2014年春季新版新人教版七年级数学下学期第10章、数据的收集、整理与描述单元复习试卷18
人教版数学七年级下册第十章 数据的收集、整理和描述单元练习(含答案)
第十章数据的收集、整理与描述一、选择题1.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高2.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000.其中说法正确的有()A. 4个B. 3个C. 2个D. 1个3.为了检查某鞋厂生产的一批皮鞋的质量,从中抽取50双进行检查.此项调查中,50是这个问题的()A.个体B.总体C.总体的一个样本D.样本容量4.以下调查:①调查某批次汽车的抗撞击能力;②了解某市学生的足球运动情况;③调查洛阳河的水质情况;④企业招聘,对应聘人员进行面试,适宜全面调查的有()个.A. 1B. 2C. 3D. 45.为了让人们感受丢弃塑料袋对环境的影响,某班环保小组10个同学记录了自己家中一天丢弃塑料袋的数量(单位:个)2,3,8,7,5,6,7,2,4,6,如果该班有50名学生,估计全班同学家中一周共丢弃塑料袋的数量约为()A. 1 750B. 1 350C. 1 050D. 1 0006.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可7.下列调查中,①调查你所在班级同学的年龄情况;②检测杭州的空气质量;③为保证“风云二号08星”成功发射,对其零部件进行检查;④对乘坐某航班的乘客进行安检,其中适合采用抽样调查的是()A.①B.②C.③D.④8.某中学七年级共400人,在期末统考后对本次考试中数学测验情况进行抽样了解,下列抽取的样本最合理的是()A.抽取前50名同学的数学成绩B.抽取后50名同学的数学成绩C.抽取5班同学的数学成绩D.抽取各班学号为5的倍数的同学的数学成绩二、填空题9.为了解江苏电视台《南京零距离》节目的收视率,宜采用的调查方式是________.10.阳光体育运动关乎每个学生未来的幸福生活,今年四月份,我区某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班级2-3名选手参赛,现将80名选手比赛成绩(次/min)进行统计.绘制如图所示的频数分布直方图,则图中a的值为________.11.为了解被拆迁236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意,在这一调查中,样本容量为________.12.学校图书馆10月份各类图书的借阅情况如图所示,这个月借阅文学类书籍的人数是数学类的________倍.13.如图,某中学制作了300名学生选择棋类、武术、摄影、刺绣四门技术课程情况的扇形统计图,从图中可以看出选择刺绣的学生有________名.14.以下调查适合作抽样调查的是________,适合作全面调查的是________.(只须填序号)(1)了解全国食用盐加碘的情况(2)对七年级2班学生睡眠时间的调查(3)对构成人造卫星零部件的检查(4)对一个城市的空气质量标准的检测.15.某校为了了解700名八年级学生是视力情况,从中抽取了100名学生进行测试,其中总体为______________,样本为______________,样本容量______.16.某地区青少年、成年人、老年人的人数比约为3∶5∶2,现从中抽取一个样本容量为1000的样本,调查了解他们对新闻、体育、动画三类节目的喜爱情况.老年人应抽取________人.三、解答题17.某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.18.请指出下列样本是否具有代表性:(1)在全县范围内随意选择十个幼儿园,对其中每个孩子的情况进行调查,以了解该县幼儿园的身体发育等情况;(2)到省城一所中学进行调查,以便了解全省中学生上网的情况;(3)在每个省任意确定两名房地产开发商,让他们每人填写一张内容详尽的调查表,包括他们负责的工程质量,所盖楼房中使用的涂料、门窗、地板是不是合格,以及建房的利润情况等,以了解全国各地的房地产开发商的工作情况.19.某校为了解本校1200名初中生对安全知识掌握情况,随机抽取了60名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制了如下不完整的频数统计表和频数直方图:请结合图表完成下列各题:(1)频数表中的a=________,b=________;(2)将频数分布直方图补充完整;(3)若测试成绩不低于80分定为“优秀”,你估计该校的初中生对安全知识掌握情况为“优秀”等级的大约有多少人?20.近年来,丽水市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假.下面两图分别反映了该市2011~2014年游客人均消费情况和旅游业总收入情况.根据统计图提供的信息,解答以下问题:(1)在2012年,2013年,2014年这三年中,旅游业总收入增长幅度最大的是哪一年?这一年比上一年增长的百分率为多少?(精确到1%)(2)2012年该市的游客为多少万人次?(3)据统计,2014年的游客中,国内游客为1 000万人次,其余为海外游客.其中,国内游客的人均消费为520元,则海外游客的人均消费为多少元?(注:旅游收入=游客人数×游客的人均消费)21.在数学、外语、语文3门学科中,某校一年级开展了同学们最喜欢学习哪门学科的调查(一年级共有200人).(1)调查的问题是什么?(2)调查的对象是谁?(3)在被调查的200名学生中,有40人最喜欢学语文,60人最喜欢学数学,80人最喜欢学外语,其余的人选择其他,求最喜欢学数学这门学科的学生占学生总数的比例;(4)根据调查情况,把一年级的学生最喜欢学习某学科的人数及其占学生总数的百分比填入下表:22.如图是根据某市国民经济和社会发展统计公报中的相关数据绘制的两幅统计图(不完整).根据图中信息解答下列问题:(1)2013年该市私人轿车拥有量约是多少万辆?(精确到1万辆)(2)请补全折线统计图.(3)经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为1.6 L的轿车,若一年行驶的路程为1万千米,则这一年该轿车的碳排放量约为2.7万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:按照上述的统计数据,通过计算估计:2014年该市仅排量为1.6 L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量为多少万吨?23.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图(如图).请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其它信息,例如该中学没有获得满分的同学等等,请再写出一条信息.24.据国家教育部、卫生部最新调查表明:我国小学生近视率超过25%,初中生近视率达到70%,每年以8%的速度增长,居世界第一位.某市为调查中学生视力情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成统计表和扇形统计图如下:被抽取学生视力在4.9以下的人数变化情况统计表解答下列问题:(1)扇形统计图中x=________;(2)该市共抽取了九年级学生________人;(3)若该市今年共有九年级学生约8.5万名,请你估计该市九年级学生视力不良(4.9以下)的学生大约有多少人?答案解析1.【答案】C【解析】调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查.2.【答案】C【解析】这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2 000名考生的中考数学成绩是总体的一个样本,样本容量是2 000.故正确的是①④.3.【答案】D【解析】50是这个问题的样本容量.4.【答案】A【解析】①调查某批次汽车的抗撞击能力适宜抽样调查;②了解某市学生的足球运动情况宜抽样调查;③调查洛阳河的水质情况宜抽样调查;④企业招聘,对应聘人员进行面试适宜全面调查.5.【答案】A【解析】因为10个同学家中一家一天丢弃塑料袋的平均个数为(2+3+8+7+5+6+7+2+4+6)÷10=5(个),所以10个同学家中一家一周共丢弃塑料袋的数量=5×7=35(个),又因为该班有50名学生,所以全班同学家中一周共丢弃塑料袋的数量约为35×50=1 750(个).6.【答案】D【解析】根据题意,要求把这个班的植树情况清楚地反映出来,即体现数字间的关系,使用条形统计图、扇形统计图均可.7.【答案】B【解析】①调查你所在班级同学的年龄情况调查对象范围小,适合全面调查;②检测杭州的空气质量,无法进行全面调查,适合抽样调查;③为保证“风云二号08星”成功发射,对其零部件进行检查,精确度要求高,适合全面调查;④对乘坐某航班的乘客进行安检,精确度要求高,适合全面调查.8.【答案】D【解析】要使所抽取的样本较为合理,应尽量使抽样调查能够很好的反映总体的情况,所以抽取各班学号为5号的倍数的同学的数学成绩是较为合理的,它属于简单随机抽样,具有对总体的代表性.9.【答案】抽样调查【解析】了解江苏电视台《南京零距离》节目的收视率,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可.10.【答案】4【解析】根据题意得a=80-8-40-28=4(人).11.【答案】50【解析】12.【答案】2.5【解析】500÷200=2.513.【答案】39【解析】根据题意得300×(1-33%-26%-28%)=39(名).答:选择刺绣的学生有39名.14.【答案】(1)(4)(2)(3)【解析】(1)了解全国食用盐加碘的情况适合作抽样调查;(2)对七年级2班学生睡眠时间的调查适合作全面调查;(3)对构成人造卫星零部件的检查适合作全面调查;(4)对一个城市的空气质量标准的检测适合作抽样调查.15.【答案】700名八年级学生的视力情况从中抽取100名学生的视力情况100【解析】16.【答案】200【解析】因为样本容量为1000,某地区青少年、成年人、老年人的人数比约为3:5:2,所以老年人的人数所占总人数的=,故老年人应抽取1000×=200(人).17.【答案】小军的数据较好地反映了该校八年级同学选修历史的意向.理由如下:小红仅调查了一个班的同学,样本不具有随机性;小亮只调查了8位历史课代表,样本容量过少,不具有代表性;小军的调查样本容量适中,且能够代表全年级的同学的选择意向.根据小军的调查结果,有意向选择历史的比例约为=;故据此估计全年级选修历史的人数为241×=60.25≈60(人).【解析】根据抽样调查的代表性可知小军的结果较好地反映了该校八年级同学选修历史的意向,再用样本中选择历史的人数所占比例乘以总人数可得答案.18.【答案】(1)具有代表性;(2)不具有代表性,因为偏远地区可能没有电脑;(3)不具有代表性,因为开发商不一定说真话.【解析】在抽取样本时,所抽取的样本必须能够代表所有的调查对象,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现,必须是随机抽样,据此即可判断.19.【答案】解:(1)根据条形统计图所给出的数据可得a=18,则b=60-6-10-18-12=14;故答案为18,14.(2)根据(1)求出的b的值,补图如下:(3)“优秀”等级的人数为1200×=520(人).【解析】(1)根据条形统计图所给出的数据可得a=18,再用60减去其它组的频数,即可求出b的值;(2)根据(1)求出b的值,可直接补全统计图;(3)用全校的总人数乘以成绩不低于80分所占的百分比,即可得出答案.20.【答案】解:(1)(660 000-442 800)÷442 800≈49%,答:增长幅度最大的是2014年,增长率约为49%.(2)361 200÷516=700(万人次)答:2012年的游客人数为700万人次.(3)设海外游客的人均消费为x元,根据题意得:(660 000÷600-1 000)x=660 000-1 000×520解这个方程,得x=1 400.答:海外游客人均花费1 400元.【解析】21.【答案】解:(1)调查的问题是:在数学、外语、语文3门学科中,你最喜欢学习哪一门学科?(2)调查的对象是:某校一年级的全体同学;(3)最喜欢学数学这门学科的学生占学生总数的比例为×100%=30%;(4)如下表:喜欢学语文的人数占学生总人数的比例为:×100%=20%;喜欢学数学的人数占学生总人数的比例为:×100%=30%;喜欢学外语的人数占学生总人数的比例为:×100%=40%;喜欢其它学科的人数占学生总人数的比例为:×100%=10%.【解析】分别根据调查的对象、调查的内容、喜欢某个学科的学生所占调查人数的百分比进行解答即可.22.【答案】解:(1)设2013年该市私人轿车拥有量为x万辆,根据题意,得(1+30%)x=108,解得x=83,答:2013年该市私人轿车拥有量约是83万辆;(2)设2012年增长率为m,则60(1+m)=69,解得m=0.15=15%,补全统计图如下图所示:(3)2014年1.6 L私人轿车的拥有量为108×(200÷400)=54(万辆),所以2014年该市仅排量为1.6 L的私人轿车的碳排放总量为540 000×2.7=1 458 000(万吨),答:2014年该市仅排量为1.6 L的私人轿车的碳排放总量为1 458 000万吨.【解析】23.【答案】解:(1)该中学参加本次数学竞赛的人数是4+6+8+7+5+2=32(人);(2)该中学参赛同学的获奖率是=43.75%;(3)80-90分的人数最多.(答案不唯一)【解析】(1)求得各组的频数的和即可;(2)根据获奖率的定义即可求解;(3)根据直方图写出结论成立即可,答案不唯一.24.【答案】解:(1)扇形统计图中x=(1-40%-30%-20%)×100=10.(2)该市共抽取了九年级学生800÷40%=2 000(人),故答案为2 000.(3)85 000×40%=34 000(人).答:估计该市九年级视力不良(4.9以下)的学生大约34 000人.【解析】(1)根据A、B、C、D四等级百分比之和为1可得;(2)由2016年视力在4.9以下的人数及其占被调查人数百分率计算可得;(3)用样本中视力不良(4.9以下)的学生占被调查学生的百分率乘以总人数可得.。
人教版七年级下册数学教学设计(教案):第十章数据的收集、整理与描述单元备课
