点E ,A B =6,A D =AE 的长为() A .2.5B .2.8C .3D .3.2二.填空题(每小题3分,共24分) 11.(3分)(2015?南通)因式分解4m2﹣n 2=(2m+n )(2m ﹣n ). 12.(3分)(2015?南通)已知方程2x﹣2. 13.(3分)(2015?南通)计算(x ﹣y )2﹣x (x ﹣2y )=y2. 14.(3分)(2015?南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息 判8次射击中成绩甲(填“甲”或“乙”) 215.(3分)(2015?南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.16.(3分)(2015?南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.17.(3分)(2015?南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)(2015?南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.三.解答题(共10小题,共96分)19.(10分)(2015?南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015?南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015?南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015?南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015?南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)(2015?南通)如图,PA ,PB 分别与⊙O 相切于A ,B 两点,∠ACB=60°.(1)求∠P 的度数;(2)若⊙O的为4cm,求图中阴影部分.25.(8分)(215?南通)如?ABCD中,点E,FAB ,DC 上,且ED ⊥DB , FB⊥BD . (1)求证:△AED ≌△CFB ; (2)若∠A=30°,∠DEB=45°,求证:DA=DF . 626.(10分)(2015?南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若 一次性购过10件时,售价不变;若一次性过10件时,每多买1件,所买的每 件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x 件时, 该网店利y 元. (1)求y 与x 的函数关系式,并写出x 的取; (2)顾客一次性购买多少件时,该网店利最多? 27.(13分)(2015?南通)如图,Rt △ABC 中,∠C=90°,AB=15,BC=9,点P ,Q 分别在 BC ,AC 上,CP=3x ,CQ=4x (0<x <3).把△PCQ 绕点P 旋转,得到△PDE ,点D 落在线 段PQ 上.(1)求证:PQ ∥AB ;(2)若点D 在∠BAC 的平分线上,求CP 的长;(3)若△PDE与△ABC重叠部分图T,且12≤T≤16728.(13分)(2015?南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.WORD格式。
2015年江苏省南通市中考数学试卷与解析
2015年江苏省南通市中考数学解析版一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m 时水位变化记作+6m ,那么水位下降6m 时水位变化记作( )A . ﹣3mB .3m C . 6m D . ﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有( )A . 1个B . 2个C . 3个D . 4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( )A . 0.77×107B . 7.7×107C . 0.77×106D . 7.7×1064.(3分)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是( )A . 5,6,10 B. 5,6,11 C . 3,4,8 D . 4a ,4a ,8a (a >0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )A .B .C .D .2 7.(3分)(2015•南通)在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值约为( )A . 12B . 15C . 18D . 21 8.(3分)(2015•南通)关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( ) A . ﹣3<b <﹣2 B . ﹣3<b ≤﹣2 C . ﹣3≤b ≤﹣2 D . ﹣3≤b <﹣29.(3分)(2015•南通)在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的有( )A.1个B.2个C.3个D.4个10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3D.3.2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)=.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2015年江苏省南通市中考数学解析版一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解答:解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.点评:考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)考点:简单几何体的三视图.分析:根据俯视图是从上面看所得到的图形判断即可.解答:解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7700000用科学记数法表示为7.7×106.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)考点:三角形三边关系.分析:根据三角形的三边关系对各选项进行逐一分析即可.解答:解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.6.(3分)考点:解直角三角形;坐标与图形性质.分析:设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.解答:解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.点评:本题考查了三角函数的定义,理解正切函数的定义是关键.7.(3分)考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,×100%=20%,解得,a=15.故选:B.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.(3分)考点:一元一次不等式的整数解.分析:表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.解答:解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<2故选D.点评:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.9.(3分)考点:一次函数的应用.分析:根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.解答:解:由图可得,两人在1小时时相遇,行程均为10km,故②正确;出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,故①错误;出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙的行程比甲多3km,故③错误;乙比甲先到达终点,故④错误.正确的只有①.故选A.点评:本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.10.(3分)考点:相似三角形的判定与性质;勾股定理;圆周角定理.分析:连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AB﹣DE求解即可得出答案.解答:解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AB﹣DE=5﹣=2.8.点评:此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.二.填空题(每小题3分,共24分)11.(3分)考点:因式分解-运用公式法.专题:计算题.分析:原式利用平方差公式分解即可.解答:解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(3分)考点:根与系数的关系.分析:根据两根之和等于一次项系数与二次项系数商的相反数作答即可.解答:解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.点评:本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键.13.(3分)考点:整式的混合运算.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y2点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.(3分)考点:方差;折线统计图.分析:根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.解答:解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.点评:本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)考点:垂径定理;勾股定理.分析:根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.解答:解:由垂径定理,得AC=AB=12cm.有半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.点评:本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.16.(3分)考点:等腰三角形的性质.分析:设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.解答:解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.点评:本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.17.