2011福建省C与数据结构链表必过技巧

合集下载

链表的插入操作总结

链表的插入操作总结

链表的插⼊操作总结链表是⼀种经常使⽤的数据结构,有单链表, 双向链表及其循环链表之分.
插⼊操作是链表的基本操作之中的⼀个.但⼤部分⼈在初学时,多少会感到有些迷惑.
以下时本⼈的⼀些⼩经验.
1 后向插⼊和前向插⼊
如果当前节点为P.
后向插⼊是指在p节点后插⼊新节点.
前向插⼊是指在p节点后插⼊新节点.
对于单链表⽽⾔,仅仅有后向插⼊.
2 基本规律
1) 先保存原链表结构不变,即先改动新节点的前后指针,然后再先远后近.
2) 先远后近是指先改动离p节点远的指针,在改动离它近的指针.
3 链表操作⽰意图
下图是可⾏的⼏种链表插⼊⽅法.都是依照上述的基本规律实现的.⾃⼰能够依据⾃⼰的喜好选择⼀种.。

c语言链表操作题

c语言链表操作题

c语言链表操作题C语言链表操作题一、问题描述假设有一个链表,每一个节点都包含一个整数,节点的结构体定义如下:```struct ListNode {int val;struct ListNode *next;};```请你完成以下链表操作函数:1. `struct ListNode* createList(int *arr, int size)`:传入一个整数数组和数组的长度,返回一个链表的头节点,链表的节点顺序和数组顺序一致。

2. `void displayList(struct ListNode *head)`:传入链表的头节点,打印链表中所有的节点值,用空格隔开,最后换行。

3. `int lengthOfList(struct ListNode *head)`:传入链表头节点,返回链表的长度。

4. `void insertNode(struct ListNode *head, int index, int val)`:传入链表的头节点、插入的位置和插入的值,在指定位置插入一个新节点。

5. `void deleteNode(struct ListNode *head, int index)`:传入链表的头节点和删除的位置,删除指定位置的节点。

6. `void reverseList(struct ListNode *head)`:传入链表的头节点,翻转整个链表。

7. `int findValInList(struct ListNode *head, int val)`:传入链表的头节点和要查找的值,返回第一个匹配的节点的下标,如果没有匹配的,则返回-1。

二、解题思路1. 创建链表:根据数组中元素的数量,循环遍历数组,每结构体当做链表节点,并记录对应下一个节点,最后返回链表头节点。

2. 打印链表:循环遍历链表的每一个节点,打印节点的val,并在每个节点之间添加空格,最后在尾部添加换行符。

3. 计算链表长度:从链表头节点开始循环遍历每一个节点,直到当前节点的next指针指向NULL,每遍历到一个节点就计数器加1。

c语言单链表头插法实现链表逆置

c语言单链表头插法实现链表逆置

c语言单链表头插法实现链表逆置链表是一种常用的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

在C语言中,我们可以使用单链表来实现各种操作,如插入、删除和查找等。

本文将介绍如何使用头插法实现链表的逆置。

首先,我们需要定义一个链表节点的结构体,包含数据和指向下一个节点的指针。

代码如下:```ctypedef struct Node {int data;struct Node* next;} Node;```接下来,我们需要实现链表的创建和逆置函数。

首先,创建一个空链表,并将头节点指针指向NULL。

代码如下:```cNode* createList() {Node* head = NULL;return head;}```然后,我们可以实现链表的插入函数,使用头插法将新节点插入到链表的头部。

代码如下:```cNode* insertNode(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head;head = newNode;return head;}```接下来,我们可以实现链表的逆置函数,通过遍历链表,将每个节点插入到头部,从而实现链表的逆置。

代码如下:```cNode* reverseList(Node* head) {Node* newHead = NULL;Node* temp = NULL;while (head != NULL) {temp = head->next;head->next = newHead;newHead = head;head = temp;}return newHead;}```最后,我们可以编写主函数,测试链表的逆置功能。