第十章“数据的收集、整理与描述”单元备课本章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程.本章共安排三个小节和两个选学内容,教学(不包括选学内容)约需10课时,具体安排如下(仅供参考):10.1 统计调查约3课时10.2 直方图约2课时课题学习从数据谈节水约3课时数学活动小结约2课时一、教科书内容与本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容10.1节“统计调查”,主要介绍收集、整理与描述数据的一些常用方法.全面调查和抽样调查是统计调查的常用方法.教科书以调查人们对几种电视节目的喜爱情况为背景,设计了两个问题,通过统计调查问题1回顾了全面调查;通过统计调查问题2介绍了抽样调查.教科书首先设置问题1,要求学生考察全班同学喜爱五种电视节目的情况.解决这个问题需要统计调查,首先是收集数据,由此引出利用调查问卷收集数据的方法;对于收集到的数据需要进行整理才能看出数据分布的规律,这就涉及如何整理数据的问题,教科书介绍了利用频数分布表(没有给出频数分布的概念)整理数据的方法;为了更直观地看出全班同学喜爱五种电视节目的情况,教科书选用了学生在小学已经学过的条形图和扇形图展示了数据的分布规律;最后通过分析统计图表就可以看出全班同学五种电视节目的情况.对于扇形图,学生在小学只能从扇形图中读出信息,不会画出扇形图来描述数据,在本节中,教科书结合问题1介绍了如何画出扇形图,这是本学段的一个教学要求.问题1的统计调查过程实际上让学生经历了一个收集、整理、描述和分析数据得出结论,即数据处理的一般过程.数据的来源一般有两条渠道:一条是通过统计调查或科学试验直接得到第一手统计数据;另一条是通过查阅资料等间接获得第二手统计数据.统计调查是获得第一手数据的重要途径,它们常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊杂志、广播、电视媒体等提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据.本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法.关于通过科学试验获得数据的方法,教科书通过一个选学栏目作了简单介绍;对于通过查阅资料等间接手段收集数据的方法,主要安排在课题学习和习题中.用样本估计总体是统计的基本思想,抽样调查是实际中经常采用的一种调查方式,也是本节重点介绍的统计调查方法.教科书沿用问题1的情景,设计了问题2,介绍利用抽样调查收集数据.在问题2中,调查全校学生对五种电视节目的喜爱情况,由于学生人数较多,采用全面调查的方式收集数据不太实际,抽样调查是一种经济、有效、省时省力的方法,这就使学生对抽样的必要性有所感受.结合着必要性的讨论,教科书给出了与抽样调查有关的概念和术语,如样本、总体、个体、样本容量等.为了使样本尽可能具有好的代表性,抽取样本时,要求每一个学生都有相等的机会被抽到,教科书介绍了一种利用学号随机抽取样本,实现简单随机抽样的方法.这个抽样方法简单有效,便于学生理解样本的代表性.有了样本数据,就可以整理、描述和分析样本数据,通过分析样本数据来估计总体的情况.通过问题2的学习,学生经历了一个利用抽样调查处理数据、解决问题的统计过程,对抽样调查的必要性、样本的代表性、单随机抽样,以及通过样本估计总体的思想等有所了解.在问题1,2的基础上,教科书设置了问题3.问题3是比较学生所在学校三个年级学生的平均体重,教科书没有给数据,也没有给分析和解决过程,需要学生自主合作完成.教科书这么做的目的是考虑到统计内容有较强的实践性,希望学生通过亲自参与统计活动这种有效方式学习统计内容.问题3中设置的三个小问题,事实上是给学生完成此问题适当的引导.其中调查方案的确定,需要根据学生自己所在学校的实际情况进行综合权衡,选取相对合适的调查方案.即使是调查同一所学校,也完全可以采用不同的调查方式收集数据,但要能解决所提问题为前提,其实这是辩证地认识两种调查方式特点的过程,更是正确认识统计方法特点的过程.通过问题3,让学生亲自参与在实际问题中收集、整理、描述和分析数据得出结论的统计过程,培养应用意识和解决问题的能力,初步建立数据分析观念,感受统计的思想.“捉-放-捉(capture-recapture)”是生产和科研中经常用到的方法,常常被用来根据部分的情况估计整体的情况,例如估计养鱼池中鱼的个数,森林中某种动物的个数等,这个方法体现了用样本估计总体的思想.教科书在选学栏目“实验与探究瓶子中有多少粒豆子”中,模拟这种方法设计了一个活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解试验也是获得数据的有效方法.10.2节“直方图”,重点讨论利用直方图来描述数据.对于直方图,学生在前两个学段没有接触,这是本学段学习的一种新统计图.教科书从学生熟悉的问题情景入手:从63名学生中选出40名参加广播体操比赛.选择参赛队员的一个要求是队员的身高应尽可能整齐.我们可以用不同的方法选出符合这个要求的队员,教科书介绍了利用频数分布确定人选的方法.分析数据的频数分布,首先是将数据分组,根据一组数据的最大值、最小值可以确定这组数据的极差,极差反映了数据的变化范围.参照极差,可以确定组距,进而可以将数据进行分组,利用频数分布表给出了身高数据的分布情况,分析频数分布表可以看出大部分学生的身高分布在哪个范围,由此可以确定参赛选手的身高.对于取值比较少的数据(如前一节最喜爱的电视节目),可以用条形图描述频数分布,而对于取值比较多的数据(如身高),分组后可以用直方图来描述频数分布.教科书利用问题4介绍了根据频数分布表作出频数分布直方图的方法.教科书结合一个实际问题介绍直方图描述数据的方法,使得对于统计图表的认识具体化.10.3节“课题学习从数据谈节水”,要求学生综合利用学过的统计知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.教科书选择了一个具有实际意义和时代气息的问题——水资源问题为主题编写课题学习,这不仅有利于统计知识的深入学习,而且具有“节能减污,保护环境”的教育价值.这个课题学习由两部分组成,第一部分要求学生阅读背景材料,从中收集数据,通过数据处理回答问题.第二部分要求学生运用已学的统计调查知识,完成一个以“家庭人均月生活用水量”为题的统计调查活动,并结合第一部分的内容撰写一份报告.课题学习的设计目的,一方面是让学生感受对数据进行合适处理,可以挖掘其中蕴涵的信息,体会统计方法的意义;另一方面是让学生经历在实际问题中收集、整理、描述和分析数据得出结论的统计过程,在经历这个统计调查的过程中,发展学生的数据分析观念,感受统计的思想,逐步建立用数据说话的习惯.(三)本章学习目标1.经历收集数据、整理、描述和分析数据的活动,了解数据处理的过程.了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷.2.通过实例,体会抽样的必要性,了解简单随机抽样.通过简单随机抽样,体会样本估计总体的合理性,能根据统计结果作出简单的判断和预测.3.通过实例,了解频数及频数分布的意义,会用表格整理数据,体会表格在整理数据中的作用.5.能画扇形图和简单频数分布直方图(等距分组的情形),并能利用频数分布直方图解释数据中蕴涵的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.6.通过表格、折线图、趋势图等,感受随即现象的变化趋势.7.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立数据分析观念,培养重视调查研究的良好习惯和科学态度.三、对教学的几个建议1.注意统计思想的渗透与体现2.在统计过程中学习统计,改进学生的学习方式3.挖掘现实生活中的素材进行教学4.准确把握教学要求5.关注信息技术的使用。
七年级数学下册第十章数据的收集整理与描述知识点素材新版新人教版
第十章 数据的收集、整理与描述 一.知识框架 二.知识概念 1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
全面调查 抽样调查 收集数据 描述数据 整理数据 分析数据 得出结论。
人教版七年级数学下册知识点总结(第十章 数据的收集、整理与描述)
第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。
要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
5、画频数直方图的步骤:①计算数差(最大值与最小值的差);
②确定组距和组数;③列频数分布表;④画频数直方图。
1。
新人教版七年级数学下册第十章数据的收集、整理与描述题测试题(含答案)
人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.145155x<x<155165x<165175175185x<8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.D410.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图人教版七年级数学下册第十章数据的收集、整理与描述单元检测试题(解析版)人教版七年级数学下册第十章数据的收集、整理与描述单元测试题学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 某同学想了解寿春路与阜阳路交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为()A.查阅资料B.实验C.问卷调查D.观察2. 下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某类烟花爆竹燃放安全情况的调查D.对神舟飞船的零部件的质量情况的调查3. 下列调查中,适宜采用普查的是()A.调查我县初三学生每天体育锻炼的时间B.调查全校学生每月花费的零花钱C.调查初三1班某次数学考试成绩D.调查初三学生参加这次月考的心理状态4. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为()A.9.5万件B.9万件C.9500件D.5000件5. 下列调查方式合适的是()A.了解炮弹的杀伤力,采用普查的方式B.了解全国中学生的视力状况,采用普查的方式C.了解一批罐头产品的质量,采用抽样调查的方式D.对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式6. 某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生是个体;③200名初一学生是总体的一个样本;④样本容量是200.其中说法正确的是()A.4个B.3个C.2个D.1个7. 某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A.1500B.1000C.150D.5008. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条9. 实验中学九年级进行了一次数学测试,参加考试人数共540人,为了了解这次数学成绩,下列所抽取的样本中较合理的是()A.抽取前:100名同学的数学成绩B.抽取各班学号为3的倍数的同学的数学成绩C.抽取1、2两班同学的数学成绩D.抽取后100名同学的数学成绩10. 某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A.0.4B.18C.0.6D.27二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一个样本的50个数据分别落在5个小组内,其中第3组有8个数,那么第3组的频率为________.12. 一个容量为77的样本最大值是153,最小值是60,取组距为10,则可分成________组.13. 为了更好的刻画数据的总体的规律,我们还可以在得到的频数分布直方图上________,________,得到________图.14. 一组数据的最大值为169,最小值为141,在绘制频数分布直方图时要求组据为6,则组数为________.15. 某校对去年毕业的350名学生的毕业去向进行跟踪调查,并绘制出扇形统计图(如图所示),则该校去年毕业生在家待业人数有________人.16. 某校为了了解八年级学生的体能情况,随机选取一部分学生测试一分钟仰卧起坐次数,并绘制了如图所示的直方图,学生仰卧起坐次数在25∼30之间的频率是________.该店决定本周进货时,多进一些尺码为厘米的鞋,影响鞋店决策的统计量是18. 下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生3000人,请根据统计图计算该校共捐款________元.19. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.20. 某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为________人.三、解答题(本题共计6 小题共计60分,)(2)计算各种果树对应的圆心角度数;(3)制作扇形统计图.请根据表中信息,回答下列问题:(1)活动小组共有学生多少人?(2)制作标本数在6个及以上的人数占小组总人数的百分比是多少?(3)根据统计表制作一个形象的统计图.23. 吸烟有害健康:为配合“禁烟”运动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如图所示统计图:(1)同学们一共随机调查了________人;(2)请你把条形统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?(4)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式的大约有多少人?24. 某校七年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长人数为多少人?(2)表示“无所谓”的家长人数为多少人?(3)在扇形统计图中,求“不赞同”的家长部分所对应扇形的圆心角大小.25. 如图所示的是一位同学设计的一幅象形统计图,不过这位同学太粗心了,应该给出的题目及一些说明性文字都忘了写,你能看出这幅图是要反应什么内容吗?能把图形中缺少的文字补上吗?(能补上三项文字性的说明即可)26. 下面三幅统计图,反映了某市两个化肥厂三个方面的情况,请看图回答问题.(1)从折线统计图中可以看出,哪个厂的产值增长得快?(2)从条形统计图中可以看出,哪个厂的工人人数多,哪个厂的技术人员多?(3)从扇形统计图中可以看出,哪个厂的外销产品占产品销售总数的百分比大?(4)综合上面的分析,你认为哪个厂的生产搞得好,为什么?参考答案与试题解析七年级数学下册第十章数据的收集、整理与描述单元检测试题一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解析】根据收集数据的基本方法有观察、统计、调查、实验、查阅文献资料或因特网查询等分析判断即可.