(3分)考点:相似三角形的判定与性质;矩形的性质.分析:首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.解答:解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.点评:本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.18.(3分)考点:抛物线与x轴的交点.分析:首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.解答:解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根,∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>,设f x=ax2﹣3x﹣1∵实数根都在﹣1和0之间,∴当a>0时,如图①,f(﹣1)>0,f(0)>0f(0)=a×02﹣3×0﹣1=﹣1<0,∴此种情况不存在;当a<0时,如图②,f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.点评:本题主要考查了一元二次方程根的情况的判别及抛物线与x轴的交点,数形结合确定当x=0和当x=﹣1时函数值的取值范围是解答此题的关键.三.解答题(共10小题,共96分)19.(10分)考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)考点:解直角三角形的应用-方向角问题.专题:计算题.分析:过P作PC垂直于AB,在直角三角形ACP中,利用锐角三角函数定义求出AC与PC 的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+CB求出AB的长即可.解答:解:过P作PC⊥AB于点C,在Rt△ACP中,PA=40海里,∠APC=45°,sin∠APC=,cos∠APC=,∴AC=AP•sin45°=40×=40(海里),PC=AP•cos45°=40×=40(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC=,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.点评:此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图.分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.解答:解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.22.(8分)考点:二元一次方程组的应用.分析:1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解答:解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.点评:本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.(8分)考点:反比例函数与一次函数的交点问题.分析:(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.解答:解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质.24.(8分)考点:切线的性质;扇形面积的计算.分析:(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.解答:解:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵PA、PB是⊙O的切线,∴APB=30°,在RT△APO中,tan30°=,∴AP===4cm,∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).点评:此题考查了切线的性质,解直角三角函数,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用.25.(8分)考点:平行四边形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形.专题:证明题.分析:(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.解答:证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.点评:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含30度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键.26.(10分)考点:二次函数的应用.分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.解答:解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.点评:此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.27.(13分)考点:几何变换综合题.分析:(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.解答:(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PEB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;TA=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.点评:本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.28.(13分)考点:二次函数综合题.专题:综合题.分析:(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt△CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.解答:(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴=,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q(m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1=,m2=;当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为0,,,,.b点评:本题考查了二次函数的综合题:熟练掌握二次函数图象和一次函数图象上点的坐标特征、二次函数的性质,会求抛物线与直线的交点坐标;理解坐标与图形性质,会利用两点间的距离公式计算线段的长;会运用相似比计算线段的长;能运用分类讨论的思想解决数学问题.b。
江苏省南通市2015年初中毕业、升学考试数学试题(附答案)
江苏省南通市2015年初中毕业、升学考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6 m时水位变化记作+6 m,那么水位下降6 m时水位变化记作()A.-3 m B.3 m C.6 m D.-6 m答案:D 【解析】本题考查正负数的意义,难度较小.因为正负数可以表示一组相反意义的量,故水位下降6 m的变化可以记作-6 m,故选D.2.下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个答案:B 【解析】本题考查三视图,难度较小.俯视图是从物体上面看到的几何体的形状,三棱柱从上面看是三角形;圆柱从上面看是圆;四棱锥从上面看是四边形;球从上面看是圆,俯视图是圆的几何体有2个,故选B.3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106答案:D 【解析】本题考查用科学记数法表示较大的数,难度较小.科学记数法是将一个数写成a×10n的形式,其中1≤|a|<10,n为整数.当原数的绝对值大于等于10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值小于1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).7700000=7.7×106,故选D.4.下列图形中既是轴对称图形又是中心对称图形的是()A B C D答案:A 【解析】本题考查轴对称图形与中心对称图形的概念,难度较小.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.A 既是轴对称图形,又是中心对称图形,正确;B 是轴对称图形,不是中心对称图形,错误;C 是轴对称图形,不是中心对称图形,错误;D 是轴对称图形,不是中心对称图形,错误,故选A .5.下列长度的三条线段能组成三角形的是 ( )A .5,6,10B .5,6,11C .3,4,8D .4a ,4a ,8a (a >0)答案:A 【解析】本题考查三角形的三边关系,难度较小.根据“三角形的任意两边之和大于第三边”,排除B ,C ,D ,故选A .6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是 ( )A .B .C .D .2答案:C 【解析】本题考查三角函数,难度较小.点(2,1)到x 轴的距离是1,到y 轴的距离2,故,故选C .7.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 ( )A .12B .15C .18D .21答案:B 【解析】本题考查频率与概率的关系、概率公式,难度中等.当试验次数很多时,可以用频率来估计概率,故摸到红球的概率是20%,即,解得a=15,故选B.8.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-2答案:D 【解析】本题考查解不等式的应用,难度中等.∵x-b>0,∴x>b,∵x有两个负整数解,故这两个负整数一定是-1和-2,∴-3≤b<-2,故选D.9.在20 km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10 km;③出发后1.5小时,甲的行程比乙多3 km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个答案:C 【解析】本题考查一次函数图象的应用,难度中等.根据图象可得甲的速度不变是,乙出发0.5 h前的速度是,0.5 h-1 h的速度是,即乙相遇前先比甲快,后比甲慢,①错;根据图象出发后1 h两人相遇,行程均为10 km,②对;出发1.5 h,甲的行程是1.5×10=15(km)乙的行程是10+0.5×4=12(km),甲的行程比乙多3 km,③对;跑完全程甲用2 h,乙大于2 h,甲比乙先到终点,④对.综上,正确的有3个,故选C.10.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB =6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.2答案:B 【解析】本题考查圆中的综合计算,难度较大.