代码如下:```cint main() {Node* head = createList();head = insertNode(head, 1);head = insertNode(head, 2);head = insertNode(head, 3);head = insertNode(head, 4);head = insertNode(head, 5);printf("原链表:");Node* temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");head = reverseList(head);printf("逆置后的链表:");temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");return 0;}```运行以上代码,输出结果如下:```原链表:5 4 3 2 1逆置后的链表:1 2 3 4 5```通过以上代码,我们成功地使用C语言的单链表头插法实现了链表的逆置。

c语言链表头插法

c语言链表头插法

c语言链表头插法C语言是一门广泛应用于嵌入式系统和操作系统开发等领域的语言,而链表头插法是其中一种非常常用的数据结构处理方法。

本文主要围绕C语言链表头插法展开阐述,分为以下几个步骤:1. 了解链表的概念链表是一种常见的数据结构,它由一个个结点通过指针相连而组成。

每个结点包含两个部分:数据域和指针域。

数据域存储实际数据,指针域存储下一个结点的地址。

链表中第一个结点称为头结点,最后一个结点称为尾结点。

链表的特点是可以在任意位置方便地添加、删除和查找元素。

2. 理解头插法的含义头插法是一种在链表头部插入新结点的方法,相应的还有尾插法。

在操作时,先将新结点的指针域指向原头结点,再将头结点更新为新结点,从而实现在头部插入新元素。

尾插法则是在链表尾部添加新结点。

3. 理解链表头文件中结构体的定义链表通常需要定义一个结构体,用于存储每个结点的数据和指针域信息。

在C语言中链表结构体通常包含两个部分,分别是数据域和指针域。

例如下面的结构体定义:```struct Node{int data;struct Node *next;};```其中data存储结点数据,next存储指向下一个结点的指针。

next也可以用来表示链表的结束,当其指向NULL时,链表结束。

4. 实现链表头插法链表头插法的具体实现如下:```void list_add_head(struct Node **head, int data){// 创建新结点struct Node *new_node = (structNode*)malloc(sizeof(struct Node));new_node->data = data;// 更新头结点为新结点的指针new_node->next = *head;*head = new_node;}```该函数的参数是指向头结点指针的指针以及要插入的数据。

首先,在堆内存中创建一个新结点,然后将其指针域指向原头结点。

链表c语言经典例题

链表c语言经典例题

链表c语言经典例题
链表是计算机科学中的经典数据结构之一,常用于存储和操作动态数据。

以下是一些常见的链表例题,可以帮助理解链表的基本操作和应用。

1. 链表的创建:
- 创建一个空链表。

- 创建一个包含指定节点值的链表。

2. 链表的插入操作:
- 在链表的头部插入一个节点。

- 在链表的尾部插入一个节点。

- 在指定位置插入一个节点。

3. 链表的删除操作:
- 删除链表的头节点。

- 删除链表的尾节点。

- 删除指定数值的节点。

4. 链表的查找操作:
- 查找链表中指定数值的节点。

- 查找链表的中间节点。

5. 链表的逆序操作:
- 反转整个链表。

- 反转链表的前 N 个节点。

- 反转链表的一部分区间内的节点。

6. 链表的合并操作:
- 合并两个有序链表,使其有序。

- 合并 K 个有序链表,使其有序。

7. 链表的环检测:
- 判断链表中是否存在环,若存在,则返回环的起始节点。

8. 链表的拆分操作:
- 将一个链表按照奇偶位置拆分成两个链表。

以上是一些链表的经典例题,通过解答这些例题,可以加深对链表结构和基本操作的理解。

在编写对应的 C 语言代码时,需要注意链表节点的定义、指针的使用以及内存的动态分配和释放等问题。

数据结构课后习题第2章

数据结构课后习题第2章

2. 指针 P 指向不带头结点的线性链表 L 的首元素的条件是( )。
A.P= =L
C.P-﹥next==L
B.L-﹥Next==P
D.P-﹥next==NULL
3. 指针 p 指向带头结点的单循环链表 L 的首元素的条件是( )。
A.P= =L
C.P-﹥next==L
B.L-﹥Next==P
D.P-﹥next==NULL
网络工程 2011 级 1 班、计算机科学与技术 2011 级 2 班《算法与数据结构》课后习题(第 2 章)
2011 级 计科 (网工)
题号
得分

【课后习题】第 2 章 线性表
班 学号:
一、判断题(如果正确,在题号前打“”,否则打“”。每题 2 分,共 10 分)

( ) 1. 线性表若采用顺序存储表示时所有结点之间的存储单元地址必须连续。 ( ) 2. 顺序表结构适宜于进行顺序存取,而链表适宜于进行随机存取。 ( ) 3. 如果某个数据结构的每一个元素都是最多只有一个直接前驱,则必为线性结构。 ( ) 4. 线性表的逻辑顺序与物理顺序总是一致的。 ( ) 5. 线性表的长度是指它所占存储空间的大小。
二、填空题(每空 1.5 分,共 21 分)
1. 从逻辑结构看,线性表是典型的
2. 在一个长度为 n 的向量中在第 i(1≤i≤n+1)个元素之前插入一个元素时,需向后移动
个元素,算法的时间复杂度为
3. 在一个长度为 n 的向量中删除第 i(1≤i≤n)个元素时,需向前移动
算法的时间复杂度为