【解答】解:想了解寿春路与阜阳路交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为观察,故选:D.2.【答案】D【解析】根据适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强,进而判断即可.【解答】解:A、适合抽样调查,因为普查的难度较大,故此选项错误;B、适合抽样调查,因为调查的破坏性较大,故此选项错误;C、适合抽样调查,因为调查的破坏性较大,故此选项错误;D、适合全面调查,因为神舟飞船零部件要求极高,不能出现任何问题,故此选项正确.故选:D.3.【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A,对全国中学生每天体育锻炼的时间的调查不必全面调查,大概知道因为普查工作量大,适合抽样调查;B,调查全校学生每月花费的零花钱,适合抽样调查;C,调查初三1班某次数学考试成绩,适合普查;D,调查初三学生参加这次月考的心理状态,适合抽样调查.故选:C.4.【答案】A【解析】由于100件中进行质检,发现其中有5件不合格,那么合格率可以计算出来,然后利用样本的不合格率估计总体的不合格率,就可以计算出10万件中的不合格品产品数,进而求得合格品数.【解答】解:∵100件中进行质检,发现其中有5件不合格,∴合格率为(100−5)÷100=95%,∴10万件同类产品中合格品约为100000×95%=95000=9.5万件.故选A.5.【答案】C【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解炮弹的杀伤力,有破坏性,故得用抽查方式,故本选项错误;B、了解全国中学生的视力状况,工作量大,得用抽查方式,故本选项错误;C、了解一批罐头产品的质量,工作量大,得用抽查方式,故本选项正确;D、对载人航天器“神舟七号”零部件的检查十分重要,故进行普查检查,故本选项错误.故选C.6.【答案】C【解析】根据总体、个体、样本、样本容量的定义即可判断.【解答】解:①这3000名初一学生的数学成绩的全体是总体正确;②每个初一学生的期末数学成绩是个体,故命题错误;③200名初一学生的期末数学成绩是总体的一个样本,故命题错误;④样本容量是200,正确.故选C.7.【答案】D【解析】根据分层抽样方法,设抽到的大、中、小学生人数分别为2x、3x、5x,由抽到的中学生人数可得x,继而可得样本容量.【解答】解:设抽到的大、中、小学生人数分别为2x、3x、5x,由3x=150可得x=50,∴应抽取的样本容量等于10x=500(人),故选:D.8.【答案】C【解析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】×100%=5%,解:∵5100∴20÷5%=400(条).故选C9.【答案】B【解析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、不具有代表性,故A错误B、抽取各班学号为3的倍数的同学的数学成绩,具有代表性广泛性,故B正确;C、不具有代表性,故C错误;D、不具有代表性,故D错误;故选:B.10.【答案】B【解析】根据频数分布直方图即可求解.【解答】解:根据频数分布直方图可知,第二组的频数是18.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】425【解析】根据频率的定义,频率=频数数据总和即可求解.【解答】解:第3组的频率为850=425.故答案是:425.12.【答案】10【解析】先求出该组数据最大值与最小值的差,再用极差除以组距即可得到组数.【解答】解:∵153−60=93,而93÷10=9.3,∴应该分成10组.故答案为:10.13.【答案】取点,连线,频数分布折线【解析】根据画频数分布折线图的方法即可求解.【解答】解:为了更好的刻画数据的总体的规律,我们还可以在得到的频数分布直方图上取点,连线,得到频数分布折线图.故答案为取点,连线,频数分布折线图.14.【答案】5【解析】由于一组数据的最大值为169,最小值为141,那么极差为169−141=28,而在绘制频数直方图时要求组距为6,那么根据它们即可求出组数.【解答】解:∵一组数据的最大值为169,最小值为141,∴最大值与最小值的差是169−143=28,而要求组距为6,∴28÷6=423,∴组数为5.故答案为:5.15.【答案】28【解析】首先求得在家待业的百分比,然后乘以毕业的总人数即可.【解答】解:在家待业的毕业生所占百分比为:1−24%−68%=8%,故该校去年毕业生在家待业人数有350×8%=28人,故答案为:28.16.【答案】0.2【解析】即可求解.根据频率的计算公式:频率=频数总数【解答】=0.2.解:学生仰卧起坐次数在25∼30之间的频率是:630故答案是:0.2.17.【答案】众数【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】由于众数是数据中出现次数最多的数,故影响鞋店决策的统计量是众数.18.【答案】37770【解析】首先根据扇形统计图求得各年级的人数,再结合条形统计图求得共捐款数.【解答】解:初一人数:3000×32%=960(人);初二人数:3000×33%=990(人);初三人数:3000×35%=1050(人).该校共捐款数:960×15+990×13+1050×10=37770(元).19.【答案】6000【解析】根据自驾车人数除以百分比,可得答案.【解答】由题意,得4800÷40%=12000,公交12000×50%=6000人教版七年级下册第十章数据的收集、整理与描述单元练习题(解析版)人教版七年级数学下册第十章数据的收集、整理与描述单元测试题一、选择题1.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重2.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查3.墨墨对他所住小区的100户居民2月份天然气的使用量(单位:m3)进行统计,其结果如图所示,图中36-38段因不小心洒上水而看不清,则2月份天然气的使用量在36-38段的居民有()A.18户B.20户C.22户D.24户4.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可5.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测6.水库中放养鲤鱼8 000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9 000条B.9 600条C.10 000条D.12 000条7.老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%8.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少二、填空题9.为了考察某区3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是________.10.我国泰山,华山等五座名山的海拔高度如下表.若根据表中的数据作出统计图,以便能更清楚地对几座名山的高度进行比较,则应选用________统计图.11.为了掌握我校初中二年级女同学身高情况,从中抽测了60名女同学的身高,这个问题中的总体是____________________,样本是____________________.12.某市2016年将有九万名考生参加中考,为了了解这九万名考生的视力情况,从中抽取了2 000名考生的视力情况进行统计分析,得出①这种调查采用了抽样抽样调查的方式;②九万名考生是总体;③2 000名考生的视力情况是总体的一个样本;④每一名考生是个体;⑤样本容量为1 000名,则以上5个结论正确的是________.13.为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1 200名中,随机抽查了80名学生,结果显示有2名学生“不知道”,由此,估计该校全体学生中对“世界环境日”约有________名学生“不知道”.14.下列调查中,适合用抽样调查的为________.(填序号)①了解全班同学的视力情况;②了解某地区中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④日光灯管厂要检测一批灯管的使用寿命.15.调查市场上某种食品的色素含量是否符合国家标准,这种调查适用________________.(填全面调查或者抽样调查)16.如图是某班50名学生身高(精确到1 cm)的频率分布直方图,从左起第一、二、三、四个小长方形的高的比是1∶3∶5∶1,那么身高是160 cm及160 cm以上的学生有________人.三、解答题17.某市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是________株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?(4)请通过计算说明理由.18.请指出下列样本是否具有代表性:(1)在全县范围内随意选择十个幼儿园,对其中每个孩子的情况进行调查,以了解该县幼儿园的身体发育等情况;(2)到省城一所中学进行调查,以便了解全省中学生上网的情况;(3)在每个省任意确定两名房地产开发商,让他们每人填写一张内容详尽的调查表,包括他们负责的工程质量,所盖楼房中使用的涂料、门窗、地板是不是合格,以及建房的利润情况等,以了解全国各地的房地产开发商的工作情况.19.2016年3月,某中学以“每天阅读1小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)请把折线统计图(图1)补充完整;(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.。
新人教版七年级数学下册第十章数据的收集、整理与描述题单元测试题(含答案解析)
人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.10.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图七年级数学下册数据收集与整理解答题专项练习1、某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,“主动质疑”对应的圆心角为度;(3)将条形统计图补充完整;(4)如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?2、我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.3、某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占%,选择小组合作学习的占%.(4)根据调查结果,估算该校1800名学生中大约有人选择小组合作学习模式.4、2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为10分)进行统计,绘制了图中两幅不完整的统计图.(1)a= ,n= ;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?5、为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?6、某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:(1)在统计表中,m= ,n= .(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.7、某校为了解九年级1 000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两种尚不完整的统计图.解答下列问题:(1) 这次抽样调查的样本容量是________,并补全频数分布直方图;(2) C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3) 请你估计该校九年级体重超过60 kg的学生大约有多少名.8、某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?9、初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?10、某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.参考答案1、解:(1)本次调查的样本容量为224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)60000×=18000(人),答:在试卷评讲课中,“独立思考”的初三学生约有18000人.2、解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).3、解:(1)由题意可得,本次调查的学生有:300÷60%=500(名),故答案为:500;(2)由题意可得,教师传授的学生有:500﹣300﹣150=50(名),补全的条形统计图如右图所示;(3)由题意可得,选择教师传授的占: =10%,选择小组合作学习的占: =30%,故答案为:10,30;(4)由题意可得,该校1800名学生中选择合作学习的有:1800×30%=540(名),故答案为:540.4、解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°,故答案为:75、54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.5、解:(1)80÷40%=200(人).∴此次共调查200人.(2).∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图.(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人6、(1)m=30,n=20;(2)90°(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人.7、(1) 样本容量是4÷8%=50;B组的频数为12,补全频数分布直方图如图所示。
新人教(七下)第10章《数据的收集、整理与描述》水平测试1及答案