连接BD,∵AD平分∠BAC,∴∠CAD=∠DAB,.∵AB是直径,∴∠ACB=∠ADB=90°,∴△ACE∽△ADB,∴,即.设AC=5x,则AE=6x,DE=5-6x,连接OD交BC于点F,则DO⊥BC,∴OD∥AC,∴,,易得△ACE∽△DFE,∴,即,解得,则AE=6x=2.8,故选B.【易错分析】本题要注意常见辅助线的作法及充分应用相似三角形的性质.第Ⅱ卷(非选择题共120分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)11.因式分解4m2-n2=________.答案:(2m+n)(2m-n) 【解析】本题考查用平方差公式分解因式,难度较小.根据平方差公式a2-b2=(a+b)(a-b)得原式=(2m+n)(2m-n).12.已知方程2x2+4x-3=0的两根分别为x1和x2,则x1+x2的值等于________.答案:-2 【解析】本题考查一元二次方程的根与系数的关系,难度较小.由题意.13.计算(x-y)2-x(x-2y)=________.答案:y2【解析】本题考查整式的乘法,难度较小.原式=x2-2xy+y2-x2+2xy=y2.14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是____________(填“甲”或“乙”).答案:甲【解析】本题考查折线统计图,难度较小.由统计图可知,甲运动员成绩的图象比较平缓,故甲的成绩比较稳定.15.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13 cm,AB=24 cm,则CD=________cm.答案:8 【解析】本题考查垂径定理、勾股定理,难度较小.∵半径OD⊥弦BC,由垂径定理,连接OA,在Rt△AOC中,得,∴CD=OD-OC=13-5=8 cm.16.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=________度.答案:52 【解析】本题考查三角形内角和定理、等腰三角形的性质、外角性质,难度较小.∵AC=AD=BD,∴∠ADC=∠C,∠B=∠BAD,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD.设∠B=∠BAD=x°,则∠ADC=∠C=2x°,∴∠DAC=(180-4x)°,∠BAC=∠DAC+∠BAD=(180-4x+x)°=(180-3x)°,∵BAC=102°,∴180-3x=102,解得x=26,∠ADC=2x°=52°.17.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,,△CEF的面积为S1,△AEB的面积为S2,则的值等于________.答案:【解析】本题考查矩形性质、相似三角形的判定和性质,难度中等.∵AC⊥BF,∴∠FBC+∠ACB=90°.又∵∠ACB+∠ACD=90°,∴∠FBC=∠ACD.又∵∠ADC=∠FCB=90°,∴△ADC∽△FCB,∴,即,∴.又∵CD∥AB,∴△CEF∽△AEB,.18.关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是_________.答案:【解析】本题考查二次函数的图象及性质,难度较大.应分两种情况讨论:(1)若a>0,则抛物线y=ax2-3x-1开口向上,若对应的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间,则∆=(-3)2+4a>0,解得,且当x=-1时,y>0,当x=0时,y>0,很显然当x=0,y=-1<0,不符合题意;(2)若a <0,则抛物线y=ax2-3x-1开口向下,若对应的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间,则∆=(-3)2+4a>0,解得,且当x=-1时,y<0,当x=0时,y<0,即解得a<-2,所以,综上,a的取值范围是.【易错分析】将方程问题转化为函数问题,结合函数图象找到解决问题的途径.在解题时还要注意分类,即a>0和a<0.三、解答题(本大题共10小题,共96分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算;;(2)解方程.答案:(1)本题考查实数的计算,难度较小.解:原式=4-4+1-9 (4分)=-8.(5分)(2)本题考查解分式方程,难度较小.将方程两边乘以最简公分母转化为整式方程,再解整式方程,最后需要检验整式方程的解是否是分式方程的解.解:方程两边乘2x(x+5),得x+5=6x,(7分)解得x=1,(8分)检验:当x=1时,2x(x+5)≠0,(9分)所以,原分式方程的解为x=1.(10分)20.(本小题满分8分)如图,一海轮位于灯塔P的西南方向,距离灯塔海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).答案:本题考查解直角三角形的应用,难度中等.解:过点P作PC⊥AB于点C.在Rt△ACP中,,∠APC=45°,,,∴,.(4分)在Rt△BCP中,∠BPC=60°,,∴,(7分)∴.答:航程AB为海里.(8分)21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为________度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为________.答案:本题考查对条形统计图、扇形统计图的理解与应用,用列表法或画树状图求概率等,难度中等.既考查考生分析、处理数据的能力,又考查考生的阅读理解能力.解:(1)144.(3分)(2)16÷50=0.32,0.32×2000=640.答:估计全校约有640名同学获奖.(6分)(3).(10分)22.(本小题满分8分)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.答案:本题考查方程在实际生活中的应用,难度中等.解:本题答案不唯一,下列解法供参考.解法一问题:1辆大车一次运货多少吨,1辆小车一次运货多少吨?(3分)解:设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意得解得(7分)答:1辆大车一次运货4吨,1辆小车一次运货2.5吨.(8分)解法二问题:1辆大车一次运货多少吨?(3分)解:设1辆大车一次运货x吨,则1辆小车一次运货吨,根据题意得,解得x=4.(7分)答:1辆大车一次运货4吨.(8分)解法三问题:5辆大车与10辆小车一次可以运货多少吨?(3分)解:设1辆大车一次运货x吨,1辆小车一次运货y吨,根据题意得解得5x+10y=45.(7分)答:5辆大车与10辆小车一次可以运货45吨.(8分)23.(本小题满分8分)如图,直线y=mx+n与双曲线相交于A(-1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.答案:本题考查一次函数和反比例函数的图象和性质、三角形面积计算,难度中等.解:(1)把x=-1,y=2;x=2,y=b代入,解得k=-2,b=-1.(2分)把x=-1,y=2;x=2,y=-1代入y=mx+n,解得m=-1,n=1.(5分)(2)直线y=-x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,-1),(6分)点B的坐标为(2,-1),所以△ABD的面积.(8分)24.(本小题满分8分)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4 cm,求图中阴影部分的面积.答案:本题考查切线的性质、解直角三角形、扇形面积计算,难度中等.解:(1)连接OA,OB.∵PA,PB分别与⊙O相切于A,B两点,∴∠PAO=90°,∠PBO=90°,(1分)∴∠AOB+∠P=180°.(2分)∵∠AOB=2∠C=120°,(3分)∴∠P=60°.(4分)(2)连接OP.∵PA,PB分别与⊙O相切于A,B两点,∴.(5分)在Rt△APO中,,∴.∵OA=4 cm,∴,(6分)∴阴影部分的面积为.(8分)25.(本小题满分8分)如图,在□ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.答案:本题考查平行四边形的判定与性质、全等三角形的判定与性质、难度中等.证明:(1)∵□ABCD,∴AD=CB,∠A=∠C,AD∥BC,(1分)∴∠ADB=∠CBD.∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,(2分)∴∠ADE=∠CBF,(3分)∴△AED≌△CFB.(4分)(2)作DH⊥AB,垂足为H.在Rt△ADH中,∠A=30°,∴AD=2DH.(5分)在Rt△DEB中,∠DEB=45°,∴EB=2DH.(6分)由题意易证四边形EBFD是平行四边形,∴FD=EB,∴DA=DF.(8分)26.(本小题满分10分)某网店打出促销广告:最潮新款服装30件,每件售出300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?答案:本题考查二次函数的应用,涉及知识点有列函数关系式、利用函数关系式求最值,难度中等.解:(1)(4分)(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;(6分)在10<x≤30时,y=-3x2+130x,当时,y取得最大值.因为x为整数,根据抛物线的对称性,得x=22时,y有最大值1408.(9分)因为1408>1000,所以顾客一次购买22件时,该网店从中获利最多.(10分)27.(本小题满分13分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP =3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.答案:本题考查相似三角形的判定及性质、角平分线定义、利用函数求最值、勾股定理等,解题时注意数形结合、分类讨论及辅助线的作法,难度较大.解:(1)证明:在Rt△BAC中,AB=15,BC=9,∴.∵,,∴.又∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B.∴PQ∥AB.(4分)(2)连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.(6分)在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12-4x,∴12-4x=2x,解得x=2,∴CP=3x=6.(8分)(3)当点E落在AB上时,∵PQ∥AB,∴∠DPE=∠PEB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得.(9分)以下分两种情况讨论:①当时,T=PD+DE+PE=3x+4x+5x=12x,此时,.②当时,设PE交AB于点G,DE交AB于点F.作GH⊥PQ,垂足为H.∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴.∵PG=PB=9-3x,∴,∴,,∴,∴T=PG+PD+DF+FG,此时,(11分)∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;T=16时,即,解得.