4. 若长度为 n 的线性表采用链式存储结构,在其第 i 个结点前插入一个新的元素的算法的

链表的反转与合并掌握链表反转和合并操作的实现

链表的反转与合并掌握链表反转和合并操作的实现

链表的反转与合并掌握链表反转和合并操作的实现链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表的反转和合并是链表操作中常见且重要的操作,在很多编程问题中都有应用。

本文将介绍链表的反转和合并操作的实现方法。

一、链表的反转链表的反转是指将链表中节点的顺序反向排列。

例如,对于链表1→2→3→4→5,反转后的链表为5→4→3→2→1。

实现链表的反转有两种常见的方法:迭代法和递归法。

1. 迭代法迭代法的实现思路是,从链表头节点开始,依次遍历每个节点,将该节点的指针指向前一个节点。

具体步骤如下:1)定义三个指针:当前节点指针cur、前一个节点指针prev、下一个节点指针next。

2)遍历链表,将当前节点的指针指向前一个节点,然后更新prev、cur和next指针的位置。

3)重复上述步骤,直到遍历到链表末尾。

以下是迭代法的实现代码示例(使用Python语言):```pythondef reverse_list(head):prev = Nonecur = headwhile cur:next = cur.nextcur.next = prevprev = curcur = nextreturn prev```2. 递归法递归法的实现思路是,从链表的尾节点开始,依次反转每个节点。

具体步骤如下:1)递归地反转除最后一个节点外的链表。

2)将当前节点的指针指向前一个节点。

3)返回反转后的链表的头节点。

以下是递归法的实现代码示例(使用Python语言):```pythondef reverse_list(head):if not head or not head.next:return headnew_head = reverse_list(head.next)head.next.next = headhead.next = Nonereturn new_head```二、链表的合并链表的合并是指将两个有序链表按照一定的规则合并成一个有序链表。

数据结构C语言版 线性表的单链表存储结构表示和实现

数据结构C语言版 线性表的单链表存储结构表示和实现

#include 〈stdio.h>#include <malloc。

h>#include 〈stdlib.h>/*数据结构C语言版线性表的单链表存储结构表示和实现P28—31编译环境:Dev-C++ 4。

9。

9。

2日期:2011年2月10日*/typedef int ElemType;// 线性表的单链表存储结构typedef struct LNode{ElemType data; //数据域struct LNode *next;//指针域}LNode, *LinkList;// typedef struct LNode *LinkList;// 另一种定义LinkList的方法// 构造一个空的线性表Lint InitList(LinkList *L){/*产生头结点L,并使L指向此头结点,头节点的数据域为空,不放数据的。

void *malloc(size_t)这里对返回值进行强制类型转换了,返回值是指向空类型的指针类型.*/(*L)= (LinkList)malloc(sizeof(struct LNode) );if( !(*L))exit(0);// 存储分配失败(*L)-〉next = NULL;// 指针域为空return 1;}// 销毁线性表L,将包括头结点在内的所有元素释放其存储空间。

int DestroyList(LinkList *L){LinkList q;// 由于单链表的每一个元素是单独分配的,所以要一个一个的进行释放while(*L ){q = (*L)—〉next;free(*L );//释放*L = q;}return 1;}/*将L重置为空表,即将链表中除头结点外的所有元素释放其存储空间,但是将头结点指针域置空,这和销毁有区别哦。

不改变L,所以不需要用指针。

*/int ClearList( LinkList L ){LinkList p,q;p = L—〉next;// p指向第一个结点while( p ) // 没到表尾则继续循环{q = p—>next;free( p );//释放空间p = q;}L—>next = NULL; // 头结点指针域为空,链表成了一个空表return 1;}// 若L为空表(根据头结点L—〉next来判断,为空则是空表),则返回1,// 否则返回0.int ListEmpty(LinkList L){if(L—>next ) // 非空return 0;elsereturn 1;}// 返回L中数据元素个数。