第十章《数据的收集、整理与描述》单元检测试题一、选择题1.调查下面问题,应该进行抽样调查的是 ( ) A.调查某校七(2)班同学的体重情况 B.调查我省中小学生的视力近视情况C.调查某校七(5)班同学期中考试数学成绩情况D.调查某中学全体教师家庭的收入情况2.实验中学七年级进行了一次数学测验,参考人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是( )A.抽取前100名同学的数学成绩B.抽取后100名同学的数学成绩C.抽取(1)、(2)两班同学的数学成绩D.抽取各班学号为3号的倍数的同学的数学成绩3.在下列调查中,比较容易用普查方式的是( )A.了解贵阳市居民年人均收入B.了解贵阳市初中生体育中考的成绩C.了解贵阳市中小学生的近视率D.了解某一天离开贵阳市的人口流量4.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成( )A.10组B.9组C.8组D.7组5.在频数分布直方图中,各小长方形的高等于相应组的( ) A.组距 B.组数 C.频数 D.频率6.某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.327.根据呼和浩特市第一季度用电量的扇形统计图,则2月份用电量占第一季度用电量的百分比为( )A.60%B.64%C.54%D.74%8.一个扇形统计图中,扇形A 、B 、C 、D 的面积之比为2∶3∶3∶4,则最大扇形的圆心角为( )A.80°B.100°C.120°D.150° 9.如图,下列说法正确的是( )A.步行人数最少只为90人B.步行人数为50人C.坐公共汽车的人数占总数的50%D.步行与骑自行车的人数和比坐公共汽车的人数要少10.某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是( )A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌二、填空题11.要考察的全体对象称为___,样本中个体的数目称为___.12.近几年,人们的环保意识逐渐增加,“白色污染”现象越来越受到人们的重视.小颖同学想了解班上同学家里在一年内丢弃废塑料袋的个数,你认为采用___调查方式合适一些.13.某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用___统计图来描述数据.14.在一个扇形统计图中,有一个扇形占整个圆的30%,则这个扇形圆心角是___. 15.有一些乒乓球,不知其数量,先取6个作了标记,把它们放回袋中,混合均匀后又取了20个,发现含有两个做标记的,可以估计这袋乒乓球有___个.16.已知一组数据都是整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是___.17.将收集到的40个数据进行整理分组,已知落在某一区间内的频数是5,则该组的频率是___.18.某商场为了解本商场的服务质量,随机调查了来本商场购物的100名顾客,调查的结果如图所示,根据图中给出的信息可知,这100•名顾客中对该商场的服务质量表示不满意的有___人.19.小亮一天的时间安排如图所示,请根据图中的信息计算:小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的___%.20.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其它”活动的人数占总人数的___%.项目 踢毽篮球跳绳其它三、解答题21.其中,W≤50时,空气质量为优;50<W≤100时,空气质量为良;100<W≤150时,空气质量为轻微污染,请你用所学知识估计该城市一年(365天计)中,有多少天空气质量达到良以上(包括良).22.2008年5月30日,国务院关税税则委员会决定从当天起对纺织品出口关税作出进一步调整,对一些纺织品取消征收出口关税.在此背景下,某报报道了2008年1~4月份某市服装对外出口的情况,并绘制统计图如下:请你根据统计图中提供的信息,回答下列问题:(1)2008年1~4月份,该市服装企业出口额较多的是哪两个国家?(2)2008年1~4月份,该市服装企业平均每月出口总额是多少万美元?23.某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析?(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?24.据统计,1980年世界人口的分布状况是:亚洲25.8亿人,欧洲7.5亿人,非洲4.6亿人,拉丁美洲3.5亿人,北美洲2.4亿人,大洋洲0.2亿人,全球合计44.0亿人.(1)请制作一张统计图描述以上统计数据.(2)请根据统计表格中的数据制作扇形统计图.(3)从以上统计图、表中,你能得到哪些信息.25.从某市近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图,请结合图中的信息,解析下列问题:(1)卖出面积为110~130平方米的商品房有___套,并在右图中补全统计图.(2)从图中可知,卖出最多的商品房约占全部卖出的商品房的___%.(3)假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?26.育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)试确定如图1中“电脑”部分所对应的圆心角的大小. (2)在如图2中,将“体育”部分的图形补充完整.(3)爱好“书画”的人数占被调查人数的百分数是多少? (4)估计育才中学现有的学生中,有多少人爱好“书画”?参考答案:一、1,B ;2,D.点拨:抽样调查的样本必须具有代表性和广泛性;3,B ;4,A ;5,C ;6,C ;7,B ;8,C.点拨;360°×412=120°;9,C ;10,D. 二、11,总体、样本容量;12,抽样;13,折线;14,108°;15,60;16,5;17,0.125;18,7;19,37.2%;20,20.三、21,根据题意:随机抽取的30天中,空气质量达到良以上的天数为:2+4+3+9+6=24(天),随机抽取的30天中,空气质量达到良以上的频率为2430=0.8,估计全年365•天中空气质量达到良以上的天数为365×0.8=292(天).22,(1)韩国和日本.(2)(1 895+903+592+255+184+150+114+98+97+96+154)÷4=1 134.5万美元.书画 电脑 35%音乐 体育图1 图223,(1)共抽取了300名学生的数学成绩进行分析(2)优生率35%(3)15400人.360°×17.0%=61.2°,非洲:360°×10.4%=37.44°,拉丁美洲:360°×5.5%=19.8°,大洋洲:360°×0.5%=1.8°.扇形统计图如答图所示.(3)学生可结合统计图表,表述自己获得的信息, 合理即可,如亚洲人口最多.25,(1)150.如图:(2)45.(3)需多建住房面积在90~110m 2范围的住房.因为需此面积范围住房的人较多,容易卖出去.26,(1)126. (2)如图所示.(3)10%.(4)287.。
(精练)人教版七年级下册数学第十章 数据的收集、整理与描述含答案
人教版七年级下册数学第十章数据的收集、整理与描述含答案一、单选题(共15题,共计45分)1、某校八年一班的全体同学最喜欢的球类运动用如图所示的扇形统计图来表示,下面说法正确的是()A.从图中可以直接看出全班的总人数B.从图中可以直接看出喜欢各种球类的具体人数C.从图中可以直接看出全班同学中喜欢排球的人数多于喜欢足球的人数D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系2、下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率。
其中适合用抽样调查的个数有( )A.1个B.2个C.3个D.4个3、下列调查方式合适的是()A.为了了解市民对电影《功夫熊猫3》的感受,小华在某校随机采访了8名九年级学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式4、下列调查中,适宜采用全面调查方式的是()A.调查春节联欢晚会在武汉市的收视率B.了解全班同学参加社会实践活动的情况C.调查某品牌食品的色素含量是否达标D.了解一批手机电池的使用寿命5、某超市销售A,B,C,D四种品牌的冷饮,某天的销售情况如图所示,则该超市应多进的冷饮品牌是()A.A品牌B.B品牌C.C品牌D.D品牌6、如图,小明用条形统计图记录某地汛期一个星期的降雨量,如果日降雨量在25 mm及以上为大雨,那么这个星期下大雨的天数为()A.3天B.4天C.5天D.6天7、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.38、下列调查中,适宜采用抽样调查方式的是()A.调查中国民众对叙利亚局势持乐观态度的比例B.调查某6人小组中喜欢打篮球的人数C.调查重庆龙头寺火车站是否有乘客携带了危险物品 D.调查初三某班的体考成绩的优秀率9、以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱10、某篮球队队员年龄结构直方图如下图所示,根据图中信息,可知该队队员年龄的中位数为()A.18岁B.21岁C.23岁D.19.5岁11、某牧场为估计该地区山羊的只数,先捕捉20只山羊给它们分别做上标志,然后放回,待有标志的山羊完全混合于山羊群后,第二次捕捉80只山羊,发现其中2只有标志,从而估计该地区有山羊()A.400只B.600只C.800只D.1000只12、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x 2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查13、为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条14、已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3B.0.4和9C.12和0.3D.12和915、某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可二、填空题(共10题,共计30分)16、要表示某品牌奶粉中蛋白质、钙、维生素、糖和其他物质的含量的百分比,应该利用________统计图最好.17、图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.18、期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优生人数为________.19、为了了解一批圆珠笔心的使用寿命,宜采用________方式进行调查;为了了解你们班同学的身高,宜采用________方式进行调查.20、某中学七年级(1)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息可知a的值为________.21、调查市场上手机中某种重金属含量是否超过国家规定标准,这种调查适合用________(填“普查”或“抽样调查”).22、某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是________.节水量/m30.2 0.25 0.3 0.4 0.5家庭数/个 2 4 6 7 123、某校八年级共有400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于1。
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查试题(含答案) (79)
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查试题(含答案)如图是某区1500名小学生和初中生的视力情况和他们每节课课间户外活动平均时长的统计图.(1)根据图1,计算该区1500名学生的近视率;(2)根据图2,从两个不同的角度描述该区1500名学生各年级近视率的变化趋势;(3)根据图1、图2、图3,描述该区1500名学生近视率和所在学段(小学、初中)、每节课课间户外活动平均时长的关系.【答案】(1)52%;(2)①近视率随年级的增高而增高,①在四到六年级期间,近视率的增长幅度比较大;(3)近视率会随着学段的升高而增加,学段提高后,学生的课简的活动时间普遍减少,近视率也随之上升【解析】【分析】计算即可.(1)根据近视率=近视人数总人数(2)利用图2中的信息解决问题即可.(3)根据图3解决问题即可.【详解】=52%.解:(1)该区1500名学生的近视率=3604201500(2)①近视率随年级的增高而增高.①在四到六年级期间,近视率的增长幅度比较大.(3)近视率会随着学段的升高而增加,学段提高后,学生的课简的活动时间普遍减少,近视率也随之上升.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.82.2020年中国“两会时间”5月21日正式开启,特殊时期召开的中国两会备受世界瞩目.某校为让学生进一步了解2020年“两会”热点,计划开展关于两会的宣讲活动,开展活动之前,教务处随机抽取若干名学生,对“你最想听的宣讲内容”进行了调查,有A.民生改善、B.国家治理、C.生态文明建设、D.法治保障四项宣讲内容,经统计,被调查学生按学校要求,并结合自身的兴趣,每人从这四项宣讲内容中选择一项现将调查结果绘制成如下两幅不完整的统计图.结合图中信息解答下列问题:(1)请将两幅统计图补充完整,所抽取学生最想听的宣讲内容的众数是_____;(2)在这次调查中,哪项宣讲内容的选择人数少于各项宣讲内容选择人数的平均数?(3)若本校一共有2000名学生,请估计“最想听国家治理”的人数.【答案】(1)补全统计图如图,见解析;C.生态文明建设;(2)国家治理、法治保障的选择人数少于各项宣讲内容选择人数的平均数;(3)估计“最想听国家治理”的人数为400人.【解析】【分析】(1)根据C项条形图和扇形的数据都知晓可计算出总人数,然后根据各自的计算公式计算即可;(2)计算出各项宣讲内容选择人数的平均数,再进行对比即可;(3)用2000乘以法治保障所占的百分比;【详解】(人),(1)由C的已知条件可得:总人数=12040%=300∴B的人数=300-120-90-30=60人,A 所占百分比=90=30%300,B 所占百分比=60=20%300. 补全统计图如图:学生最想听的宣讲内容的众数是:C 生态文明建设(2)各项宣讲内容选择人数的平均数是906012030754+++=(人). ∵国家治理的人数是60人,法治保障的人数是30人,∴国家治理、法治保障的选择人数少于各项宣讲内容选择人数的平均数.