(12分)∵12≤T≤16,∴x的取值范围是.(13分)28.(本小题满分13分)已知抛物线y=x2-2mx+m2+m-1(m是常数)的顶点为P,直线l:y=x-1.(1)求证:点P在直线l上;(2)当m=-3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.答案:本题考查二次函数的图象与性质、相似三角形的判定与性质、一元二次方程的解法等,考查考生的阅读理解能力和逻辑推理能力,难度较大.解:(1)证明:∵y=x2-2mx+m2+m-1=(x-m)2+m-1,∴顶点P(m,m-1).将x=m代入y=x-1得y=m-1,∴点P在直线y=x-1上.(3分)(2)当m=-3时,抛物线解析式为y=x2+6x+5,点P的坐标为(-3,-4),点Q的坐标为(-2,-3),点A的坐标为(-5,0),点C的坐标为(0,5).(5分)作ME⊥y轴,PF⊥x轴,QG⊥x轴,垂足分别为E,F,G,∴QG=3,AG=5-2=3,∠CAO=∠ACO=45°,∴∠OAQ=45°.∵∠APF=90°-(∠PAQ+45°)=45°-∠PAQ,∠MCE=45°-∠A CM,∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,(7分)∴.设点M的坐标为(x,x2+6x+5),则ME=-x,CE=-x2-6x,PF=4,AF=2,∴,解得x1=-4,x2=0(舍去),则x2+6x+5=-3,故点M(-4,-3).(9分)(3)m的值为0,.(13分)综评:本套试卷既体现对双基的重视,又体现对考生的分析能力的要求.试卷设计的思路具有以下几个特点:第一,注重双基和教学重点的考查;第二,体现新意,如第18,22,26,27题设计在不影响考生思维的前提下加强解释性,综合性问题控制条件,降低试题的复杂性,却依然存在较多的思维入口,利于考生发挥真实水平;第三,适度区分.中档题和较难题分散在不同试题中,既有利于适度区分,又有利于合理考查考生解决问题过程的认知水平差异.。
江苏省南通市2015年中考数学模拟试题(含答案)
数学试题19一、选择题:(本大题共10小题,每小题4分,共40分)1、2-的绝对值是()A.12-B.21C.2-D.2.2、某外贸企业印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为()A.10.5410⨯B.1.05⨯510C.1.05⨯610D.0.105610⨯3、右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.9.如图,已知AD∥BC,∠B=30º,DB平分∠ADE,则∠CED的度数为()A.30ºB.60ºC.90ºD.120º10、如图,⊙O中,弦AB将⊙O分为1︰3两部分,AB=32,点C在⊙O上,OC∥AB,连接AC交OB于点D,则BD的长为()A.32B.2 C.321-D.632-二、填空题(本大题共8小题,每小题4分,共32分)11、一组数据10,14,20,24.19,16的极差是____________.12、若式子3x-有意义,则实数x的取值范围是____________.13、某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为.14、如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD的面积为.15、如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为.(第3题)(第9题)ABDCE30ºOBDCA(第14题)OA CDB(第10题)A A D(第15题) (第16题) (第17题)16、如图,Rt △ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =3,BC =4,则AD 的长为 . 17、如图,一次函数b kx y +=(0k <)的图象经过点A .当3y <时,x 的取值范围是 .18、若抛物线n mx x y ++=2与x 轴相交于两点M 、N ,点M 、N 之间的距离记为p ,且抛物线经过点(1,-1),则p 的最小值为 .三、解答题(本大题共10小题,共78分.) 19、(本小题满分8分)计算 (1)()201411(1)62232⎛⎫-+⨯-+- ⎪⎝⎭20、(本小题满分10分)解方程(1)12123=----xxx (2))1(412-=-x x21、(本小题满分9分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O . (1)平移△AOB ,使得点A 移动到点D ,画出平移后的三角形(不写画法,保留画图痕迹);(2)在第(1)题画好的图形中,除了菱形ABCD 外,还有哪种特殊的平行四边形?请给予证明.ABCDO23.(本小题满分8分)如图,直线111y k x =-与x 轴正半轴交于点A (2,0),以OA 为边在x 轴上方作正方形OABC ,延长CB 交直线1y 于点D ,再以BD 为边向上作正方形BDEF . (1)求点F 的坐标;(2)设直线OF 的解析式为22y k x =,若021>-y y ,求x 的取值范围.24.(本小题满分9分)已知△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点D 为BC 边上一点. (1)求证:△ACE ≌△ABD ;(2)若AC =22,CD =1,求ED 的长.25.(本小题满分8分)数学兴趣小组成员张明对本班期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题: (1)频数、频率分布表中a = ,b = ; (2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了94分的张明被选上的概率是多少?分组 49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450ABCEDOABC DEFxy频率0.040.16 0.40 0.32 b 126.(本小题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y 与时间x 之间的函数关系式 ; (2)求乙组加工零件总量a 的值;(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?27.(本小题满分12分)如图①,△ABC 和△ECD 都是等边三角形,且点B 、C 、D 在同一直线上,连接BE 、AD . (1)求证:BE =AD ;(2)如图①,点P 为BE 边上一点,连接AP 、CP ,若满足BP =1,CP =2,AP =3,求∠BPC 的度数; (3)如图②,若点P 在BE 边上,点Q 在AD 边上,且BP =AQ ,将CD 边沿着AD 翻折得到C ′D ,当∠BPC 等于多少度时,以Q 、P 、C 、C ′为顶点的四边形是菱形?直接写出你的结论.成绩(分)人数2 49.5 59.5 69.5 79.5 89.5 100.56 4 18 208 10 12 14 16 OA EAEC ′Q24.如图,射线AM 与射线BN 均与线段AB 垂直,点P 是AM 上一动点,点C 在BN 上,PA=PC ,O 、E 分别是AC 和OD 的中点,OD ⊥AP 于D ,连接CD ,PE .(1)若CB=AB (如图1),猜想并直接写出图中所有相似三角形(不全等,不再添加字母和线段); (2)在(1)的条件下,求证PE ⊥CD ,并求CD : PE 的值;(3)当m AB CB :(m >1)时,可得到图2, PE ⊥CD 是否仍然成立?如果不成立,说明理由;如果成立,证明你的结论,并用含m 的代数式表示CD : PE 的值.参考答案一、选择题(每小题3分,共30分)1.D 2.B 3.C 4.B 5.C 6.A 7.B 8.D 9.B 10.D 二、填空题(每小题3分,共24分) 11.14 12.3x ≥13.11214.24 15.3cm 16.25817.x >2 18.2 三、解答题(10小题,共96分)19.(1)(本小题4分)解:原式=11616⎛⎫+⨯-+ ⎪⎝⎭……………………………………3分 =111-+=1 …………………………………………………4分(2)(本小题4分)解:原式=33323++-………………… ……………3分=3……………………………… …………… ………4分20.(1)(本小题5分)解:原方程可变为:12123=----x x x 方程两边同乘)2(-x ,得 2)1(3-=--x x解得 3=x …………………………………………………………3分 检验:当3=x 时,02≠-x ……………………………………………………4分 ∴原方程的解为3=x ……………………………………………………………5分(2)(本小题5分)解:()())1(411-=-+x x x()()0)1(411=---+x x x()()031=--x x …………………………………………………………………3分∴11=x ,32=x …………………………………………………………………5分21.(本小题9分)解:(1)作图正确,写出结论.………………………………………………………3分 (2)还有特殊的四边形是矩形OCED .………………………………… …………… 5分理由如下:∵四边形ABCD 是菱形 ∴AC ⊥BD ,AO =OC ,BO =OD 由平移知:AO =CO ,BO =CE ∴OC =DE ,OD =CE∴四边形OCDE 是平行四边形……………7分 ∵AC ⊥BD ∴∠COD =90°∴□OCED 是矩形.…………………………………………………………………… 9分 22.(本小题8分)解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F , ∵AB ∥CD ,∴∠AEF =∠EFB =∠ABF =90°, ∴四边形ABFE 为矩形. ∴AB =EF ,AE =BF .由题意可知:AE =BF =100米,CD =800米.…………………………………………2分 在Rt △AEC 中,∠C =60°,AE =100米. ∴CE =tan 60AE︒==(米). …………………………………………… 4分在Rt △BFD 中,∠BDF =45°,BF =100. ∴DF =tan 45BF︒==100(米).…………………………………………………… 5分∴AB =EF =CD +DF ﹣CE =800+100﹣≈900﹣×1.73≈900﹣57.67≈842.3(米).……………………………………………………………7分 答:岛屿两侧端点A 、B 的距离为842.3米. ……………………………………… 8分ABCDO (第21题)E23.(本小题8分)解:(1)将A (2,0)代入11-=x k y 得:211=k ……………………………… 2分 ∵四边形OABC 是正方形 ∴BC =OC = AB =OA =2 在121-=x y 中,当2=y 时,6=x ∴CD =6∴BD = CD -BC =6-2=4 ∵四边形BDEF 是正方形 ∴ BF =BD =4∴AF = AB + BF =2+4=6∴点F 的坐标为(2,6)………………………………………………………………4分 (2)将F (2,6)代入x k y 2=,得 32=k …………………………………………6分∵021>-y y ,∴03121>--x x 解得: 52-<x ……………………………………………………………………8分24.