单链表基本操作

单链表基本操作

单链表基本操作在计算机科学里,链表是一种常见的数据结构,它可以用来解决各种复杂的问题。

其中,单链表是最常见的一种,它由一系列节点组成,每个节点包含了一个数据元素和一个指针,指向下一个节点。

这篇文章将介绍单链表的基本操作,包括创建、插入、删除和遍历等。

创建单链表创建单链表是基本操作之一,它有两种方法:头插法和尾插法。

头插法是从链表的头节点开始,逐个将新节点插入。

具体来说,创建一个空链表,设置一个头节点,将头节点的指针指向空;依次输入新节点,将新节点的指针指向表头,将表头的指针指向新节点。

这样,每插入一个新节点就成为了新的表头,即最后插入的节点为新的表头。

尾插法则是从链表的尾节点开始,逐个将新节点插入。

具体来说,创建一个空链表,设置一个头节点,将头节点的指针指向空;依次输入新节点,将新节点的指针指向空,将最后一个节点的指针指向新节点。

这样,最后插入的节点为尾节点,它的指针值为空。

插入节点插入节点是指在单链表的任意位置插入一个新节点。

插入节点的前提是找到插入位置,可以通过遍历单链表来查找插入位置。

插入新节点的基本步骤如下:1、创建新节点;2、将新节点的指针指向待插入节点的后继节点;3、将待插入节点的指针指向新节点。

删除节点删除节点是指删除单链表中的任意节点。

删除节点的前提是找到删除的节点位置,可以通过遍历单链表来查找删除位置。

删除节点的基本步骤如下:1、找到要删除的节点;2、将该节点的前驱节点的指针指向该节点的后继节点;3、删除该节点。

遍历节点遍历节点是指按照链表的顺序依次访问链表中的各个节点。

遍历节点的基本步骤如下:1、从链表的头节点开始遍历;2、依次访问每个节点的数据元素;3、通过指针访问下一个节点,直到遇到尾节点。

优缺点单链表的优点是简单,灵活,易于实现和扩展,可以方便地进行插入和删除等操作。

其缺点是存在指针开销,查找元素时需要遍历整个链表,不能直接访问链表中任意位置的节点。

总结单链表是一种最常用的数据结构,它是由一系列节点组成,每个节点包含一个数据元素和一个指针,指向下一个节点。

链表逆序的三种方法

链表逆序的三种方法

链表逆序的三种方法链表是一种常用的数据结构,由一个个节点通过指针连接而成。

在实际编程中,经常需要对链表进行逆序操作,以满足特定需求。

本文将介绍链表逆序的三种常用方法,分别是迭代法、递归法以及使用栈的方法。

迭代法:迭代法是一种比较直观的逆序方法,通过调整节点之间的指针指向来实现。

具体步骤如下:1. 定义三个指针,分别为当前节点(cur)、前一个节点(prev)和下一个节点(next)。

2. 将当前节点的下一个节点保存到next指针中,以免链表断开。

3. 将当前节点的next指针指向前一个节点,完成逆序操作。

4. 将当前节点赋值给prev指针,以备下一次迭代使用。

5. 将next指针赋值给cur指针,继续下一次迭代。

若next指针为空,则说明已到达链表尾部,逆序完成。

递归法:递归法是一种更为简洁的逆序方法,通过递归调用实现链表逆序。

具体步骤如下:1. 首先判断链表是否为空或只有一个节点,若是则无需逆序,直接返回。

2. 若链表有多个节点,则递归调用逆序函数对除第一个节点外的子链表进行逆序。

3. 将头节点(首节点)的指针指向调用逆序函数后的新链表的尾节点。

4. 将尾节点的指针指向头节点,使得整个链表逆序完成。

使用栈的方法:栈是一种后进先出(LIFO)的数据结构,可以利用栈的特性进行链表逆序操作。

具体步骤如下:1. 遍历链表,将链表中的节点依次压入栈中。

2. 弹出栈中的节点,按照出栈顺序重新构建链表。

弹出的第一个节点是原链表的尾节点,成为逆序链表的头节点。

3. 将每个弹出的节点的next指针指向下一个被弹出的节点,完成逆序操作。

4. 最后一个被弹出的节点成为逆序链表的尾节点,将其next指针置为空,表示逆序链表的尾部。

以上是三种常见的链表逆序方法。

在实际应用中,可以根据具体情况选择合适的方法来实现链表逆序。

迭代法适合逆序链表并保持链表结构的情况;递归法适用于逆序链表不要求保持原结构的情况;使用栈的方法适用于逆序链表并重新构建链表结构的情况。

链表常用方法

链表常用方法

链表常用方法
1.增加节点:链表的特性就是可以动态增加节点,常用的方式是在链表末尾添加新节点或在指定节点后添加新节点。

2. 删除节点:删除节点时需要注意保持链表的连续性,一般有
两种方式,一种是将该节点的前一个节点直接指向该节点的下一个节点,另一种是将该节点的值设为 null 或者其他特殊值,将该节点标记为删除。