(3)估计“最想听国家治理”的人数为200020%400⨯=(人).【点睛】本题主要考查了扇形统计图与条形统计图的综合应用,找到两个图中公共的已知量是解题的关键.83.为了解某学校兴趣小组活动情况,随机抽取了部分同学进行调查,按A :艺术,B :科技,C :体育,D :其他四个项目进行统计,绘制了两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有人:在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若全校有2000人,请你估算一下全校喜欢艺术类学生的人数有多少?【答案】(1)100,10%;(2)72;(3)见解析;(4)全校有2000人中喜欢艺术类学生的人数大约有400人.【解析】【分析】(1)从条形统计图中可得C选项的人数为50人,扇形统计图中可得这些人占整体的50%,可求调查人数;D选项所占百分比即为D选项人数占调查人数的百分比;(2)用B选项所占的百分比乘360°即可;(3)计算出A选项的人数,补全条形统计图;(4)样本估计总体,样本中喜欢艺术占20%,于是总体中喜欢艺术也占20%,即可求出相应的人数.【详解】解:(1)50÷50%=100人,10÷100=10%故答案为100,10%.(2)360°×20=72°,100故答案为72.(3)100﹣20﹣50﹣10=20人,补全条形统计图如图所示:(4)2000×20=400人,100答:全校2000人中喜欢艺术类学生的人数大约有400人.【点睛】本题考查条形统计图、扇形统计图以及样本估计总体,明确统计图中各个数据之间的关系是解决问题的关键.84.学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣);并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求图②中C层次所在扇形的圆心角的度数;(4)根据抽样调查的结果,请你估计该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).【答案】(1)200;(2)见解析;(3)54°;(4)1020【解析】【分析】【详解】(1)由图①知A层次的人数是50;由图②知A层次所占的百分比是25%;则此次抽样调查中,共调查的总人数=5020025%(2)C层次的人数为:200-120-50=30(人);如图:(3)C层次所在扇形的圆心角的度数是:360×15%=54°.(4)根据题意得:(25%+60%)×1200=1020(人)答:估计该校1200名学生中大约有1020名学生对学习感兴趣.85.某校在参加了成都市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度:A﹣阅读素养、B﹣数学素养、C﹣科学素养、D﹣人文素养,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).现将调查的结果绘制成如图两幅不完整的统计图.(1)求本次调查的学生总人数,并补全两幅统计图;(2)求扇形统计图中的选项D对应的扇形圆心角的度数;(3)该校八年级共有学生400人,请估计全年级选择选项B的学生有多少人?【答案】(1)35;图见解析;(2)54°;(3)120人【解析】【分析】(1)根据C﹣科学素养的人数乘以其所占的百分比,计算即可;求出选项B人数和选项A所占的百分比,补全两幅统计图即可;(2)根据圆心角=360°×百分比计算即可;(3)利用样本估计总体的思想解决问题即可.【详解】解:(1)本次调查的学生总人数为:16÷20%=80,B﹣数学素养的人数为:80﹣28﹣16﹣12=24,A﹣阅读素养所占的百分比为:28×100%=35%;80故答案为:35;补全两幅统计图如图所示;(2)扇形统计图中的选项D对应的扇形圆心角的度数为:360°×12=80 54°;=120(人).(3)全年级选择选项B的学生有:400×2480【点睛】本题考查了扇形统计图、条形统计图,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.86.我市积极开展阳光体育进校园活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设:A乒乓球,B:篮球、C:跑步D:跳绳四种运动项目,为了解学生最喜欢哪一种项目,岁偶家抽取了部分学生进行调查,并将调查结果绘制成如下统计图,请你结合图中信息解答下列问题:(1)求样本中最喜欢B项的人数的百分比和所在扇形图中圆心角的度数(2)请把统计图补充完整(3)已知该校有120人,请根据样本估计全校最喜欢乒乓球的人数是多少?【答案】(1)0020,72°;(2)见解析;(3)528人【解析】【分析】(1)分析统计图可知,样本中最喜欢B 项目的人数百分比可用1减去其他项目所占百分比再乘以360°即可得到结果;(2)根据(1)中的计算结果补全条形图;(3)用学校的人数乘以选乒乓球的学生所占百分比即可;【详解】解:(1)总004444100÷=,1004482820B =---=,00002020100B ==. (2)如图B 为20人;(3)乒乓球00120044528⨯=人.【点睛】本题主要是扇形统计图和条形统计图的综合,准确分析是解题的关键.87.为提升学生的艺术素养,学习计划开设四门艺术选修课:A 书法;B 绘画;C 乐器;D 舞蹈,为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有 人,扇形统计图中∠α的度数是 ;(2)请把条形统计图补充完整;(3)如果该校共有2500名学生,请你估计该校D类学生约有多少人?【答案】(1)40,108°;(2)见解析;(3)该校2500名学生中D类的约有1000人【解析】【分析】(1)从两个统计图可得,“B组”的有8人,占调查人数的20%,可求出班级人数;样本中,“D组”占1640,因此圆心角占360°的1640,可求出度数;(2)求出“C组”人数,即可补全条形统计图:(3)样本估计总体,样本中,“D组”占1640,估计总体500人的1640,是“D组”人数.【详解】解:(1)8÷20%=40(人),C组人数为40﹣4﹣8﹣16=12(人),360°×1240=108°,故答案为:40,108°,(2)补全条形统计图如图所示:(3)2500×16=1000(人).40答:该校2500名学生中D类的约有1000人.【点睛】本题考查了扇形统计图和条形统计图的综合,用样本估计总体,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.三、填空题88.北京市2012-2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为________万人次,你的预估理由是 .【答案】答案不唯一,合理就行【解析】试题解析:答案不唯一,合理就行89.某校为了解本校学生参加课外兴趣小组的情况,从全体学生中随机抽取了50名学生进行调查,并将调查结果绘制成统计表(如下),已知该校学生总数为1000人,由此可以估计参加体育类兴趣小组的学生为_____【答案】400【解析】【分析】先求出参加体育类兴趣小组的学生在样本中所占的百分比,再乘全校的人数,即可得出答案.【详解】解:参加体育类兴趣小组的学生在样本中所占的百分比202505,∴估计参加体育类兴趣小组的学生人数210004005,故答案为:400.【点睛】本题考查了用样本估计总体,从统计表中获取信息是解题的关键.90.数据﹣4,﹣2,0,2,4的方差是.【答案】8.【解析】试题分析:数据﹣4,﹣2,0,2,4的平均数=(﹣4﹣2+0+2+4)÷5=0,方差S2=15[(﹣4﹣0)2+(﹣2﹣0)2+(0﹣0)2+(2﹣0)2+(4﹣0)2]=8.故答案为8.考点:方差.。
部编数学七年级下册第10章数据的收集、整理与描述(解析版)含答案
第10章数据的收集、整理与描述一、单选题1.下列调查中,适合采用全面调查(普查)的是()A.了解一批投影仪的使用寿命B.调查重庆市中学生观看电影《长津湖》的情况C.了解重庆市居民节约用水的情况D.调查“天月一号”火星探测器零部件的质量【答案】D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对投影仪使用寿命的调查,适合采用抽样调查,故本选项不合题意;B、对重庆市中学生观看电影《长津湖》情况的调查,适合采用抽样调查,故本选项不合题意;C、对重庆市居民节约用水的情况的调查,适合采用抽样调查,故本选项不合题意;D、对“天月一号”火星探测器零部件的质量的调查,适合采用全面调查,故本选项符合题意;故选:D.【点睛】本题考查的是抽样调查和全面调查,解题的关键是选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.下列调查中,适宜采用抽样调查方法的是()A.调查中国民众对叙利亚局势持乐观态度的比例B.调查某6人小组中喜欢打篮球的人数C.调查重庆龙头寺火车站是否有乘客携带了危险物品D.调查初三某班的体考成绩的优秀率【答案】A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.由于不能调查所有中国民众对叙利亚局势持乐观态度,所以适宜采用抽样调查方式,故选项正确,符合题意;B.调查某6人小组中喜欢打篮球的人数,由于人数较少,应该调查所有人喜欢打篮球情况,故选项错误,不符合题意;C.由于调查重庆龙头寺火车站是否有乘客携带了危险物品很重要,应该采取普查,故选项错误,不符合题意;D.调查初三某班的体考成绩的优秀率应该采取全面调查,故选项错误,不符合题意;故选:A.【点睛】此题考查了抽样调查和全面调查的区别,解题的关键是选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.某网络直播平台2022年央视春晚观看学生人数统计图如图所示.若观看的小学生有30万人,则观看的大学生有()A.40万人B.50万人C.80万人D.200万人【答案】A【分析】先由小学生的人数及其所占百分比求出被调查的总人数,再用总人数乘以大学生对应的百分比即可.【详解】解:由题意知,被调查的总人数为30÷15%=200(万人),所以观看的大学生有200×20%=40(万人),故选:A.【点睛】本题主要考查扇形统计图,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.4.当今,大数据、云计算、人工智能等互联网新技术正在全方位改写中国社会,而5G应用将是推动互联网这个“最大变量”变成“最大增量”的新引擎,5G的出现将改变中国的经济格局,据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如图所示,根据图提供的信息,下列推断不合理的是()A.2022年5G间接经济产出比5G直接经济产出多2万亿元B.2026年5G直接经济产出为2021年5G直接经济产出的4倍C.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长D.2023年到2024年与2028年到2029年5G间接经济产出的增长率相同【答案】D【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:根据折线统计图,可知:A. 2022年5G间接经济产出比5G直接经济产出多:4-2=2(万亿),故此项不合题意;B.4÷1=4(倍),故2026年5G直接经济产出为2021年5G直接经济产出的4倍,故此项不合题意;C. 2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长,故此项不合题意;D. 2023年到2024年5G间接经济产出的增长率为:(6-5)÷5=20%,2028年到2029年5G 间接经济产出的增长率为:(9-8)÷8=12.5%,故2023年到2024年与2028年到2029年5G间接经济产出的增长率不相同,故此项符合题意;故选:D【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.5.2020年11月1日零时,我国开展第七次全国人口普查.2021年5月11日,国务院新闻办公室公布普查结果.如图是根据我国历次人口普查数据,绘制的我国每10万人中拥有大学文化(指大专及以上)程度人数的折线图.设2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,则下列关于x的方程正确的是()A .()10.9 1.55x +=B .()0.9110 1.55x +´=C .()0.91 1.55x +=D .()100.91 1.55x +=【答案】C 【分析】结合折线统计图,根据增长率列方程即可.【详解】解: 由图可知,2010年有0.9万人,2020年有1.55万人∵2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x∴()0.91 1.55x +=故选:C.【点睛】本题考查了折线统计图和增长率问题,结合图形找到所需数据并理解题意是解题的关键.6.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车 )人数的条形统计图(部分)和扇形分布图,那么下列说法正确的是( )A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【答案】B【分析】由乘车的人数和乘车人数所占的百分比求出总人数,再计算步行人数,步行人数所占圆心角,进而求出乘车人数所占的百分比;【详解】解:由图可知,乘车20人占总人数的百分之50%,总人数=20÷50%=40人,步行人数=40-20-12=8人,步行人数所占圆心角为836040°´=72°,骑车人数所占的百分比为1210040×%=30%,如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有500×30%=150人,综上所述,只有B选项符合题意,故选:B;【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,理解图中的数据信息是解题关键.7.某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.90C.144D.200【答案】A【分析】根据乙类书籍有90本,占总数的45%,即可求得总书籍数.丙类所占的比例是1-15%-45%所占的比例乘以总数即可求得丙类书的本数.【详解】解:总数是:90÷45% = 200(本),丙类书的本数是:200×(1-15%-45%)=200×40%= 80(本).故选:A.