(本小题9分)(1)证明:∵△ABC 是等腰直角三角形 ∴AB =AC ,∠BAC =90° 同理AB =AE ,∠CAE =90° ∵∠BAC =∠CAE =90° ∴∠1+∠3=∠2+∠3=90° ∴∠1=∠2∴△ACE ≌△ABD (SAS )………………………………………………………………4分 (2)解:在△ABC 中ABC ED(第24题)12 3 45OAB C DEFxy(第23题)(第22题)BC =445sin 22sin ==B AC ∴BD =BC -CD =4-1=3…………………………………………………………………6分 ∵△ABC 是等腰直角三角形 ∴∠4=∠B =45° ∵△ACE ≌△ABD∴∠5=∠B =45°,EC =DB =3 ∵∠ECD =∠4+∠5=90° ∴△ECD 是直角三角形 ∴ED 10132222=+=+=CD EC ……………………………………………9分25.(本小题8分)解:(1)a =8,b =0.08 …………………………………………………………………4分 (2) …………………………6分(3) 张明被选上的概率是:41…………………………………………………………8分 26.(本小题10分)解:(1)60y x = ………………………………………………………………………2分 (2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.82.82a -=⨯-………………………………………………………………4分解得300a = ……………………………………………………………………………5分 (3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100(2.8)100180y x x =+-=-. …………………………………………………6分 成绩(分)人数49.5 59.5 69.5 79.5 89.5 100.54 20 8 12 16 O当0≤x ≤2时,6050300x x +=.解得3011x =.舍去.………………………………7分 当2<x ≤2.8时,10060300x +=.解得103x =.舍去. ……………………………8分 当2.8<x ≤4.8时,60100180300x x +-=.解得3x =. ……………………………9分 所以,经过3小时恰好装满第1箱.…………………………………………………10分27.(本小题12分)解:(1)证明:因为△ABC 和△ECD 都是等边三角形,所以BC =AC ,EC =DC ,∠BCA =∠ECD =60度,………………………………………1分所以∠BCE =∠ACD =120度,……………………………………………………………2分所以△BCE ≌△ACD (SAS )所以BE =AD . ……………………………………………………………………………3分(2)如答图a ,在AD 上截取AF ,使AF =BP ,连接FC 、FP ,……………………4分由(1),因为△BCE ≌△ACD ,所以∠PBC =∠FAC ,又BC =AC ,所以△PBC ≌△FAC (SAS ),………………………5分所以PC =FC ,∠PCB =∠FCA ,∠BPC =∠AFC ,因为∠PCB +∠PCA =60度,所以∠FCA +∠PCA =60度,所以△PCF 是等边三角形,所以∠PFC =60度,PF =PC =2,………………………………………………………6分在△PAF 中,AF =BP =1,AP =3,所以2222221(2)(3)AF PF AP +=+==,所以△PAF 为直角三角形,………………………………………………………………7分所以∠AFP =90度,所以∠BPC =∠AFC =(90+60)度=150度. ……………………8分(3)当∠BPC =150度或60度时,以Q 、P 、C 、C ′为顶点的四边形是菱形.……12分(本题直接写答案,过程仅供参考)证明:①如答图b ,若∠BPC =150度,连接CC ′,QC ′,因为PB =AQ ,由(2)可得,∠BPC =∠AQC =150度,且△PCQ 是等边三角形,所以∠CQD =30度,PQ =PC =QC ,P F A E B C D答图a又因为CD 边沿着AD 翻折得到C ′D ,所以C 、C ′关于AD 对称,所以QC ′=QC ,∠C ′QD =∠CQD =30度,所以∠CQC ′=60度,即△QCC ′是等边三角形,所以QC ′=CC ′=QC =PQ =PC ,即四边形QPCC ′是菱形;②如答图c ,若∠BPC =60度,由(1)得,△BCE ≌△ACD ,设BE 、AD 相交于点F ,根据面积法可证得点C 到BE 、AD 的距离相等,所以FC 是∠BPD 的平分线,又因为∠FAC =∠FBC ,所以∠AFB =∠ACB =60度,所以∠BFC =60度,即点P 与点F 重合,因为BP =AQ ,易证△BCP ≌△ACQ (SAS ),所以CP =CQ ,又∠CPQ =60度,所以△PCQ 是等边三角形,因为C 、C ′关于AD 对称,所以PC ′=PC ,QC ′=QC ,所以四边形PCQC ′是菱形.28.(本小题12分)解:(1)把x =0代入233+-=x y ,得y =2,把y =0代入233+-=x y ,得x =32, 所以点A (32,0),点B (0,2),………………………………………………2分把A 、B 坐标分别代入c bx x y ++-=232, 得220(23)2332b c c⎧=-⨯++⎪⎨⎪=⎩,解之,得3b =,2c =, 所以22323y x x =-++.……………………………………………………………3分 答图c A E B C D C ′ Q P A E B C D P C′ Q 答图b(2)①因为OA =23,OB =2,根据勾股定理,AB =4,所以∠BAO =30度.运动t 秒后,AQ =t ,BP =2t .ⅰ 若QP =QA ,作QD ⊥AB ,所以QD =12t ,AD =PD =32t , 根据BP +AP =AB ,得2t +3t =4,解之,得843t =-(秒);……………………4分ⅱ 若AP =AQ =t ,BP =2t ,根据BP +AP =AB ,得t +2t =4,解之,得t =43(秒);…5分 ⅲ 若AP =QP ,作PE ⊥AO ,所以1122AE AQ t ==, 所以PE =313326t t ⋅=,所以AP =33263t t ⋅=, 根据BP +AP =AB ,得3243t t +=,解之,得244311t -=; ……………………6分 ⅳ 当P 在x 轴下方直线AB 上时,AP =AQ ,所以2t -4=t ,解得,t =4.……………7分 综上,当843t =-或t =43或244311t -=或t =4(秒)时,△APQ 为等腰三角形. ②如图,作PF ⊥AO ,所以PF 为△APQ 底边AQ 上的高,因为AP =4-2t ,∠BAO =30度,所以PF =122PE t =-, 所以21111(2)(1)2222APQ S AQ PF t t t =⋅=-=--+,……………………………8分 当t =1时,APQ S 面积最大,……………………………………………………………9分此时P 为AB 中点,连接OP ,所以OP =AP =BP ,所以∠BPO =60度,所以△BPO 为等边三角形.………………10分延长FP 交抛物线于点T ,可得PT ∥BO ,所以∠BPT =∠PBO =60度,所以∠APO =∠APT =120度.因为A (32,0)、B (0,2),所以点P (3,1),把3x =代入抛物线22323y x x =-++,得3y =, 即T (3,3),所以TP =2,…………………………………………………………11分因为OP =122AB =,所以TP =OP ,又因为∠APO =∠APT ,且PA =PA , 所以△APT ≌△APO (SAS ),故当t=1时,△APQ的面积达到最大,此时在抛物线上存在一点T(3,3),使得△APT≌△APO.……………………………………………………………………………12分。
江苏省南通市2015年中考数学真题试题(含扫描答案)
江苏省南通市2015年中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个 B.2个 C.3个 D.4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107 B.7.7×107 C.0.77×106 D.7.7×1064.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A. B. C. D.27.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.218.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣29.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2= (2m+n)(2m﹣n).12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2 .13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)= y2 .14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD= 8 cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC= 52 度.17.(3分)(2015•南通)如图,矩形AB CD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2 .三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△A BD的面积.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y 元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC 上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x ﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M 是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.。
南通2015年二模数学学科参考答案及评分建议
…… 3 分
2 9 x0 9 0 ,解得 x0 3 或 x0 3 (舍去) . 所以 4 x0 4
…… 5 分
(2)当 x0 0 时, y0 2 b 2 , 由 PA PF 得,
y0 y0 1 ,即 b2 ac ,故 a 2 c 2 ac , a c
第 2 页 (共 20 页)
所以 MN 平面 ACD . 又 MN 平面 MNQ , 平面 MNQ 平面 CAD .
…… 11 分
…… 14 分
(注:若使用真命题“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平 面”证明“ MN 平面 ACD ” ,扣 1 分. )
(第 4 题)
6. 若函数 f ( x) 2sin x π ( 0) 的图象与 x 轴相邻两个交点间的距离为 2,则实数 的值 3 为 ▲ .