3. 遍历链表:使用循环语句对链表进行遍历,依次访问每个节
点即可。

4. 查找节点:查找链表中的某个节点时可以使用循环遍历或者
递归查找的方式,如果链表是有序的,则可以使用二分查找的方式。

5. 反转链表:将链表中节点的指针反转即可实现链表的反转,
可以使用迭代或者递归的方式实现。

6. 合并链表:将两个有序链表合并成一个有序链表,可以使用
迭代或者递归的方式实现。

7. 判断链表是否存在环:使用两个指针分别从链表头开始遍历,一个指针每次移动一个节点,另一个指针每次移动两个节点,如果存在环,则两个指针一定会相遇。

8. 找到环的起点:使用上一步中相遇的节点作为起点,再使用
两个指针分别从该节点和链表头开始遍历,相遇的节点即为环的起点。

9. 删除倒数第 n 个节点:使用快慢指针的方式找到倒数第 n
个节点,然后删除该节点即可。

10. 检测链表是否回文:使用快慢指针将链表分成两部分,将后半部分反转,然后比较两部分是否相等。

c语言链表的用法有哪些

c语言链表的用法有哪些

c语言链表的用法有哪些c语言链表的用法有哪些链表是数据结构中比较基础也是比较重要的类型之一,那么有了数组,为什么我们还需要链表呢!或者说设计链表这种数据结构的初衷在哪里?下面店铺就为大家介绍下c语言链表的用法。

链表的定义:链表的定义一般使用结构体,在看《数据结构与算法分析》这本书的时候发现,书中频繁的使用typedef的关键字,结果真的很棒不仅保持的代码的整洁程度,也让我们在下面的编码过程中少见了很多烦人的指针(当然指针还是一直存在的)。

所以这里也借用了书中的定义方法。

struct Node;typedef struct Node* PtrNode;typedef PtrNode Position;typedef PtrNode List;struct Node{int Value;PtrNode Next;};下面接着书写一个建立链表的函数,输入每个节点的值,直到这个值是-1的时候函数结束。

在这个里面,我以前一直搞不明白为什么需要定义三个Node *,现在终于了解了,最终还是复习了指针的内容明白的.,这里说一下指针实现链表对指针的操作很频繁,需要比较扎实的掌握了指针之后,在来看链表会轻松很多。

在下面的一段程序里,我分别定义了head/p/tmp这三个指向节点结构体的指针,head的主要作用就像一个传销头目,他会主动联系上一个下线p,然后他就什么也不干了,p 接着去发展一个又一个的下线tmp,结果一串以head为首的链表就出来了。

起先,我总觉得有了head,为什么还要p,这是因为如果直接使用head去指向下一个节点,head的位置也是不断在移动的,即它永远处于链表的尾端,这样当我们返回链表的时候,其实是空值。

所以,我们需要p这个中转环节。

(其实,这种做法在指针中非常普遍,大部分有返回指针类型的函数中,都会首先定义一个指针变量来保存函数的传入的参数,而不是对参数直接进行操作)。

/*函数功能:创建一个链表函数描述:每次输入一个新的整数,即把新增加一个节点存放该整数,当输入的整数为-1时,函数结束。

c常用的数据结构与算法

c常用的数据结构与算法

c常用的数据结构与算法C常用的数据结构与算法数据结构和算法是计算机科学的基础,对于编程和问题解决至关重要。

在C语言中,有许多常用的数据结构和算法,本文将介绍其中一些。

一、数据结构1. 数组(Array)数组是最简单的数据结构之一,它是一组相同类型的元素的集合。

在C语言中,数组的元素可以是任何类型,如整数、字符或自定义结构体。

数组具有随机访问的特点,可以通过索引值快速访问或修改元素。

2. 链表(Linked List)链表是由一系列节点组成的数据结构,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表可以分为单向链表和双向链表两种形式。