【点睛】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得总书籍数是关键.8.在进行数据统计时,随机选取了有20个数据的样本进行分组分析,其中某个小组有4个个体,该小组对应的扇形统计图圆心角度数为()A.36°B.72°C.60°D.120°【答案】B【分析】先求出该小组所占的百分比,再用360°乘以这个百分比即可求出对应的圆心角度数.【详解】解:360°×420=72°.故选:B.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.9.小明收集到甲、乙两家汽车销售公司近三年的销售量,如果从他制作的统计图中可以反映出两家公司销售量的变化情况,他应该制作()A.折线统计图B.条形统计图C.扇形统计图D.以上三种都可以【答案】A【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】解:∵他制作的统计图中可以反映出两家公司销售量的变化情况,∴他应该制作折线统计图故选A【点睛】本题考查了统计图的选择,掌握折线统计图的特点解题的关键.10.图(1)表示的是某书店今年1~4月的各月营业总额的情况,图(2)表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~4月的营业额一共是130万元,则这四个月中“党史”类书籍的营业额最高的是()A.1月B.2月C.3月D.4月【答案】D【分析】用该书店1~4月的营业总额减去1~3月的营业总额,求出该书店4月份的营业总额;再用1~4月的各月的营业总额乘以该月份“党史”类书籍所占的百分比,即可求出1~4月各月的“党史”类书籍的营业额,比较后即可得到答案.【详解】解:该书店4月份的营业总额是:130﹣(30+40+25)=35(万元),1月份的“党史”类书籍的营业额为:30×15%=4.5(万元);2月份的“党史”类书籍的营业额为:40×10%=4(万元);3月份的“党史”类书籍的营业额为:25×12%=3(万元);4月份的“党史”类书籍的营业额为:35×20%=7(万元);综上可知,4月份的“党史”类书籍的营业额最高.故选:D.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况,如增长率.二、填空题11.一个容量为80的样本,其中数据的最大值是143,最小值是50,若取组距为10,则适合将其分成_______组【答案】10【详解】分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.详解:143-50=93,93÷10=9.3,所以应该分成10组.故答案为10.点睛:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.12.经调查某村共有银行储户若干户,其中存款额2~3万元之间的储户的频率是0.2,而存款额为其余情况的储户的频数之和为40,则该村存款额2~3万元之间银行储户有___________ 户.【答案】10【分析】首先根据各个小组的频率和是1,得到存款额为其余情况的储户的频率,再根据总数=频数÷频率,求得总数,最后根据频数=频率×总数,求得频数.【详解】解:根据题意,得:存款额为其余情况的储户的频率=1-0.2=0.8,则银行储户的总数=40÷0.8=50户,则该村存款额2~3万元之间银行储户=50×0.2=10户.【点睛】本题考查频率、频数的关系:频率=频数数据总和,频数=频率×总数,总数=频数÷频率.注意:各组的频率和是1.13.课外兴趣小组为了了解所在地区老年人的健康状况,分别做了下列四种不同的抽样调查:①在公园调查了1000名老年人的健康状况;②在医院调查了1000名老年人的健康状况;③调查了10名老年邻居的健康状况;④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.你认为抽样比较合理的是________(填序号).【答案】④【详解】试题解析:④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况,是比较合理的;故答案为:④;考点:抽样调查的可靠性.14.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有_________人.【答案】800.【详解】试题分析:选修A课程的学生所占的比例:202012108+++=25,选修A课程的学生有:2000×25=800(人),故答案为800.考点:1.用样本估计总体;2.条形统计图.15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2 ,则第六组的频数是_______.【答案】5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率16.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_________.【答案】92%.【详解】试题分析:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.考点:频数(率)分布直方图.17.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选择了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为____名.【答案】60【详解】试题分析:设被调查的总人数是x人,根据最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,即可列方程求解.解:设被调查的总人数是x人,则40%x﹣30%x=6,解得:x=60.故答案是:60.考点:扇形统计图.18.某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是__度.【答案】108°.【详解】试题分析:首先求出“A”所在的百分比为1-35%-20%-15%=30%,则圆心角的度数为:360°×30%=108°.三、解答题19.某校对学生课外数阅读状况进行了一次问卷调查,并根据调查结果绘制了中学生每学期阅读课外书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤2;B:3≤x≤4;C:5≤x≤6;D:x≥7.请你根据两幅图提供的信息解答下列问题:⑴本次共调查了多少名学生?⑵补全条形统计图,并判断中位数在哪一组;⑶计算扇形统计图中扇形D的圆心角的度数.【答案】⑴本次调查了200名学生.⑵D高40,中位数在B组⑶圆心角度数为72o.【详解】试题分析:通过扇形图可得A所占得百分比为19%,通过条形图可得A的频数为38,用A的频数除以A所占的百分比即可求出调查的学生总数;(2)用总人数减去A、B、C的频数,求出D的频数即可补全条形图,从而判断中位数;(3)用D的频数除以总人数求出D所占百分比,再乘以360°即可求出扇形D的圆心角.试题解析:⑴本次调查了3819%=200名学生.⑵ 200-38-74-48=40,D高40,中位数在B组.⑶圆心角度数为40200×360°=72°.20.中学生带手机上学的现象越来越受到社会的关注,为此,某记者随机调查了某城区若干名学生家长对这种现象的态度(态度分为:A:无所谓;B:基本赞成;C:赞成;D:反对),并将调查结果绘制成频数折线图1和统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样检查中,共调查了 名学生家长;(2)将图1补充完整;(3)根据抽样检查的结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?【答案】(1)200;(2)详见解析;(3)3600(名)【分析】(1)根据总量=频数÷频率,由B 的数据可得此次抽样检查中,调查的学生家长数:40÷20%=200(名)(2)∵C 人数为:()200115%20%60%10´---=(名).∴根据以上数据将图1补充完整.(3)用样本估计总体即可.【详解】解:(1)40÷20%=200(名),故答案为200.(2)将图1补充完整如下:(3)∵样本中持反对态度的占60%,∴估计该市城区6000名中学生家长中持反对态度有6000×60%=3600(名)答:估计该市城区6000名中学生家长中有3600名家长持反对态度.【点睛】补全折线图,用样本估计总体.21.为了提升学生的交通安全意识,学校计划开展全员“交通法规”知识竞赛,七(3)班班主任赵老师给全班同学定下的目标是:合格率达90%,优秀率达25%(x <60为不合格;x≥60为合格;x≥90为优秀),为了解班上学生对“交通法规”知识的认知情况,赵老师组织了一次模拟测试,将全班同学的测试成绩整理后作出如下频数分布直方图.(图中的70~80表示7080x£<,其余类推)(1)七(3)班共有多少名学生?(2)赵老师对本次模拟测试结果不满意,请通过计算给出一条她不满意的理由;(3)模拟测试后,通过强化教育,班级在学校“交通法规”竞赛中成绩有了较大提高,结果优秀人数占合格人数的13,比不合格人数多10人.本次竞赛结果是否完成了赵老师预设的目标?请说明理由.【答案】(1)七(3)班共有50名学生;(2)合格率为80%以及优秀率为18%均小于定下的目标;(3)合格率及优秀率均达到目标.理由见解析.【分析】(1)计算各频数之和即可求解;(2)计算得出合格率和优秀率,与目标值比较即可;(3)设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,根据题意列出一元一次方程求解即可.(1)解:4+6+9+10+12+9=50(名),答:七(3)班共有50名学生;(2)解:x≥90的学生人数有9人,则优秀率为9¸50×100%=18%<25%;x≥60的学生人数有9+10+12+9=40人,则合格率为40¸50×100%=80%<90%;答:合格率为80%以及优秀率为18%均小于定下的目标;(3)解:合格率及优秀率均达到目标.理由如下:设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,依题意得:3x+x-10=50,解得:x=15,合格人数为3x=3×15=45(人),则合格率为45¸50×100%=90%;优秀人数为x=15(人),则合格率为15¸50×100%=30%>25%;答:合格率及优秀率均达到目标.【点睛】本题考查了条形统计图,一元一次方程的应用,解决本题的关键是掌握条形统计图.22.为丰富学生的课余生活,某学校准备组织学生举行各类球赛活动(每个学生只能参加一种球类活动),将全校学生参加球类活动的调查结果制成如图所示的扇形统计图.其中参加乒乓球的学生有320人.(1)求全校一共有多少名学生?(2)求参加足球的学生的人数比参加篮球的学生的人数多了几分之几?【答案】(1)1000(2)6 19【分析】(1)用参加乒乓球人数除以其占总人数的百分比可得答案;(2)用足球所占百分比减去篮球所占百分比,再除以篮球所占百分比即可.(1)320÷32%=1000(名),答:全校一共有1000名学生;(2)(25%−19%)÷19%=6 19,答:参加足球的学生的人数比参加篮球的学生的人数多了6 19.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解题关键是通过扇形统计图表示出各部分数量同总数之间的关系.23.为庆祝中国共产党成立100周年,某校举行了“感党恩、听党话、跟党走”党史知识竞赛活动,七年级(1)班选派部分学生参加了这次活动,班主任龙老师把本班参赛选手的成绩分为四类进行统计:A:优;B:良;C:中;D:差,并将结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出七年级(1)班参加竞赛活动的人数;(2)求出在扇形图中,表示“C 类”扇形的圆心角度数;(3)计算出A 类男生和C 类女生的人数,并将条形统计图补充完整.【答案】(1)七年级(1)班参加竞答活动的有20人(2)表示“C 类”扇形的圆心角为54°(3)A 类男生人数为2人,C 类女生人数为2人,补全条形统计图见解析【分析】(1)利用B 类人数除以其所占的百分比即可得到答案;(2)由C 类所占的百分比乘以360°,从而可得答案;(3)先求解A ,C 类总人数,再求解A 类男生人数,C 类女生人数,再画图即可.(1)解:由B 类有12人,占比20%, 可得:()7560%20+¸=人,答:七年级(1)班参加竞答活动的有20人.(2)解:()360160%15%10%54°´--=°﹣答:表示“C 类”扇形的圆心角为54°(3)A 类人数为:2015%3´=、C 类人数为:2015%3´=,A 类男生人数为:312-=、C 类女生人数为:312-=,所以A 类男生人数为2人,C 类女生人数为2人,补全图形如图:【点睛】本题考查的是从条形图与扇形图中获取信息,求解某部分扇形所对应的圆心角的大小,补全条形统计图,熟练从条形图与扇形图中获取互相关联的信息是解本题的关键.24.4月23日是“世界读书日”,我校校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解学生周末两天的读书时间,校团委随机调查了部分学生的读书时间x(单位:分钟),把读书时间分为四组:A(30≤x<60),B.(60≤x<90),C.(90≤x<120),D(120≤x<150).部分数据信息如下:a.B组和C组的所有数据:85 90 60 70 110 75 65 78 100 90 80 95 90b.根据调查结果绘制了如下尚不完整的统计图:请根据以上信息,回答下列问题:(1)被调查的学生共有多少人,并补全频数分布直方图;(2)在扇形统计图中,C组所对应的扇形圆心角是_____;(3)请结合统计图给全校学生发出一条合理化的倡议.【答案】(1)20,作图见解析(2)108°(3)书是人类进步的阶梯,同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【分析】(1)由扇形统计图中A所占扇形比例为20%和频数分布直方图中A组频数为4,即可得总人数为4÷20%=20人,再由题干可求得B组人数为7人,D组人数为3人,补全频数分布直方图即可.(2)由(1)知频数分布直方图中C组频数为6,故C组所对应扇形圆心角为6360108°´=°20(3)与统计图的数据相关即可,答案不唯一(1)总人数为4÷20%=20人B组人数为13-6=7人D组人数为20-4-6-7=3人补全频数分布直方图如图所示(2)6 36010820°´=°故C组所对应的扇形圆心角是108°.(3)书是人类进步的阶梯、同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【点睛】本题考查了数据的调查及整理.频数分布直方图是用小长方形的面积来反映数据落在各个小组内的频数的大小的统计图.扇形统计图,特点:扇形统计图能清楚地表示出各部分在总体中所占的百分比,缺点:在两个扇形统计图中,若一个统计图中的某一个量所占的百分比比另一个统计图中的某一个量所占的百分比多,容易造成第一个统计量大于第二个统计量的错觉.注意:扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.25.第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?【答案】(1)12%.补图见解析(2)270(3)12.5%【分析】(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.(1)解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:故答案为:12%.(2)解:调查的总人数为:120÷24%=500(人),参加过滑雪的人数为:500×54%=270(人),故答案为:270(3)解:体验过滑冰的人数为:500×48%=240(人),(270-240)÷240=12.5%,体验过滑雪的人比体验过滑冰的人多12.5%.【点睛】本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.26.某校兴趣小组想了解球的弹性大小,准备了A、B两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.。