【答案】 π 2 7. 在平面直角坐标系 xOy 中,若曲线 y ln x 在 x e ( e 为自然对数的底数)处的切线与直线
ax y 3 0 垂直,则实数 a 的值为 ▲ .
【答案】 e 8. 如图,在长方体 ABCD A1 B1C1 D1 中, AB 3 cm, AD 2 cm, AA1 1 cm,则三棱锥 B1 ABD1 的体积为 ▲ cm3. 【答案】1 9. 已知等差数列 an 的首项为 4,公差为 2,前 n 项和为 S n . 若 Sk ak 5 44 ( k N ),则 k 的值为 ▲ . 【答案】7
f ( ) f ( )
0,23π
2π 3
23π ,π
0 极小值 3 3 4
↘
江苏省南通市2015年中考数学试题(word版)
江苏省南通市2015年中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解答:解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.点评:考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图..分析:根据俯视图是从上面看所得到的图形判断即可.解答:解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7700000用科学记数法表示为7.7×106.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)考点:三角形三边关系..分析:根据三角形的三边关系对各选项进行逐一分析即可.解答:解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2考点:解直角三角形;坐标与图形性质..分析:设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.解答:解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.点评:本题考查了三角函数的定义,理解正切函数的定义是关键.7.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21考点:利用频率估计概率..分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,×100%=20%,解得,a=15.故选:B.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2考点:一元一次不等式的整数解..分析:表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.解答:解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<2故选D.点评:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.9.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个考点:一次函数的应用..分析:根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.解答:解:由图可得,两人在1小时时相遇,行程均为10km,故②正确;出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,故①错误;出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙的行程比甲多3km,故③错误;乙比甲先到达终点,故④错误.正确的只有①.故选A.点评:本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2考点:相似三角形的判定与性质;勾股定理;圆周角定理..分析:连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AB﹣DE求解即可得出答案.解答:解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AB﹣DE=5﹣=2.8.点评:此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=(2m+n)(2m﹣n).考点:因式分解-运用公式法..专题:计算题.分析:原式利用平方差公式分解即可.解答:解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.考点:根与系数的关系..分析:根据两根之和等于一次项系数与二次项系数商的相反数作答即可.解答:解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.点评:本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)=y2.考点:整式的混合运算..分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y2点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)考点:方差;折线统计图..分析:根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.解答:解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.点评:本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.考点:垂径定理;勾股定理..分析:根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.解答:解:由垂径定理,得AC=AB=12cm.有半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.点评:本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.考点:等腰三角形的性质..分析:设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.解答:解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.点评:本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.考点:相似三角形的判定与性质;矩形的性质..分析:首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.解答:解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.点评:本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.考点:抛物线与x轴的交点..分析:首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.解答:解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根,∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>,设fx=ax2﹣3x﹣1∵实数根都在﹣1和0之间,∴当a>0时,如图①,f(﹣1)>0,f(0)>0f(0)=a×02﹣3×0﹣1=﹣1<0,∴此种情况不存在;当a<0时,如图②,f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.点评:本题主要考查了一元二次方程根的情况的判别及抛物线与x轴的交点,数形结合确定当x=0和当x=﹣1时函数值的取值范围是解答此题的关键.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.考点:实数的运算;零指数幂;负整数指数幂..专题:计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).考点:解直角三角形的应用-方向角问题..专题:计算题.分析:过P作PC垂直于AB,在直角三角形ACP中,利用锐角三角函数定义求出AC与PC的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+CB求出AB 的长即可.解答:解:过P作PC⊥AB于点C,在Rt△ACP中,PA=40海里,∠APC=45°,sin∠APC=,cos∠APC=,∴AC=AP•sin45°=40×=40(海里),PC=AP•cos45°=40×=40(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC=,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.点评:此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图.. 分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.解答:解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.考点:二元一次方程组的应用..分析:1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解答:解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.点评:本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.考点:反比例函数与一次函数的交点问题..分析:(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.解答:解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.考点:切线的性质;扇形面积的计算..分析:(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.解答:解:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵PA、PB是⊙O的切线,∴APB=30°,在RT△APO中,tan30°=,∴AP===4cm,∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).点评:此题考查了切线的性质,解直角三角函数,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.考点:平行四边形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形.. 专题:证明题.分析:(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA 即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.解答:证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.点评:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含30度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?考点:二次函数的应用..分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.解答:解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.点评:此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.考点:几何变换综合题..分析:(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.解答:(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PEB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;TA=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.点评:本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.考点:二次函数综合题..专题:综合题.分析:(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt△CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ 时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.解答:(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴=,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q (m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m ﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1=,m2=;当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为0,,,,.点评:本题考查了二次函数的综合题:熟练掌握二次函数图象和一次函数图象上点的坐标特征、二次函数的性质,会求抛物线与直线的交点坐标;理解坐标与图形性质,会利用两点间的距离公式计算线段的长;会运用相似比计算线段的长;能运用分类讨论的思想解决数学问题.2015年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