链表的插入和删除操作比较高效,但访问元素需要遍历链表。

3. 栈(Stack)栈是一种后进先出(LIFO)的数据结构,只允许在栈顶进行插入和删除操作。

栈可以使用数组或链表实现,常用于实现函数调用的过程、括号匹配等场景。

4. 队列(Queue)队列是一种先进先出(FIFO)的数据结构,允许在队尾进行插入操作,在队头进行删除操作。

队列也可以使用数组或链表实现,常用于实现广度优先搜索、缓冲区等场景。

5. 树(Tree)树是一种非线性的数据结构,由节点和边组成。

树的每个节点可以有多个子节点,其中一个节点称为根节点。

树的应用非常广泛,如二叉搜索树、平衡二叉树、堆等。

6. 图(Graph)图是由节点和边组成的数据结构,节点之间的连接关系称为边。

图可以分为有向图和无向图两种形式,常用于表示网络、社交关系等复杂结构。

二、算法1. 排序算法排序算法是将一组元素按照特定顺序排列的算法。

常见的排序算法有冒泡排序、插入排序、选择排序、快速排序、归并排序等。

排序算法的选择取决于数据规模和性能要求。

2. 查找算法查找算法是在一组元素中查找特定元素的算法。

常见的查找算法有线性查找、二分查找、哈希查找等。

查找算法的效率取决于数据的有序性和数据规模。

3. 图算法图算法是处理图数据结构的算法,常见的有深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(Prim算法、Kruskal算法)等。

链表基数排序

链表基数排序

链表基数排序链表是一种常用的数据结构,可以用来存储和操作数据。

而基数排序是一种排序算法,通过将数据按照位数进行排序,从而达到排序的目的。

本文将介绍链表基数排序的原理和实现过程。

一、基数排序简介基数排序是一种非比较型的排序算法,其基本思想是将待排序的数据按照权重进行分组,依次对每一位进行排序,直到所有的位都排序完成。

基数排序的时间复杂度为O(d*(n+r)),其中d是数字的位数,n是数据的个数,r是基数的大小。

链表基数排序是基于链表的数据结构进行排序的一种方法。

其主要思想是通过将待排序的数据放入链表中,然后按照权重进行分组,并依次对每一位进行排序,直到所有的位都排序完成。

具体的实现过程如下:1. 创建一个链表数组,用于存储待排序的数据。

数组的大小等于基数的大小。

2. 将待排序的数据按照个位数的大小,放入对应的链表中。

3. 依次取出链表中的数据,按照十位数的大小,放入对应的链表中。

4. 依次重复上述步骤,直到所有的位都排序完成。

5. 最后将链表中的数据按照顺序取出,即可得到排序后的结果。

三、链表基数排序的实现下面以一个示例来说明链表基数排序的实现过程。

假设有以下一组数据:85,65,45,95,35,75,551. 创建一个链表数组,大小为10,用于存储待排序的数据。

2. 将待排序的数据按照个位数的大小,放入对应的链表中,得到如下结果:链表0:无数据链表1:无数据链表2:无数据链表3:35链表4:45链表5:55,65,75,85,95链表6:无数据链表7:无数据链表8:无数据链表9:无数据3. 依次取出链表中的数据,按照十位数的大小,放入对应的链表中,得到如下结果:链表0:无数据链表1:无数据链表2:35,45,55链表3:无数据链表4:65,75链表5:85,95链表6:无数据链表7:无数据链表8:无数据链表9:无数据4. 依次重复上述步骤,直到所有的位都排序完成。

这里只需进行一次操作,即按照百位数的大小进行排序,得到最终的结果:链表0:35,45,55,65,75,85,95链表1:无数据链表2:无数据链表3:无数据链表4:无数据链表5:无数据链表6:无数据链表7:无数据链表8:无数据链表9:无数据最终的排序结果为:35,45,55,65,75,85,95四、总结链表基数排序是一种通过链表数据结构实现的排序算法,其主要思想是将待排序的数据按照位数进行分组,并依次对每一位进行排序,直到所有的位都排序完成。