七年级数学下册第十章数据的收集、整理与描述小结与复习教案(新版)新人教版
第十章复习教案一、本章知识网络数据处理的一般过程得出结论直方图折线图扇形图条形图据收集数据抽样调查全面调查二、知识要点归纳1、统计图 扇形统计图 容易表示出一个对象在总体中所占的百分比。
条形统计图 可以表示出各种情况下各个项目的具体数目。
折线统计图 可以表现出同一对象的发展变化情况2、全面调查 为一特定目的而对所有考察对象作的全面调查 抽样调查 为一特定目的而对部分考察对象作的调查 抽样调差中的总体 所要考察的对象的全体 个体 其中每一个考察对象样本 从总体中取出的一部分个体样本容量 样本中个体的数目 3、直方图画频数分布直方图的一般步骤(1)计算最大值与最小值的差 (2)决定组距与组数(3)列频数分布表 (4)画频数分布直方图 三、例题 例1、右图和下图是根据某中学为地震灾区捐款情况而制作的统计图,已知该校在校学生2000人,请你根据统计图计算该校七年级有学生_____ 人, 七年级共捐款_____ __元,该校三个年级共捐款_____ ___元。
例2、某校七年级学人均捐款数(元)0246810121416七年级八年级九年级年级生进行体育测试,七年级(2)班男生的立定跳远成绩制成频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答下列问题。
(1)该班有多少名男生? (2)若立定跳远的成绩在2.0米以上(包括2.0米)为合格率是多少练习一、精心选一选,你一定能行1.下列调查适合作全面调查的是 ( ) A.了解在校大学生的主要娱乐方式 B.了解我市居民对废电池的处理情况 C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI 流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是 ( ) A.调查全校女生 B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人3.要反映某市一周内每天的最高气温的变化情况,宜采用 ( ) A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是 ( ) A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变 B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变 C.小明所在班级的学生人数不少于28人 D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是 ( ) A.144oB.162oC.216oD.250o二、耐心填一填,你一定很棒的!6.为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是-____________, 个体是__________________, 样本是_________________.2.3952.1951.9951.7951.5952.595/日4821温度/℃7.小明家本月的开支情况如图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元。
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查考试用题(含答案) (46)
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查考试用题(含答案)某学校在暑假期间开展“心怀感恩、孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,以下是根据相关数据绘制的统计图.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数为______________.(2)补全频数分布直方图;(3)如果该校共有学生1000人,表你估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生有多少人.【答案】(1)200;(2)补图见解析;(3)300人【解析】【分析】(1)用0~10分钟的人数除以0~10分钟的百分比即可得出答案;(2)用总人数减去其余时间的人数即可得出20~30分钟的人数;(3)先求出不少于30分钟的百分比,再乘以1000即可得出答案.【详解】解:(1)在本次随机抽取的样本中,调查的学生人数为:60÷30%=200(2)20~30分钟的人数为:200-(60+40+50+10)=40补全频数分布直方图如下(3)1000×5010200=300(人) 答:估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生有300人.【点睛】本题考查的是数据统计,中考必考题型,解题关键是找出扇形图和条形图之间的转换关系.52.随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A :车价40万元以上;B :车价在20﹣40万元;C :车价在20万元以下;D :暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为 ,样本中B 类人数百分比是 ,其所在扇形统计图中的圆心角度数是;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从这5个人中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.【答案】(1)50,20%,72°.(2)B类人数10人,画图见解析(3)35【解析】【分析】(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.(2)先求出样本中B类人数,再画图.(3)画树状图并求出选出的2人来自不同科室的概率.【详解】解:(1)调查样本人数为4÷8%=50(人),样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,B类人数所在扇形统计图中的圆心角度数是20%×360°=72°故答案为:50,20%,72°.(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人)(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=1220=35.【点睛】此题主要考查了条形统计图,扇形统计图及树状图求概率,根据题意了解统计表中的数据是解决问题的关键.53.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题(1)此次共调查了名学生;(2)将条形统计图1补充完整;(3)图2中“社科类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.【答案】(1)200;(2)见解析;(3)43.2;(4)240人【解析】【分析】(1)文史类的人数除以文史类所占的百分比即可求出调查总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数.【详解】(1)喜欢文史类的人数为76人,占总人数的38%÷=(名)∴此次调查的总人数为7638%200(2)喜欢生活类书籍的人数占总人数的15%⨯=(名)∴喜欢生活类书籍的人数为:20015%30---=(名)∴喜欢小说类书籍的人数为:20024763070补全条形统计图为:()3喜欢社科类书籍的人数为:24人∴喜欢社科类书籍的人数所在扇形圆心角为:24︒⨯=︒36043.2200()4喜欢社科类书籍的人数为:24人∴喜欢社科类书籍的人数占总人数的百分比为:24100%12%⨯=200⨯=人.∴估计该校喜欢“社科类”书籍的学生人数:200012%240【点睛】本题考查了统计的问题,掌握饼状图和条形图的性质、圆心角公式是解题的关键.54.某市教育局组织全市中小学教师开展“访千家”活动.活动过程中,教育局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这福条形统计图补充完整(画图后请标注相应的数据).(2)在采集到的数据中,近两周平均每位教师家访___________次.(3)若该市有12000名教师,求近两周家访不少于3次的教师约有多少人?【答案】(1)详见解析;(2)3.24;(3)9120【解析】【分析】(1)由3次的人数及其所占百分比可得总人数,再用总人数减去其它次数的人数求得4次的人数即可得;(2)根据加权平均数的公式计算可得;(3)用总人数乘以样本中3次、4次及5次人数和占被调查人数的比例即可得.【详解】解:(1)∵被调查的总人数为5436%150÷=人,所以4次家访的有15028%42⨯=人,如图;(2)在采集到的数据中,近两周平均每位教师家访()61302543424185150 3.24⨯+⨯+⨯+⨯+⨯÷=;(3)()544218150120009120++÷⨯= (人),∴近两周家访不少于3次的教师约有9120人.【点睛】本题主要考查了条形统计图和扇形统计图,解题时注意:条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.55.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?【答案】(1)本次抽样调查共抽取了80名学生;(2)本次调查中,有20名学生最想参加动漫社团.补全条形统计图见解析;(3)由样本估计总体得该中学最喜欢香炉山的学生约有360名.【解析】【分析】(1)根据帽儿山的人数除以占的百分比可得到总人数(2)求出凤凰山的人数是80-24-8-20-12=16,再画即可(3)先列出算式,再求出可,【详解】÷%=80(名)(1)2025∴本次抽样调查共抽取了80名学生.(2)80-24-8-20-12=16(名)∴本次调查中,有20名学生最想参加动漫社团.补全条形统计图(3)1200×24=360(名)80x由样本估计总体得该中学最喜欢香炉山的学生约有360名.【点睛】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键56.为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数;(3)估计该校1200名学生中有多少人喜爱跑步项目.【答案】(1)80;(2)45︒;(3)150.【解析】【分析】(1)用其他的人数除以所占百分比;(2)用总人数乘以游泳所占百分比;求出喜爱体操的人数,用体操所占百分比乘以360°;(3)用1200乘以喜爱跑步的百分比.【详解】÷=(名);解:(1)45%80⨯=,(2)8025%20----=,8036201041010⨯︒=︒;3604580(3)10⨯=(人)120015080【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.57.课外阅读是提高学生素养的重要途径.某中学为了了解全校学生课外阅读情况,随机抽查了200名学生,统计他们平均每天课外阅读时间(小时).根据每天课外阅读时间的长短分为A,B,C.D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:200名学生平均每天课外阅读时间统计表(1)求表格中a的值,并在图中补全条形统计图:(2)该校现有1800名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?(3)请你根据上述信息对该校提出相应的建议【答案】(1)a的值为20,见解析;(2)720;(3)课外活动应该多增加阅读量和多运动.【解析】【分析】(1)用抽查的学生的总人数减去A,B,C三类的人数即为D类的人数也就是a的值,并补全统计图;(2)先求出课外阅读时间不少于1小时的学生占的比例,再乘以1800即可.(3)结合图上信息,符合实际意义即可.【详解】(1)200﹣40﹣80﹣60=20(名),故a的值为20,补全条形统计图如下:=720(名),(2)1800×60+20200答:该校共有720名学生课外阅读时间不少于1小时;(3)合理即可.如:课外活动应该多增加阅读量和多运动.【点睛】本题主要考查样本的条形图的知识和分析问题以及解决问题的能力.58.某省对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了______名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该省近40000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【答案】(1)200;(2)补图见解析;(3)54°;(4)该省八年级学生中约有36000名学生学习态度达标.【解析】【分析】(1)根据A级的人数是50人,所占的百分比是25%,根据百分比的意义即可求得总人数;(2)利用总人数减去其它组的人数,即可求得C级的人数,进而补全直方图;(3)C级所占的圆心角的度数用360°乘以对应的百分比即可求得;(4)利用总数40000乘以对应的比例即可求解.