2015年中考数学二模试题附答案
2015年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 …………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D) 6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 …………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为▲ . 11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ .12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCEFD(第16题图)B[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?A C FED(第18题图)(第21题图) CAB E D此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.24.(本题满分12分,每小题各6分) 如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)A BDHG FEC(第23题图)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)BA CB九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a - 15.216. 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+………………………………………………………………2分∵6302x tan =-6223=⨯-=………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分) 解方程组:222230x y x xy y -=⎧⎨--=⎩...............(1) (2)解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FA E=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=A P —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED- 11 - 356x = ……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△PMC 是等腰三角形,存在以下几种情况: 1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x = 若M 在线段PQ 上时,PM+MQ=PQ ∴44855x x x +=- 4013x = ……………………………………………………………………1分 若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -= 8013x = …………………………………………………………………………1分 3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH∵PH ∥BE ∴1AP AH BP CH== ∴110x x =- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.。
2015年江苏省南通市中考数学试卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省南通市2015年初中毕业、升学考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6m 时水位变化记作6m +,那么水位下降6m 时水位变化记作 ( ) A .3m -B .3mC .6mD .6m - 2.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( ) A .70.7710⨯B .77.710⨯C .60.7710⨯D .67.710⨯4.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD5.下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4,4,80()a a a a > 6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )ABC .12D .27.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 ( ) A .12B .15C .18D .218.关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( )A .32b --<<B .32b --<≤C .32b --≤≤D .32b --≤<9.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有 ( ) A .1个B .2个C .3个D .4个10.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为 ( )A .2.5B .2.8C .3D .3.2第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 11.因式分解224m n -= .12.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x +的值等于 . 13.计算2(2())x y x x y ---= .14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)15.如图,在O 中,半径OD 垂直于弦AB ,垂足为C ,13cm OD =,24cm AB =,则CD = cm .第15题图第16题图第17题图16.如图,ABC △中,D 是BC 上一点,AC AD DB ==,102BAC =∠,则ADC =∠ 度. 17.如图,矩形ABCD 中,F 是DC 上一点,BF AC ⊥,垂足为E ,12AD AB =,CEF △的面积为1S ,AEB △的面积为2S ,则12SS 的值等于 .18.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在1-和0之间(不包括1-和0),则a 的取值范围是 . 三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:2021()((33)2)----;(2)解方程1325x x =+.20.(本小题满分8分)如图,一海轮位于灯塔P 的西南方向,距离灯塔海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60方向上的B 处,求航程AB 的值(结果保留根号).21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组()79.589.5”的扇形的圆心角为 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖? (3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为 .22.(本小题满分8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(本小题满分8分)如图,直线y mx n =+与双曲线ky x=相交于2()1,A -,()2,B b 两点,与y 轴相交于点C .(1)求,m n 的值; (2)若点D 与点C 关于x 轴对称,求ABD △的面积.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)24.(本小题满分8分)如图,,PA PB 分别与O 相切于,A B 两点,60ACB =∠. (1)求P ∠的度数;(2)若O 的半径长为4cm ,求图中阴影部分的面积.25.(本小题满分8分)如图,在□ABCD 中,点,E F 分别在,AB DC 上,且ED DB ⊥,FB BD ⊥. (1)求证:AED CFB △≌△;(2)若30A =∠,45DEB =∠,求证:DA DF =.26.(本小题满分10分) 某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?27.(本小题满分13分)如图,Rt ABC △中,90C =∠,15AB =,9BC =,点,P Q 分别在,BC AC 上,3CP x =,403()CQ x x =<<.把PCQ △绕点P 旋转,得到PDE △,点D 落在线段PQ 上. (1)求证:PQ AB ∥;(2)若点D 在BAC ∠的平分线上,求CP 的长;(3)若PDE △与ABC △重叠部分图形的周长为T ,且1216T ≤≤,求x 的取值范围.28.(本小题满分13分)已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线l :1y x =-. (1)求证:点P 在直线l 上;(2)当3m =-时,抛物线与x 轴交于,A B 两点,与y 轴交于点C ,与直线l 的另一个交点为,Q M 是x 轴下方抛物线上的一点,ACM PAQ =∠∠(如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列各数中,最大的数是A .0B .-2C .2D .122. 若三角形的三边长分别为3,4,x ,则x 的值可能是A .1B .6C .7D .103. 某几何体的三视图如图所示,则这个几何体是A .球B .圆柱C .圆锥D .正方体4. PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 A .0.25³10-5B .0.25³10-6C .2.5³10-5D .2.5³10-65. 某校九年级6个班合作学习小组的个数分别是:8,7,9,7,8,7,这组数据的众数和中位数分别是A .7和7.5B .7和8C .9和7.5D .7.5和7 6. 下列运算中,正确的是A .3a +2a 2=5a 3B .44a a a ⋅=C .632a a a ÷=D .3263)9x x =(- 7. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠ABC =70°,则∠BDC 的度数为A .40° B.30° C .20° D.10°8. 若关于x 的一元一次不等式组0221x a x x ->⎧⎨-<-⎩,有解,则a B(第3题)主视图 左视图 俯视图A . a >1B .a ≥1C .a <1D .a ≤19. 若关于x 的方程2213m x x x+-=- 无解,则m 的值为 A .-1.5 B .1C .-1.5或2D .-0.5或-1.510. 如图是一张边长为8的正方形纸片,在正方形纸片上剪下一个腰长为5的等腰三角形(要求: 等腰三角形的一个顶点与正方形的一个顶点重合,其余两个顶点在正方形的边上),则剪下的 等腰三角形的底边长是A .B.C.或.或二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相...应位置...上) 11.在实数范围内有意义,则x 的取值范围是 ▲ . 12.已知∠α=20°,则∠α的补角等于 ▲ 度.13.在平面直角坐标系中,将点A (-2,3)向右平移2个单位长度,再向下平移6个单位长度得点B ,则点B 的坐标是 ▲ .14.已知x ,y 满足2722x y x y +=⎧⎨+=⎩,,则x -y 的值是 ▲ .15.若关于x 的方程x 2+2x +m =0有实数根,则m 的取值范围是 ▲ .16.如图,圆锥的底面半径为5 cm ,侧面积为55π cm 2的夹角为α,则sin α的值为 ▲ .17.如图,四边形ABCD 是菱形,∠DAB =50°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO = ▲ 度. 18.