数据结构中依次递增的方法

数据结构中依次递增的方法

数据结构中依次递增的方法依次递增的方法是数据结构中常用的一种操作方式,它可以帮助我们有效地管理和利用数据。

本文将从不同的角度介绍几种常见的依次递增的方法。

一、依次递增的数组在数据结构中,数组是最基本的数据结构之一。

依次递增的数组是指数组中的元素按照一定的顺序排列,且每个元素都比前一个元素大。

通过依次遍历数组,我们可以很容易地找到数组中的最大值、最小值、中位数等等。

同时,依次递增的数组还可以用于实现二分查找算法,提高查找效率。

二、依次递增的链表链表是另一种常见的数据结构,它由一系列节点组成,每个节点都包含一个数据元素和指向下一个节点的指针。

依次递增的链表是指链表中的节点按照一定的顺序排列,且每个节点的数据元素都比前一个节点大。

通过依次遍历链表,我们可以找到链表中的最大值、最小值、中位数等等。

同时,依次递增的链表还可以用于实现插入排序算法,将新的节点按照顺序插入链表中,保持链表的有序性。

三、依次递增的栈栈是一种后进先出(LIFO)的数据结构,它只允许在栈顶进行插入和删除操作。

依次递增的栈是指栈中的元素按照一定的顺序排列,且每个元素都比前一个元素大。

通过依次遍历栈,我们可以找到栈中的最大值、最小值等等。

同时,依次递增的栈还可以用于实现柱状图中最大矩形的面积问题,通过维护一个递增的栈,我们可以高效地解决这个问题。

四、依次递增的队列队列是一种先进先出(FIFO)的数据结构,它支持在队尾插入元素,在队头删除元素。

依次递增的队列是指队列中的元素按照一定的顺序排列,且每个元素都比前一个元素大。

通过依次遍历队列,我们可以找到队列中的最大值、最小值等等。

同时,依次递增的队列还可以用于实现滑动窗口最大值的问题,通过维护一个递增的队列,我们可以高效地解决这个问题。

五、依次递增的二叉树二叉树是一种常见的树形数据结构,它由一个根节点和两个子树组成,每个子树也是一个二叉树。

依次递增的二叉树是指二叉树中的节点按照一定的顺序排列,且每个节点的值都比左子树中的节点值大,比右子树中的节点值小。

C语言-链表

C语言-链表

NWPU—CC—ZhangYanChun
13

void main( )
{┇
for(i=1; i<=N; i++)
/*建立链表*/
{┇
}
for(i=1; i<=N; i++)
/*输出链表*/
{ if(i==1) p1=head;
/*p1指向首节点*/
else p1=p1->next; /*p1指向下一节点*/
第第9十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
10
3) 重复第2步,建立并链接多个节点直至所需长
度,将末尾节点的next成员赋值0。
head
1048 p1 1370 p1
2101
2304
1012
2918
89.5
90
85
操作:
1370
1012
NULL
pp22
p2
p1=(struct student *)malloc(len);
成功,返回存储块起始指针,该指针类型为
void *;否则返回空指针(NULL)。
内存释放函数原形:void free(void *p); 功能:释放p所指向的内存块。
包含文件:malloc.h、stdlib.h中均有其原型声明。
C 程序设计
第第4十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
第第5十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
6
6) 链表的类型
单链表:每个节点只有一个指向后继节点的指针 双向链表:每个节点有两个用于指向其它节点的指针;

c语言链表头插法

c语言链表头插法

c语言链表头插法链表是一种重要的数据结构,在c语言中可以通过指针来实现链表。

其中一个常用的插入方法就是链表的头插法。

链表的头插法就是在链表的头部插入一个新节点,使其成为链表的第一个节点。

这个操作可以通过以下步骤来实现:1. 定义一个新节点,申请空间,设置节点的数据域和指针域;2. 将新节点的指针域指向当前链表的头节点;3. 将新节点设置为当前链表的头节点。

C语言链表头插法的示例代码如下:```#include <stdio.h>#include <stdlib.h>typedef struct Node {int data;struct Node *next;} Node;Node *createNode(int data) {Node *newNode = (Node *) malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;return newNode;}void insertHead(Node **head, int data) { Node *newNode = createNode(data);if (*head == NULL) {*head = newNode;} else {newNode->next = *head;*head = newNode;}}void printList(Node *head) {while (head != NULL) {printf('%d ', head->data);head = head->next;}printf('');}int main() {Node *head = NULL;insertHead(&head, 3);insertHead(&head, 2);insertHead(&head, 1);printList(head);return 0;}```在这个示例代码中,我们定义了一个名为Node的结构体,它有两个成员:int类型的数据域和指向下一个节点的指针域。

数据结构c语言版单链表心得

数据结构c语言版单链表心得

数据结构c语言版单链表心得单链表是一种常用的数据结构,它能够以链式的形式存储数据,可以动态的插入、删除等操作,非常适合于需要频繁操作数据的场景。

在C语言中,单链表的实现相对来说比较简单,但是需要掌握一些基本的指针操作技巧。

单链表的结构定义通常包含一个数据域和一个指向下一节点的指针域。

例如:```ctypedef struct Node {int data;struct Node* next;} Node;```这里我们定义了一个名为Node的结构体,其中包括一个int类型的数据域和一个指向下一个Node的指针域。