【详解】(1)抽查的总人数是:50÷25%=200(人);(2)C级的人数是:2001205030(人).如图(3)C所占圆心角度数360(125%60%)54︒︒=⨯--=;(4)40000(25%65%)36000⨯+=.∴该省八年级学生中约有36000名学生学习态度达标.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.59.某班开展安全知识竞赛活动,班长将所有同学的成绩(得分为整数,满分为100分)分成四类,并制作了如下的统计图表:根据图表信息,回答下列问题:(1)该班共有学生________人;表中a=________;(2)将丁类的五名学生分别记为A、B、C、D、E,现从中随机挑选两名学生参加学校的决赛,请借助树状图、列表或其他方式求B一定能参加决赛的概率.【答案】(1)40,20;(2).【解析】试题分析:(1)10÷25%=40,所以全班的学生数为40人,a=50%×40=20(人);故答案为40,20;(2)画树状图为:共有20种等可能的结果数,其中B一定能参加决赛的结果数为8,所以B 一定能参加决赛的概率==.考点:①列表法与树状图法;②频数(率)分布表.60.受非洲猪瘟疫情影响,2019年我国猪肉价格有较大幅度的上升.为了解某地区养殖户的受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行调查(把调查结果分为四个等级:A级-非常严重,B级-严重,C级-一般,D级-没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)填空:本次抽样调查的养殖户的总户数是______;在扇形统计图中A级所对应的圆心角为______度;(2)请补全条形统计图;(3)若该地区建档的养殖户有1500户,估计非常严重与严重的养殖户一共有多少户?【答案】(1)50户;50.4°.(2)见解析.(3)510户.【解析】 【分析】(1)从两个统计图可得,“C 级”的有20户,占调查总数的40%,可求出调查总数;求出A 级户数占总数的百分比,即可求得圆心角度数.(2)根据调查总数求出“B 级”户数,即可补全条形统计图.(3)首先求得随机抽取的部分养殖户中非常严重与严重的养殖户的数量,即可求得全部养殖户中的数量.【详解】解:(1)总户数:20÷40%=50(户)A 级所对应的圆心角:736050.450⨯︒=︒ (2)50-7-20-13=10(户)(3)710150050+⨯=510(户) 故答案为:(1)50户;50.4° (2)如上图. (3)510户. 【点睛】本题考查了扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,从样本估计总体是统计中常用的方法。
人教版数学七年级下册第十章数据的收集、整理与描述(教案)
-统计图的正确应用:学生在绘制和解读统计图时可能会出现错误,如比例不准确、信息解读错误等,教师需提供具体的指导。
举例:
-在数据整理环节,学生可能会对数据进行不恰当的分类,如将不同性质的数据混为一谈。教师应指导学生如何根据数据特征进行合理分类,例如根据性别、年龄等属性进行分类。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数据的收集、整理与描述在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-数据整理的基本技巧:强调数据分类、排序和汇总的重要性,以及如何避免数据整理过程中的错误。
-统计图的绘制与解读:详细介绍条形图、折线图、扇形图等统计图的绘制方法,以及如何从图表中提取和解读信息。
举例:在数据收集环节,教师需强调如何选择合适的样本,避免采样偏差,确保数据的准确性。
2.教学难点
-数据收集的准确性:学生在实际操作中可能难以确保数据的准确性和全面性,需要教师指导如何避免误操作和重复记录。
在小组讨论环节,同学们表现得非常积极,能够主动提出自己的观点和想法,并进行有效的沟通交流。这说明同学们具备了良好的团队协作能力,这是十分宝贵的品质。但同时,我也注意到,部分同学在讨论过程中过于依赖他人意见,缺乏独立思考的能力。为了培养同学们的独立思考能力,我将在今后的教学中,鼓励他们多发表自己的见解,勇于表达自己的观点。
新人教版七年级数学下册《十章 数据的收集、整理与描述 数学活动》教案_10
数学活动:简单随机抽样学习目标:1.历经收集数据的过程,从中体会从事实际问题研究的辛苦与不易,增强实践能力.2.增强对简单随机抽样的认识,明了它的合理性.重点:归纳简单随机抽样优点及其合理性.难点:收集数据.教学过程一、创设情境,引入课题我们知道当调查的个体数目较多,或者是调查时具有破坏性时,通常采用抽样调查的方式来收集数据,然后再分析样本数据,用样本的情况去估计总体的情况.我们通常采用的抽样方法是简单随机抽样.这节课我们就用简单随机抽样的方法收集数据,并整理、分析,亲身验证一下这种调查方式的合理性.二、探究新知1、活动1:用简单随机抽样方法估计全班同学的平均身高根据本班人数准备相同数量的小纸片,这些小纸片没有明显差别.步骤一调查并记录全班每个同学的身高,分别写在不同小纸片上,算出全班同学的平均身高,然后把所有的小纸片放在一个纸盒里.步骤二充分搅拌盒中的纸片,随意抽取出15张纸片作为一个样本,计算纸片上数字的平均值,将抽取的纸片放回纸盒步骤三比较样本平均身高和全班平均身高,谈谈你对这个结果的看法.计算纸片上数字的平均值,和全班同学的平均身高作比较,极可能有误差步骤四重复上述步骤二若干次,把每次求得的样本平均身高和全班平均身高作比较,你有什么发现?会发现结果总是在全班同学的平均身高上下波动,且相差不大.如果求出这些样本的平均身高的平均值,则会非常接近(或等于)全班同学的平均身高2、活动2:谁的反应快准备一把带刻度的直尺,和一位同学合作来测量第一步:伸出一只手,拇指和其余四指分开;第二步:让同伴把直尺直立,刻度0在下方,拿到你的拇指和四指之间,使刻度0的位置与拇指在同一高度,然后松手,你要以最快的速度抓住直尺;第三步:记录手抓在直尺上的刻度l(单位:cm);第四步:重复试验10次,记录并整理试验所得数据.思考1. 在10次试验中,所得l的最大值和最小值各是多少?2. l的平均值是多少?l的值与反应速度有什么关系?与你的同伴对调,并重复上面的过程,看谁的反应三、课堂小结通过这节课的学习活动,你有什么收获?四、布置作业:完成练习册本课时的习题五、教学反思本课时主要讲了简单随机抽样,要搞清楚简单随机抽样的随机性,弄清样本的广泛性和代表性,培养学生的实践能力.。
新人教版七年级数学下册《十章 数据的收集、整理与描述 小结 构建知识体系》教案_14
第十章数据的收集、整理与描述小结与复习一、教学目标1. 经历对本章所学知识的回顾与思考的过程,将本章内容条理化,系统化,梳理本章的知识结构。
2. 通过对知识的梳理、概括、总结,明确统计的基本思想,会对数据进行整理、描述。
3. 通过整理数据,感受统计在生活和生产中的作用,增强学习统计的兴趣,培养调查研究的良好习惯和科学态度。
二、教学重点知识框架的建立和各个知识点的理解。
三、教学难点用合适的方法对数据进行整理和描述。
四、教学过程(一)知识点回顾总结(1)什么是全面调查和抽样调查?它们各有什么优缺点?(2)哪些情况下宜用全面调查?哪些情况下宜用抽样调查?(3)为什么抽样调查可以作为了解总体的方法?为了使样本对总体有较好的代表性,抽样时要注意什么?(4)简单随机抽样有什么特点?用简单随机抽样抽出的样本是否一定具有代表性,请举例说明.(5)条形图、扇形图、折线图和直方图在表示数据方面各有什么特点?(二)构建知识结构体系(三)典型例题解析近日,某市一消费者质疑某品牌矿泉水“pH不达标”,而国家于2007年7月1日开始实施的《生活饮用水卫生标准》中明确规定生活饮用水的pH值范围为6.5~8.5.如果我们想了解在本地销售的矿泉水pH是否达标,就可以利用本章所学的知识做一些尝试.问题一某市每天在售的矿泉水不计其数,我们应采用什么调查方法收集所需要的PH值相关信息呢?(答:抽样调查)问题二我们该如何对上市销售的矿泉水进行抽样呢?(答:选取样本时要考虑样本数量、矿泉水品牌、生产日期、产地等多个因素,使样本对总体有较好的代表性。
)问题三通过抽样调查的方法我们收集到一些数据.接下来,我们需要对这些数据进行整理.大家回忆一下,我们通常采用什么方法来整理数据?(答:制表,通过划记或用计算机对数据进行整理.)各种矿泉水pH的频数分布直方图12108642观察上图,回答下列问题.(1)被检测的矿泉水总数有多少种?(答:32种)(2)被检测的矿泉水的最低PH值是多少?(答: 5.7)(3)pH在6.9~7.3的频数、频率分别是多少?(包括6.9,不包括7.3)(答:频数为10,频率为31.25% .)(四)课堂小结1.各统计图的识图方法、特点和画法2.全面调查和抽样调查的特点及选用3.抽样调查的有关概念4.统计图的信息的获取和应用(五)课外作业教科书复习题10 第1、2、5、9题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 数据的收集单元测试题
一、填空题(每空2分,共42分)
1.考察全体对象的调查我们常把它称为 调查;考察部分对象的调查称为 调查.
2.为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析。
在这个问题中,
总体是 , 个体是 , 样本是 ,样本容量是 .
3、在进行数据描述时,要显示每组中的具体数据,应采用 图;要显示部分在总体中所占的百分比,应采用 图;要显示数据的变化趋势,应采用 图;要显示数据的分布情况,应采用 图.
4、进行数据的调查收集,一般可分为以下六个步骤,但它们的顺序弄乱了,正确的顺序是 (用字母按顺序写出即可)
A 、明确调查问题;
B 、记录结果;
C 、得出结论;
D 、确定调查对象;
E 、展开调查;
F 、选择调查方法。
5、在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是 .
6、某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身
体素质达标率为92%. 请你估计该市6万名七年级学生中,身体素质达标的大约有 万人.
7、某校八年级(1)班为了了解同学们一天零花钱的消费情况,对本班同学开展了调查,将同学一周的零花钱以2元为组距,绘制如图的频率分布直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1. (1)若该班有48人,则零花钱用最多
的是第 组,有 人; (2)零花钱在8元以上的共有 人; (3)若每组的平均消费按最大值计
算,则该班同学的日平均消费额
钱数(元)
人数
12
108642
是元(精确到0.1元)
8、如果让你调查本班同学喜欢哪几类球类运动,那么:
(1)你的调查问题是;
(2)你的调查对象是;
(3)你要记录的数据是;
(4)你的调查方法是 .
二、选择题(每小题5分,共35分)
9、下列调查工作需采用普查方式的是()
(A)环保部门对长江某段水域的水污染情况的调查;
(B)电视台对正在播出的某电视节目收视率的调查;
(C)质检部门对各厂家生产的电池使用寿命的调查;
(D)企业在给职工做工作服前进行的尺寸大小的调查.
10、为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来
说,下面说法正确的是()
(A)1500名学生的体重是总体 (B)1500名学生是总体
(C)每个学生是个体 (D)100名学生是所抽取的一个样本
11、在一个样本中,50个数据分别落在5个小组内,第1,2,3,5,小组数据的个数分别
是2,8,15,5,则第4小组的频数是()
(A)15 (B)20 (C)25 (D)30
12、下列抽样调查较科学的是()
①小华为了知道烤箱中所烤的面包是否熟了,取出一小块品尝;
②小明为了了解初中三个年级学生的平均身高,在七年级抽取一个班的学生做调查;
③小琪为了了解北京市2007年的平均气温,上网查询了2007年7月份31天的气温
情况;
④小智为了了解初中三个年级学生的平均体重,在七年级、八年级、九年级各抽一个
班的学生进行调查。
(A) ①② (B) ①③ (C) ①④(D) ③④
13、一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成()
(A) 10组 (B) 9组 (C) 8组 (D) 7组
14、初二(1)班有48位学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去珍珠乐园的学生数”的扇形圆心角60°,则下列说法正确的是( ) (A) 想去珍珠乐园的学生占全班学生的60% (B) 想去珍珠乐园的学生有12人 (C) 想去珍珠乐园的学生肯定最多 (D )想去珍珠乐园的学生占全班学生的1/6
15、某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自
课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为( )
(A) 0.96时 (B) 1.07时 (C) 1.15时 (D) 1.50时
第15题图 第16题图
16、小明调查了本班同学最喜欢的球类运动情况,并作出了如图的统计图,下面说法正确的
是( )
(A).从图中可以直接看出全班总人数.
(B).从图中可以直接看出喜欢足球运动的人数最多. (C).从图中可以直接看出喜欢各种球类运动的具体人数. (D).从图中可以直接看出喜欢各种球类运动的人数的百分比. 三、解答题(第17题11分、第18题7分)
17、镇政府想了解李家庄的经济情况,用简单随机抽样的方法,在130户家庭中抽取20户
调查过去一年的收入(单位:万元),结果如下: 1.3 1.7 2.4 1.1 1.4 1.6 1.6 2.7 2.1 1.5
0.9 3.2 1.3 2.1 2.6 2.1 1.0 1.8 2.2 1.8
28%19%
25%
15%
13%乒乓球篮球足球排球网球
试估计村中住户的平均年收入、整村的年收入以及村中户年收入超过1.5万元的百分比。
(7分)
18、小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题: (1)补全频数分布表.(5分) (2)补全频数分布直方图.(2分) (3)绘制相应的频数分布折线图.(2分)
(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?
(2)
020
161800
12084元
户数
1400160012001000800600。