对于二次函数y=x 2-2mx -3,有下列说法:①如果当x ≤1时y 随x 的增大而减小,则m ≥1; ②如果它的图象与x 轴的两交点的距离是4,则m =±1;③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m =-1;④如果当x =1时的函数值与x =2013时的函数值相等,则当x =2014时的函数值为-3. 其中正确的说法是 ▲三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、(第16题)(第17题)BADOCH(第10题)证明过程或演算步骤) 19.(本小题满分10分)(1)计算101()1(3)2-+-π- (2)化简2221412211a a a a a a --⋅÷+-+-. 20.(本小题满分8分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题: (1)条形统计图中,m = ▲ ,n = ▲ ;(2)扇形统计图中,艺术类读物所在扇形的圆心角是 ▲ 度;(3)学校计划购买课外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(本小题满分8分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF . (1)求证D 是BC 的中点;(2)如果AB =AC ,试判断四边形AFBD 是什么四边形,并证明你的结论.22.(本小题满分8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.请用列表或画树状图的方法求一次打开锁的概率.23.(本小题满分8分)CABDEF(第21题)(第20题)如图,湖中有一小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,在小道上测得如下数据:AB =60米,∠PAB =45°,∠PBA =30°.请求出小桥PD 的长.24.(本小题满分8分)如图,抛物线a bx ax y 42-+=的对称轴为直线x =32,与x 轴交于A ,B 两点,与y 轴交于点 C (0,4).(1)求抛物线的解析式,结合图象直接写出当0≤x ≤4时y 的取值范围;(2)已知点D (m ,m +1)在第一象限的抛物线上,点D 关于直线BC 的对称点为点E ,求点E的坐标.25.(本小题满分10分)如图,AB 是⊙O 的直径,D 为⊙O 上一点,过BD ⌒上一点T 作⊙O 的切线TC ,且TC ⊥AD 于点C . (1)若∠DAB =50°,求∠ATC 的度数; (2)若⊙O 半径为2,CTAD 的长.26.(本小题满分10分)小刚和小强相约晨练跑步,小刚比小强早1分钟离开家门,3分钟后迎面遇到从家跑来的小(第25题)B(第23题)(第24题)强.两人同路并行跑了2分钟后,决定进行长跑比赛,比赛时小刚的速度始终是180米/分,小强的速度始终是220米/分.下图是两人之间的距离.......y (米)与小刚离开家的时间x (分钟)之间的函数图象,根据图象回答下列问题:(1)两人相遇之前,小刚的速度是 ▲ 米/分,小强的速度是 ▲ 米/分; (2)求两人比赛过程中y 与x 之间的函数关系式;(3)若比赛开始10分钟后,小强按原路以比赛时的速度返回,则再经过多少分钟两人相遇?27.(本小题满分13分)(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .直接写出线段AF 与BD 之间的数量关系. (2)类比猜想:如图②,当△ABC 为以BC 为斜边的等腰直角三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为斜边在BC 上方作等腰直角△FDC ,连接AF . 请直接写出它们的数量关系.(3)深入探究:Ⅰ.如图③,当△ABC 为以BC 为底边的等腰三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为底边在BC 上方作等腰△FDC ,∠BC A =∠DCF ,且∠B A C =α,连接AF .线段AF 与BD 之间的有什么数量关系?证明你发现的结论;Ⅱ.如图④,当△ABC 为任意三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作△FDC ∽△ABC ,且k ACBC=,连接AF .线段AF 与BD 之间的有什么数量关系?直接写出你发现的结论.(第26题)28.(本小题满分13分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线)0(>=x xk y ,的图像经过BC 上的点D 与AB 交于点E ,连接DE ,若若E 是AB 的中点﹒ (1)求D 点的坐标;(2)点F 是OC 边上一点,若△FBC 和△DEB 相似,求BF 的解析式;(3)若点P (m ,3m +6)也在此反比例函数的图像上(其中m >0),过p 点作x 轴的垂线,交x轴于点M ,若线段PM 上存在一点Q ,使得△OQM 的面积是21,设Q 点的纵坐标为n ,求n 2-2n +9的值.AFDBC(第27题图②)FACBD(第27题图③)CBFA D(第27题图④)FA BCD (第27题图①)初中毕业、升学模拟考试 数学试题参考答案与评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共10小题,每小题3分,共30分)二、填空题:本大题共8小题,每小题3分,共24分.11.x ≤3; 12.160; 13.(0,-3); 14.-5; 15.m ≤1; 16.511; 17. 25; 18.①②④. 三、解答题:本大题共10小题,共96分. 19.(本小题满分10分)(1)解:原式=2112--……………………………………………………… 4分2 ………………………………………………………………………5分(2)解:原式=21+-a a ²()()11)1()2)(2(2-+⋅--+a a a a a …………………………………3分 =()()12+-a a ……………………………………………………………4分 =22--a a ………………………………………………………………5分20.(本小题满分8分)解:(1)40,60; …………………………………………………………………………4分 (2)72; ………………………………………………………………………………6分 (3)由题意,得308000=1200200⨯(册). ∴学校购买其他类读物1200册比较合理. ………………………………………8分 21.(本小题满分8分)(1)证明:∵AF ∥BD ,∴∠AFE =∠DCE .∵E 是AD 的中点,∴AE =DE .又∵∠AEF =∠DEC ,∴△AEF ≌△DEC (AAS). ………………………………2分∴DC =AF . ………………………………………………………………………………3分又∵AF =BD ,∴BD =DC .∴D是BC的中点.……………………………………………4分(2)答:四边形AFBD是矩形.…………………………………5分证明:∵AF=BD,AF∥BD,∴四边形AFBD是平行四边形.…………………………………6分∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°.……………………………………7分∴四边形AFBD是矩形.……………………………………8分22.(本小题满分8分)……………………………………………………………………………………………23.(本小题满分8分)解:设PD=x米,………………………………………………………………………………1分∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,tan∠PAD=ADx,∴AD=tan45x︒=x.………………………………………………………………………3分在Rt△PBD中,tan∠PBD=DBx,∴DB=tan30x︒.………………………………………………………………5分又∵AB=60米,∴60x+=…………………………………………………………………………7分解得:30x==即PD30)=-米.答:小桥PD 的长度约为30)-米. ………………………8分 24.(本小题满分8分)解:(1)将C (0,4)代入a bx ax y 42-+=中得a =-1 又∵对称轴为直线x =32,∴322b a -=,得b =3. 抛物线的解析式为432++-=x x y . ………………………………………………3分 当0≤x ≤4时y 的取值范围是0≤y ≤254. ………………………………………4分 (2)∵点D (m ,m +1)在抛物线上,∴m +1=432++-m m .∴m =-1或m =3.∵点D 在第一象限,∴点D 的坐标为(3,4). ……………6分又∵C (0,4),所以CD ∥AB ,且CD =3. 由432++-=x x y 得B (4,0)∴∠OCB =∠DCB =45°. ………………………………7分∴点E 在y 轴上,且CE =CD =3,∴OE =1.即点E 的坐标为(0,1). ………………………………8分25.(本小题满分10分)解:(1)证明:连接OT ,∵CT 为⊙O 的切线,∴OT ⊥CT . ………………………………………………………1分 又∵CT ⊥AC , ∴OT ∥AC ,∴∠DAT =∠OTA . ……………………………………………………2分∵OA =OT ,∴∠OAT =∠OTA , ……………………………………3分 ∴∠DAT =∠OAT =12∠DAB =25°. ………………………………4分 又∵CT ⊥AC ,∴∠ATC =90°-∠DAT =65°. ……………………5分(2)解:过O 作OE ⊥AD 于E ,则E 为AD 中点, …………………………………………6分又∵CT ⊥AC ,CT ⊥OT ,∴四边形OTCE 为矩形, …………………………………………………………7分 ∵CT =3,∴OE =3,又∵OA =2,(第25题)B∴在Rt△OAE 中,AE =122=-OE OA ………………………………………9分 ∴AD =2AE =2. …………………………………………………………………10分26.(本小题满分10分)解:(1)小刚比赛前的速度10014405401=-=v 米/分, …………………………1分 小强比赛前的速度,由2³(v 1+v 2)=440,得v 2=120米/分. …………3分 (2)解法一:当x =5时,y =0;当x =6时,y =40, …………………………………4分由(5,0)和(6,40)可求得y 与x 之间的函数关系式为y =40x -200.……………………………………………………………………6分解法二:∵小刚的速度始终是180米/分,小强的速度始终是220米/分, 他们的速度之差是40米/分,∴可设y 与x 之间的函数关系式为y =40x +b . ………………………………4分 将(5,0)代入得b =-200∴y =40x -200. …………………………………………………………………6分 (3)当x =5+10=15时,y =400. ……………………………………………………7分设再经过t 分钟两人相遇,180t +220t =400 ……………………………………………………………9分 解得:t =1答:再经过1分钟两人相遇.……………………………………………………10分27.(本小题满分13分)解:(1)BD =AF ………………………………………1分 (2)不成立.BD =2AF ………………………………………4分(3)Ⅰ.∵△ABC 为以BC 为底边的等腰三角形,△FDC 为以DC 为底边的等腰三角形, ∠BC A =∠DCF , ∴△ABC ∽△FDCACF BCD ACBCCF CD ∠=∠=∴, ∴△BCD ∽△ACF ,ACBCAF BD =∴作AP ⊥BC ,α21sin 221sin 22=∠==BAC AC CP AC BC ∴α21sin 2==AC BC AF BD ∴BD =α21sin2=﹒AF ………………………………………10分Ⅱ. BD =k AF ………………………………………13分28.(本小题满分13分) 解:(1)连接OD 、OE 、OB ,∵E 为AB 的中点,∴OAE OBE s s ∆∆=由反比例函数的性质得O AE O CD s s ∆∆=由矩形的性质得OAB OBC s s ∆∆=∴O BD O CD s s ∆∆=∴D 是BC 边的中点.∴D 为(1,3). ………………………………………2分(2)∵△FBC 和△DEB 相似∴BCCFCF BC BE BD 或= ∵D (1,3),E (2,1.5) ∴DB=1,DE=1.5∴343或=CF ∴),)或(,点为(35000F ∴BF 的解析式是:353223+==x y x y 或………………………………………8分 (3) 由(1)得:y =x3∵ 点P (m ,3m +6)在反比例函数y = x3∴ m (3m +6 )=3∴012,036322=-+=-+m m m m 即 ∵PQ ⊥x 轴 ∴Q 点的坐标(m ,n )∵ △OQM 的面积为12∴12OM .QM =12∴OM .QM =1∵ m >0 ∴ m .n =1 ∴n m 1=代入0122=-+m m 得:1212=-+n n∴,122=-n n ∴.10922=+-n n ………………………………………13分。