之所以要使用指针域,是因为链表不像数组那样在内存中连续存储,因此我们必须借助指针来建立节点之间的联系。

创建一个链表可以通过动态分配内存来实现,例如:```cNode* create_list() {Node* head = NULL; //头结点Node* tail = NULL; //尾结点int x;while (scanf("%d", &x) != EOF) { //读取数据直到文件末尾Node* node = (Node*)malloc(sizeof(Node)); //动态分配内存node->data = x;node->next = NULL;if (head == NULL) { //如果链表为空head = node; //头结点指向新节点}else {tail->next = node; //尾节点的指针域指向新节点}tail = node; //重置尾节点}return head;}```该函数通过使用malloc动态分配节点内存空间,然后读取数据并将其添加到链表中。

这里head和tail分别指向链表的头结点和尾结点,并且将尾结点的指针域指向新节点。

如果链表为空,则将头结点指向新节点。

遍历链表可以通过循环链表上的节点来实现,例如:```cvoid traverse_list(Node* head) {Node* node = head;while (node != NULL) { //循环链表printf("%d ", node->data);node = node->next; //指向下一个节点}}```该函数以head为参数,循环链表并输出每个节点的数据域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、采用链结构存储线性表时,其地址( B )。

A)必须是连续的 B)连续不连续都可以
C)部分地址必须是连续 D)必须是不连续的
2、如果结点A有3个兄弟,而且B为A的双亲,则B的度为( B )。

A)3 B)4 C)5 D)1
3、已知栈的最大容量为4。

若进栈序列为1,2,3,4,5,6,且进栈和出栈可以穿插进行,则可能出现的出栈序列为( C )。

A) 5,4,3,2,1,6 B) 2,3,5,6,1,4
C) 3,2,5,4,1,6 D) 1,4,6,5,2,3
4、在一个链队列中,假定front和rear分别为队首和队尾指针,则插入一个结点的操作为( B )。

A)front=front->next; B) rear=rear->next;
C) rear=front->next; D) front=rear->next ;
5、在一个具有n个单元的顺序栈中,假定以地址低端(即0单元)作为栈底,以top作为栈顶指针,当做出栈处理时,top变化为( C )。

A)top不变 B)top=0 C)top-- D)top++
6、链式存储的存储结构所占存储空间( A )。

A)分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针
B)只有一部分,存放结点值
C)只有一部分,存储表示结点间关系的指针
D)分两部分,一部分存放结点值,另一部分存放结点所占单元数
7、已知广义表L=((x,y,z),a,(u,t,w)),从L 表中取出原子项t 的操作是( D )。

A) Head(Head(Tail(Tail(L))))
B) Tail(Head(Head(Tail(L))))
C) Head(Tail(Head(Tail(L))))
D)Head(Tail(Head(Tail(Tail(L)))))
8、用一维数组A进行顺序存储时,若起始地址为loc(A1),元素长度为c,则A的第i个数组单元在存放地址loc(Ai),等于( B )。

A)loc(A1)+i*c B)loc(A1)+(i-1)*c
C)loc(A1)+i*c+1 D)loc(A1)+(i+1)*c
9、对待排序的元素序列进行划分,将其分为左、右两个子序列,再对两个子序列施加同样的排序操作,直到子序列为空或只剩一个元素为止。

这样的排序方法是( A )。

A)直接选择排序 B)直接插入排序
C)快速排序 D)起泡排序
10、对待排序的元素序列进行划分,将其分为左、右两个子序列,再对两个子序列施加同样
的排序操作,直到子序列为空或只剩一个元素为止。

这样的排序方法是( A )。

A)直接选择排序 B)直接插入排序
C)快速排序 D)起泡排序
11、下面关于线性表的叙述中,错误的是哪一个?( D )
A)线性表采用顺序存储,必须占用一片连续的存储单元。

B)线性表采用链接存储,便于插入和删除操作。

C)线性表采用链接存储,不必占用一片连续的存储单元。

D)线性表采用顺序存储,便于进行插入和删除操作。

12、在一个链队列中,假定front和rear分别为队首和队尾指针,则插入一个结点的操作为( B )。

A)front=front->next; B) rear=rear->next;
C) rear=front->next; D) front=rear->next ;
13、下面程序段的时间复杂度是( A )。

s =0;
for( i =0; i<n; i++)
for(j=0;j<n;j++)
s +=B[i][j];
sum = s ;
A) O(n2) B) O(n)
C) O(m*n) D)O(1)
14、在数据结构中,从逻辑上可以把数据结构分为( C )。

A)动态结构和静态结构 B)紧凑结构和非紧凑结构
C)线性结构和非线性结构 D)内部结构和外部结构
15、线性表的链接实现有利于( A )运算。

A)插入 B)读元素
C)查找 D)定位。

相关文档
最新文档